1
|
Campbell K, Cerezke-Riemer Y, Acorn JH. Photosynthetic oxygen bubble stream sounds from aquatic macrophytes, and their consequences for acoustic biodiversity inventories and acoustic communication in shallow freshwater settings. PLoS One 2025; 20:e0317424. [PMID: 40267935 PMCID: PMC12017830 DOI: 10.1371/journal.pone.0317424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/27/2024] [Indexed: 04/25/2025] Open
Abstract
The emerging field of soundscape ecology focuses on biological, geophysical, and anthropogenic sounds, and provides a non-invasive method to inventory ecosystems. Most of the work on freshwater soundscapes focuses on larger fishes in deeper water, or on insects. We suggest the possibility that such studies have either missed or misidentified photosynthetic oxygen bubble sounds (POBS) produced by bubble streams from damaged macrophytes in sunny shallow water. These contribute significantly to local soundscapes. We recorded such sounds in the shallows of Gull Lake, Alberta, Canada, where POBS from sago pondweed (Stuckenia pectinata), along with water boatman stridulations (Hemiptera: Corixidae), comprised almost all of the sounds we encountered. These sounds attenuate rapidly with distance, and the POBS constitute a remarkable acoustic diversity, resulting in a patchwork of very different soundscapes in these shallows. Recognition of POBS has important consequences for acoustic bioinventories in shallow water, rapid ecosystem assessments involving indices of primary production, and bioacoustics studies of such organisms as corixid bugs, communicating against a cacophonous background of POBS.
Collapse
Affiliation(s)
- Katie Campbell
- Department of Renewable Resources, University of Alberta, Alberta, Canada
| | | | - John H. Acorn
- Department of Renewable Resources, University of Alberta, Alberta, Canada
| |
Collapse
|
2
|
Classen-Rodríguez L, Tinghitella R, Fowler-Finn K. Anthropogenic noise affects insect and arachnid behavior, thus changing interactions within and between species. CURRENT OPINION IN INSECT SCIENCE 2021; 47:142-153. [PMID: 34252592 DOI: 10.1016/j.cois.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization and the by-product pollutants of anthropogenic activity pose unique threats to arthropods by altering their sensory environments. Sounds generated by human activities, like construction and road traffic, can oversaturate or interfere with biotic acoustic cues that regulate important ecological processes, such as trophic interactions and the coordination of mating. Here, we review recent work exploring how anthropogenic noise impacts inter-intra-specific interactions in insects and arachnids. We outline empirical frameworks for future research that integrate three mechanisms by which anthropogenic noise alters behavior through interference with acoustic cues: masking, distraction, and misleading. Additionally, we emphasize the need for experimental designs that more accurately replicate natural soundscapes. We encourage future investigations on the effects of developmental exposure to noise pollution and the impacts of multiple interacting sensory pollutants on insect and arachnid behavior.
Collapse
Affiliation(s)
- Leticia Classen-Rodríguez
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA.
| | - Robin Tinghitella
- Department of Biological Sciences, University of Denver, Olin Hall, 2190 E Iliff Avenue, Denver, CO 80210, USA
| | - Kasey Fowler-Finn
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA; Living Earth Collaborative, Saint Louis, MO, USA
| |
Collapse
|
3
|
Dietz S, Beazley KF, Lemieux CJ, St. Clair C, Coristine L, Higgs E, Smith R, Pellatt M, Beaty C, Cheskey E, Cooke SJ, Crawford L, Davis R, Forbes G, Gadallah F(Z, Kendall P, Mandrak N, Moola F, Parker S, Quayle J, Ray JC, Richardson K, Smith K, Snider J, Smol JP, Sutherland WJ, Vallillee A, White L, Woodley A. Emerging issues for protected and conserved areas in Canada. Facets (Ott) 2021. [DOI: 10.1139/facets-2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Horizon scanning is increasingly used in conservation to systematically explore emerging policy and management issues. We present the results of a horizon scan of issues likely to impact management of Canadian protected and conserved areas over the next 5–10 years. Eighty-eight individuals participated, representing a broad community of academics, government and nongovernment organizations, and foundations, including policymakers and managers of protected and conserved areas. This community initially identified 187 issues, which were subsequently triaged to 15 horizon issues by a group of 33 experts using a modified Delphi technique. Results were organized under four broad categories: ( i) emerging effects of climate change in protected and conserved areas design, planning, and management (i.e., large-scale ecosystem changes, species translocation, fire regimes, ecological integrity, and snow patterns); ( ii) Indigenous governance and knowledge systems (i.e., Indigenous governance and Indigenous knowledge and Western science); ( iii) integrated conservation approaches across landscapes and seascapes (i.e., connectivity conservation, integrating ecosystem values and services, freshwater planning); and ( iv) early responses to emerging cumulative, underestimated, and novel threats (i.e., management of cumulative impacts, declining insect biomass, increasing anthropogenic noise, synthetic biology). Overall, the scan identified several emerging issues that require immediate attention to effectively reduce threats, respond to opportunities, and enhance preparedness and capacity to react.
Collapse
Affiliation(s)
- Sabine Dietz
- Ecosystem Science Laboratory, Office of the Chief Ecosystem Scientist, Protected Areas Establishment and Conservation Directorate, Parks Canada Agency, Gatineau QC J8X 0B3, Canada
| | - Karen F. Beazley
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christopher J. Lemieux
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Colleen St. Clair
- Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laura Coristine
- Environment and Climate Change Canada, Canadian Wildlife Service, Gatineau, QC, K1A 0H3, Canada
| | - Eric Higgs
- School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Risa Smith
- International Union for the Conservation of Nature/World Commission on Protected Areas
| | - Marlow Pellatt
- Ecosystem Science Laboratory, Office of the Chief Ecosystem Scientist, Protected Areas Establishment and Conservation Directorate, Parks Canada Agency, Gatineau QC J8X 0B3, Canada
| | | | | | - Steven J. Cooke
- Institute for Environmental and Interdisciplinary Sciences and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Lindsay Crawford
- Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada
| | - Rob Davis
- Ontario Parks, Ministry of the Environment, Conservation and Parks, Peterborough, ON K9J 8M5, Canada
| | - Graham Forbes
- University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Fawziah (ZuZu) Gadallah
- Environment and Climate Change Canada, Canadian Wildlife Service, Gatineau, QC, K1A 0H3, Canada
| | | | - Nick Mandrak
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Faisal Moola
- Geography, Environment & Geomatics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Scott Parker
- Protected Areas Establishment and Conservation Directorate, Parks Canada Agency, Gatineau QC J8X 0B3, Canada
| | | | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON M5S 3A7, Canada
| | - Karen Richardson
- Ecosystem Science Laboratory, Office of the Chief Ecosystem Scientist, Protected Areas Establishment and Conservation Directorate, Parks Canada Agency, Gatineau QC J8X 0B3, Canada
| | - Kevin Smith
- Ducks Unlimited Canada, Edmonton, AB T5S 0A2, Canada
| | - James Snider
- World Wildlife Fund Canada, Toronto, ON M5V 1S8, Canada
| | - John P. Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - William J Sutherland
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Biosecurity Research Initiative at St Catharine’s, St Catharine’s College, Cambridge CB2 1RL, UK
| | | | - Lori White
- Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada
| | - Alison Woodley
- Canadian Parks and Wilderness Society, Ottawa, ON K2P 0A4, Canada
| |
Collapse
|
4
|
Temperate freshwater soundscapes: A cacophony of undescribed biological sounds now threatened by anthropogenic noise. PLoS One 2020; 15:e0221842. [PMID: 32187194 PMCID: PMC7080229 DOI: 10.1371/journal.pone.0221842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
The soundscape composition of temperate freshwater habitats is poorly understood. Our goal was to document the occurrence of biological and anthropogenic sounds in freshwater habitats over a large (46,000 km2) area along the geographic corridors of five major river systems in North America (Connecticut, Kennebec, Merrimack, Presumpscot, and Saco). The underwater soundscape was sampled in 19 lakes, 17 ponds, 20 rivers and 20 streams, brooks and creeks that were grouped into broad categories (brook/creek, pond/lake, and river). Over 7,000 sounds were measured from 2,750 minutes of recording in 173 locations over a five-week period in the spring of 2008. Sounds were classified into major anthropophony (airplane, boat, traffic, train and other noise) and biophony (fish air movement, also known as air passage, other fish, insect-like, bird, and other biological) categories. The three most significant findings in this study are: 1) freshwater habitats in the New England region of North America contain a diverse array of unidentified biological sounds; 2) fish air movement sounds constitute a previously unrecognized important component of the freshwater soundscape, occurring at more locations (39%) and in equal abundance than other fish sounds; and 3) anthropogenic noises dominate the soundscape accounting for 92% of the soundscape by relative percent time. The high potential for negative impacts of the anthropophony on freshwater soundscapes is suggested by the spectral and temporal overlap of the anthropophony with the biophony, the higher received sound levels of the anthropophony relative to the biophony, and observations of a significant decline in the occurrence, number, percent time, and diversity of the biophony among locations with higher ambient received levels. Our poor understanding of the biophony of freshwater ecosystems, together with an apparent high temporal exposure to anthropogenic noise across all habitats, suggest a critical need for studies aimed at identification of biophonic sound sources and assessment of potential threats from anthropogenic noises.
Collapse
|