1
|
Wisanpitayakorn P, Jariyasopit N, Duangkumpha K, Goh JX, Palmer ME, Sirivatanauksorn Y, Khoomrung S. Multi-Pass Arrival Time Correction in Cyclic Ion Mobility Mass Spectrometry for Imaging and Shotgun Lipidomics. ACS MEASUREMENT SCIENCE AU 2025; 5:109-119. [PMID: 39991034 PMCID: PMC11843504 DOI: 10.1021/acsmeasuresciau.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 02/25/2025]
Abstract
Direct-infusion mass spectrometry (DI-MS) and mass spectrometry imaging (MSI) are powerful techniques for lipidomics research. However, annotating isomeric and isobaric lipids with these methods is challenging due to the absence of chromatographic separation. Recently, cyclic ion mobility mass spectrometry (cIM-MS) has been proposed to overcome this limitation. However, fluctuations in room conditions can affect ion mobility multipass arrival times, potentially reducing annotation confidence. In this study, we developed a multipass arrival time correction method that proved effective across various dates, room temperatures, ion mobility settings, and laboratories using mixtures of reference standards. We observed slight variations in the linear correction lines between lipid and nonlipid molecules, underscoring the importance of choosing appropriate reference molecules. Based on these results, we demonstrated that an accurate multipass arrival time database can be constructed from corrected t 0 and t p for interlaboratory use and can effectively identify isomeric lipids in MSI using only a single measurement. This approach significantly simplifies the identification process compared to determining multipass collision cross-section, which requires multiple measurements that are both sample- and time-intensive for MSI. Additionally, we validated our multipass drift time correction method in shotgun lipidomics analyses of human and mouse serum samples and observed no matrix effect for the analysis. Despite variations in dates, room temperatures, instruments, and ion mobility settings, our approach reduced the mean drift time differences from over 2% to below 0.2%.
Collapse
Affiliation(s)
- Pattipong Wisanpitayakorn
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Thailand
Metabolomics Society, Bangkok 10700, Thailand
| | - Narumol Jariyasopit
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Thailand
Metabolomics Society, Bangkok 10700, Thailand
| | - Kassaporn Duangkumpha
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Thailand
Metabolomics Society, Bangkok 10700, Thailand
| | - Jun Xian Goh
- Southeast
Asia Solution Centre, Waters Pacific Pte Ltd, Singapore 117528, Singapore
| | | | - Yongyut Sirivatanauksorn
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Thailand
Metabolomics Society, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj
Center of Research Excellence in Metabolomics and Systems Biology
(SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Thailand
Metabolomics Society, Bangkok 10700, Thailand
- Department
of Biochemistry, Faculty of Medicine Siriraj
Hospital Mahidol University, Bangkok 10700, Thailand
- Center
of Excellence for Innovation in Chemistry (PERCH–CIC), Faculty
of Science Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Rischke S, Gurke R, Bennett A, Behrens F, Geisslinger G, Hahnefeld L. ALISTER - Application for lipid stability evaluation and research. Clin Chim Acta 2024; 557:117858. [PMID: 38492658 DOI: 10.1016/j.cca.2024.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND AIMS In lipidomic and metabolomic studies, pre-analytical pitfalls enhance the risk of misusing resources such as time and money, as samples that are analyzed may not yield accurate or reliable data due to poor sample handling. Guidance and pre-analytic know-how are necessary for translation of omics technologies into routine clinical testing. The present work aims to enable decision making regarding sample stability in every phase of lipidomics- and metabolomics-centered studies. MATERIALS AND METHODS Data of multiple pre-analytic studies were aggregated into a database. Flexible approaches for evaluating these data were implemented in an RShiny-based web-application, tailored towards broad applicability in clinical and bioanalytic research. RESULTS Our "Application for lipid stability evaluation & research" - ALISTER facilitates decision making on blood sample stability during lipidomic and metabolomic studies, such as biomarker research, analysis of biobank samples and clinical testing. The interactive tool gives sampling recommendations when planning sample collection or aids in the assessment of sample quality of experiments retrospectively. CONCLUSION ALISTER is available for use under https://itmp.shinyapps.io/alister/. The application enables and simplifies data-driven decision making concerning pre-analytic blood sample handling and fits the needs of clinical investigations from multiple perspectives.
Collapse
Affiliation(s)
- Samuel Rischke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Robert Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Alexandre Bennett
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Frank Behrens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Rheumatology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Fan X, Xu J, Hu Y, Wang K, Zhao Y, Cai J, Zhang X, Pan B, Xu A, Chen Y, Liu S, Jiang K, Li X. Effect of high NEFA concentration on lipid metabolism disorders in hepatocytes based on lipidomics. Front Pharmacol 2024; 15:1372296. [PMID: 38482059 PMCID: PMC10933074 DOI: 10.3389/fphar.2024.1372296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 04/29/2025] Open
Abstract
Introduction: High concentrations of nonesterified fatty acids (NEFA) is the key of characteristic of fatty liver in dairy cows. Therefore, the aim of this study was to investigate the effect of high concentration of NEFA on lipid metabolism in hepatocytes through the lipidomic approach and molecular biology techniques. Methods: Stimulate AML-12 cells with different concentrations of NEFA, observe the cellular lipid accumulation, and select 0.6 mM NEFA stimulation concentration for subsequent experiments. Collect cells for lipidomics analysis. Results: High concentration of NEFA (0.6-2.4 mM) significantly reduced the cell viability in a concentration-dependent manner, indicating that high concentrations of NEFA have lipotoxicity on hepatocytes. In addition, NEFA promoted triglycerides (TAG) accumulation, increased the mRNA expression of the lipogenic molecules SREBP1c and FASN, and decreased the mRNA expression of lipolytic molecules CPT1A and HSL in hepatocytes. Mechanistically, high concentration of NEFA induced lipid metabolism disorders in hepatocytes by regulating metabolic pathways such as glycerol phospholipid metabolism, glycosyl phosphatidylinositol anchored biosynthesis, triglyceride metabolism, sphingolipid metabolism, and inositol phosphate metabolism. Discussion: High concentration of NEFA is lipotoxic to cells, promoting lipid accumulation. LPE (18:2), LPE (18:3), LPE (18:1) via glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, glycerolipid metabolism, sphingolipid metabolism, and inositol phosphate metabolism, indicating their potential regulation role in the pathogenesis of fatty liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. Int J Mol Sci 2024; 25:2249. [PMID: 38396926 PMCID: PMC10889185 DOI: 10.3390/ijms25042249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 05 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 68/73, SK-041 81 Kosice, Slovakia
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
5
|
Nguyen BT, Yen NTH, Tung NKT, Jeong GS, Kang JS, Long NP, Kim HM. Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure. J Pharm Biomed Anal 2023; 231:115401. [PMID: 37105045 DOI: 10.1016/j.jpba.2023.115401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
Collapse
Affiliation(s)
- Bao Tan Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Ninh Khac Thanh Tung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| | - Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Chen S, Li X, Liu S, Zhao L, Zhang W, Xiong Z, Luan H. Rapid, sensitive, and high-throughput quantification of broad serological ceramides by using isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry. Anal Bioanal Chem 2023; 415:801-808. [PMID: 36482083 DOI: 10.1007/s00216-022-04473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Ceramides are important intermediates in the metabolism of sphingolipids. High-throughput liquid chromatography-mass spectrometry has been used extensively for monitoring the levels of serological ceramides, but is still limited by inadequate coverage or lack of sensitivity. Herein, a rapid, sensitive, and high-throughput isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry (IDLC-nESI-MS/MS) method was developed and verified for accurate quantification of 41 ceramides, involving ceramides with C16-20 sphingosine, dihydro-ceramide, and dehydro-ceramide. This method was validated with excellent linearity (R2 > 0.99) and good recovery in the range of 90-110%. Intra- and inter-day imprecision were below 5.57% and 7.83% respectively. The improved high-throughput quantitative method developed in this study may aid in the accurate characterization of ceramides for understanding ceramide biology and application in disease diagnosis.
Collapse
Affiliation(s)
- Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Xuan Li
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Wenyong Zhang
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Hemi Luan
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China.
| |
Collapse
|
7
|
Bishop LM, Fiehn O. Comprehensive lipidomic profiling by plasma separation cards. Anal Bioanal Chem 2023; 415:193-201. [PMID: 36316462 PMCID: PMC10448968 DOI: 10.1007/s00216-022-04399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Large-scale lipidomic analyses have been limited by the cost and accessibility of traditional venipuncture sampling. Microsampling techniques offer a less-invasive and more accessible alternative. From a single drop of blood, plasma separation cards (PSC) deliver two volumetric dried plasma samples which are studied here for profiling endogenous blood lipids. Six lots of EDTA-treated human whole blood were used to compare PSC, dried blood spot analyses (DBS), and classic wet plasma extractions. Six replicate extractions were performed for each lot. Nontargeted lipidomics was performed by liquid chromatography-high resolution tandem mass spectrometry. Lipids were annotated by accurate mass/retention time matching and MS/MS spectral library matching using peak intensities for quantitation. Four hundred ninety-eight compounds covering 24 lipid subclasses were annotated. Inter-lot repeatability was evaluated by the percent relative standard deviation (%RSD) for each lot, giving median %RSD values across the lots at 14.6% for PSC, 9.3% for DBS, and 8.6% for wet plasma. Strong correlations of lipid peak intensities between wet plasma and PSCs were observed, but less for DBS. Lipid recovery and stability were comparable between the PSC and DBS samples, with roughly 60% of annotated lipids stable at room temperature after 28 days. Overall, PSCs provide a better alternative for quantitative blood lipidomic analyses compared to dried blood spots. However, problems with lipid stability for samples handled and shipped at room temperature are currently unavoidable outside of a clinical setting. Data transferability and comparability to standard plasma is lipid and lipid class dependent.
Collapse
Affiliation(s)
- Lauren M Bishop
- Department of Chemistry, University of California Davis, Davis, CA, USA
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Oliver Fiehn
- Department of Chemistry, University of California Davis, Davis, CA, USA.
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Zhang F, Zhang Q, Liu X, Gao M, Li X, Wang Y, Chang Y, Zhang X, Huo Z, Zhang L, Shan J, Zhu B, Yao W. Human serum lipidomics analysis revealed glyphosate may lead to lipid metabolism disorders and health risks. ENVIRONMENT INTERNATIONAL 2023; 171:107682. [PMID: 36495677 DOI: 10.1016/j.envint.2022.107682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate-based herbicides (GBH) are one of the most widely used pesticides worldwide. Industrial workers in glyphosate-based herbicides manufacture are the populations who experience long-term exposure to high glyphosate levels. The impacts of glyphosate on human health are the important public health problem of great concern. Up to date, the potential adverse effects of glyphosate on humans or other mammals have been reported in multiple studies. However, limited research is available on lipid alternations related to human exposure to glyphosate. In fact, the perturbations in some lipid metabolisms have been found in industrial workers in previous work. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of health risks associated with glyphosate exposure. A nontargeted lipidomics study was conducted to investigate the 391 serum samples from the general population and chemical factory workers. It was demonstrated that glyphosate caused significant perturbations of 115 differentially expressed lipids. The main manifestations were the elevation of circulating diacylglycerols (DG), cholesteryl esters (CE), ceramides (Cer), sphingomyelins (SM), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC), and the decrease of ysophosphatidylcholines (LPC), triacylglycerols (TG), fatty acids (FA) and phosphatidylethanolamines (PE). A total of 88 lipids were further screened as potential lipid biomarkers associated closely with glyphosate using partial correlation analysis, and five of which (including PC 16:0/18:2; O, PC 18:0/18:2; O, PC 18:0/20:4; O, PC O-40:9 and CE 18:3) showed excellent superior performance (AUC = 1) to evaluate and monitor health risks due to glyphosate exposure. The present work discovered glyphosate-induced potential health risks, including chronic hepatic and renal dysfunction, atherosclerosis, cardiovascular disease and neurodegenerative diseases from a lipidomic perspective, and could inform the identification of early indicators and interpretation of biological mechanisms to detect health risks of the glyphosate-exposed populations as early as possible.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China; Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Qiulan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Mengting Gao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yifei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yueyue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xuemeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Zongli Huo
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Baoli Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
9
|
Zhu L, Ma SJ, Liu MJ, Li KL, E S, Wang ZM, Li SN, Zhang SL, Cai W. Screening and characterization estrogen receptor ligands from Arnebia euchroma (Royle) Johnst. via affinity ultrafiltration LC-MS and molecular docking. FRONTIERS IN PLANT SCIENCE 2022; 13:1012553. [PMID: 36420029 PMCID: PMC9676231 DOI: 10.3389/fpls.2022.1012553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Arnebiae Radix (dried root of Arnebia euchroma (Royle) Johnst.) is a traditional Chinese medicine (TCM) used to treat macular eruptions, measles, sore throat, carbuncles, burns, skin ulcers, and inflammations. The Arnebiae Radix extract can exert anti-breast cancer effects through various mechanisms of action. This study aimed to rapidly screen potential estrogen receptor (estrogen receptor α and estrogen receptor β) ligands from the Arnebiae Radix extract. In this study, an analytical method based on affinity ultrafiltration coupled with UHPLC-Q-Exactive Orbitrap mass spectrometry was established for rapidly screening and identifying estrogen receptor ligands. Then, bindings of the components to the active site of estrogen receptor (estrogen receptor α and estrogen receptor β) were investigated via molecular docking. Moreover, surface plasmon resonance (SPR) experiments with six compounds were performed to verify the affinity. As a result, a total of 21 ligands were screened from Arnebiae Radix using affinity ultrafiltration. Among them, 14 and 10 compounds from Arnebiae Radix showed affinity with estrogen receptor α and estrogen receptor β, respectively. All of those ligands could have a good affinity for the multiple amino acid residues of the estrogen receptor based on molecular docking. In addition, six compounds display the great affinity by SPR. The method established in the study could be used to rapidly screen estrogen receptor ligands in Traditional Chinese medicine. The results demonstrated that the affinity ultrafiltration-UHPLC-Q-Exactive Orbitrap mass spectrometry method not only aids in the interpretation of the potential bioactive components and possible mechanisms of action of Arnebiae Radix but also provides a further effective basis for the quality control of this valuable herb medicine.
Collapse
Affiliation(s)
- Lian Zhu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Sheng-jun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Ming-juan Liu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Kai-lin Li
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Shuai E
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Zi-ming Wang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Sha-ni Li
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Sheng-lan Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
10
|
Li X, Ma W, Yang B, Tu M, Zhang Q, Li H. Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool. Molecules 2022; 27:molecules27165251. [PMID: 36014490 PMCID: PMC9415319 DOI: 10.3390/molecules27165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dinotefuran (DNT) is a neonicotinoid insecticide widely used in pest control. Identification of structurally related impurities is indispensable during material purification and pesticide registration and certified reference material development, and therefore needs to be carefully characterized. In this study, a combined strategy with liquid chromatography high-resolution mass spectrometry and SIRIUS has been developed to elucidate impurities from DNT material. MS and MS/MS spectra were used to score the impurity candidates by isotope score and fragment tree in the computer assisted tool, SIRIUS. DNT, the main component, worked as an anchor for formula identification and impurity structure elucidation. With this strategy, two by-product impurities and one stereoisomer were identified. Their fragmentation pathways were concluded, and the mechanism for impurity formation was also proposed. This result showed a successful application for combined human intelligence and machine learning, in the identification of pesticide impurities.
Collapse
Affiliation(s)
- Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
- Correspondence: (X.L.); (H.L.); Tel.: +86-10-64524737 (X.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bingxin Yang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengling Tu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Qinghe Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
- Correspondence: (X.L.); (H.L.); Tel.: +86-10-64524737 (X.L.)
| |
Collapse
|
11
|
Li X, Yang B, Ma W, Tu M, Zhang Y, Ma Z, Zhang Q, Li H. Impurity identification in thiamethoxam by high resolution mass spectrometry and computer assisted elucidation. Anal Bioanal Chem 2022; 414:7203-7210. [PMID: 35972524 DOI: 10.1007/s00216-022-04272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Thiamethoxam (TMX) is a widely used neonicotinoid insecticide in pest control. Identification of structurally related impurities is very important during certified reference material development and pesticide registration, thus it needs to be carefully characterized. In this study, a combined strategy with liquid chromatography-high resolution mass spectrometry and computer assisted elucidation (SIRIUS) has been developed for the impurity elucidation in TMX material. MS and MS/MS spectra were used to score the impurity candidates by isotope score and fragment tree in SIRIUS. TMX, the main component, worked as an anchor for formula identification and structure elucidation of impurity. With this strategy, four impurities were identified, including two byproducts (TMX-OCH3 and TMX-Cl) and two metabolites (clothianidin and TMX-urea). Their fragmentation pathways were concluded, and mechanism of impurity formation was also proposed. This result showed successful application of combining human intelligence with machine learning in impurity identification from chemicals.
Collapse
Affiliation(s)
- Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, No. 18 East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China.
| | - Bingxin Yang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, No. 18 East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mengling Tu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, No. 18 East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Yan Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, No. 18 East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinghe Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, No. 18 East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, No. 18 East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
12
|
Bourceau P, Michellod D, Geier B, Liebeke M. Spatial metabolomics shows contrasting phosphonolipid distributions in tissues of marine bivalves. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipids are an integral part of cellular membranes that allow cells to alter stiffness, permeability, and curvature. Among the diversity of lipids, phosphonolipids uniquely contain a phosphonate bond between carbon and phosphorous. Despite this distinctive biochemical characteristic, few studies have explored the biological role of phosphonolipids, although a protective function has been inferred based on chemical and biological stability. We analyzed two species of marine mollusks, the blue mussel Mytilus edulis and pacific oyster Crassostrea gigas, and determined the diversity of phosphonolipids and their distribution in different organs. High-resolution spatial metabolomics revealed that the lipidome varies significantly between tissues within one organ. Despite their chemical similarity, we observed a high heterogeneity of phosphonolipid distributions that originated from minor structural differences. Some phosphonolipids are ubiquitously distributed, while others are present almost exclusively in the layer of ciliated epithelial cells. This distinct localization of certain phosphonolipids in tissues exposed to the environment could support the hypothesis of a protective function in mollusks. This study highlights that the tissue specific distribution of an individual metabolite can be a valuable tool for inferring its function and guiding functional analyses.
Collapse
Affiliation(s)
- Patric Bourceau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM—Center for Marine Environmental Sciences of the University of Bremen, Bremen, Germany
| | - Dolma Michellod
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
13
|
Coenzyme Q10 in the eye isomerizes by sunlight irradiation. Sci Rep 2022; 12:12104. [PMID: 35840805 PMCID: PMC9287378 DOI: 10.1038/s41598-022-16343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
Photoisomerization of lipids has been well studied. As for the eyes, photoisomerization from 11-cis isomer to all-trans-retinal is well-known as the first step of the visual transduction in the photoreceptors. In addition to that, there would be other ocular lipids that undergo photoisomerization, which may be involved in ocular health and function. To explore any photoisomerizable lipids in the eyes, the nonirradiated and sunlight-irradiated eyeball extracts were subjected to liquid chromatography-mass spectrometry analysis, followed by the identification of the decreased lipid species in the irradiated extracts. Surprisingly, more than nine hundred lipid species were decreased in the irradiated extracts. Three lipid species, coenzyme Q10 (CoQ10), triglyceride(58:4), and coenzyme Q9, were decreased both significantly (p < 0.05) and by more than two-fold, where CoQ10 showed the most significant decrease. Later, photoisomerization was identified as the prominent cause underlying the decrease of CoQ10. Interestingly, CoQ10 in the sunlight-irradiated fresh eyeballs was also isomerized. Both the visible light and ultraviolet radiation were capable of producing CoQ10 isomer, while the latter showed rapid action. This study is believed to enhance our understanding of the biochemistry and photodamage of the eye and can potentially contribute to the advancement of opto-lipidomics.
Collapse
|
14
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
15
|
Liang M, Liu D, Nie Y, Liu Y, Qiao X. Exploiting styrene-maleic acid copolymer grafting chromatographic stationary phase materials for separation of membrane lipids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Zhu L, Ma S, Li K, Xiong P, Qin S, Cai W. Systematic Screening of Chemical Constituents in the Traditional Chinese Medicine Arnebiae Radix by UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022; 27:2631. [PMID: 35565981 PMCID: PMC9104353 DOI: 10.3390/molecules27092631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/31/2022] Open
Abstract
Arnebiae Radix (dried root of Arnebia euchroma (Royle) Johnst.) has been used in traditional Chinese medicine (TCM) to treat macular eruptions, measles, sore throat, carbuncles, burns, skin ulcers, and inflammation. Previous studies have shown that shikonins and shikonofurans are two of their main bioactive ingredients. However, systematic investigations of their constituents have rarely been conducted. It is necessary to establish a rapid and effective method to identify the chemical constituents of Arnebiae Radix. This will help to further improve the effective resource utilization rate of this plant. In this study, a rapid and effective UHPLC-Q-Exactive Orbitrap mass spectrometry method was established to simultaneously analyze chemical ingredients in Arnebiae Radix within a short period of time. Based on the results of a full scan MS, the MS2 database (mzVault and mzCloud), the diagnostic fragment ions, the retention time, and the bibliography, a total of 188 compounds were identified, with 114 of those being reported from Arnebiae Radix for the first time. The results of this study lay the foundation for obtaining a thorough understanding of the active ingredients in Arnebiae Radix and its quality control. This method may be widely used for the chemical characterization of different samples.
Collapse
Affiliation(s)
- Lian Zhu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (L.Z.); (S.M.)
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (K.L.); (P.X.); (S.Q.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (L.Z.); (S.M.)
| | - Kailin Li
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (K.L.); (P.X.); (S.Q.)
| | - Pei Xiong
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (K.L.); (P.X.); (S.Q.)
| | - Shihan Qin
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (K.L.); (P.X.); (S.Q.)
| | - Wei Cai
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (K.L.); (P.X.); (S.Q.)
| |
Collapse
|
17
|
Peng J, Xie J, Shi S, Luo L, Li K, Xiong P, Cai W. Diagnostic Fragment-Ion-Based for Rapid Identification of Chlorogenic Acids Derivatives in Inula cappa Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6393246. [PMID: 34471554 PMCID: PMC8405326 DOI: 10.1155/2021/6393246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Inula cappa (Buch.-Ham. ex D. Don) DC has been used in traditional Chinese medicine to treat malaria, dysentery, and hepatitis. Previous studies have shown that chlorogenic acid is the effective ingredient of plants in this family. And the research of the chlorogenic acid in Inula cappa will help to further improve the effective resource utilization rate of this plant. Therefore, it is necessary to establish an accurate method to characterize the chlorogenic acid components in Inula cappa. In this study, a simple, fast, and sensitive UHPLC-Q-Exactive Orbitrap mass spectrometry method was established, which can simultaneously analyze known and unknown ingredients in a short time (within 30 minutes) in Inula cappa. According to the diagnosis fragmentation ions, retention time, and bibliography, 68 chlorogenic acid derivatives were identified in Inula cappa. The results of this experiment lay the foundation for the active substances and quality control of Inula cappa and provide a theoretical basis for whether Inula cappa can be an alternative to the endangered wild medicinal materials of the same family.
Collapse
Affiliation(s)
- Jie Peng
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Jing Xie
- Department of Rehabilitation Medicine and Health Care of Hunan Medical College, Hunan University of Medicine, Huaihua 418000, China
| | - Silin Shi
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Lilan Luo
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Pei Xiong
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
18
|
Mamun A, Islam A, Eto F, Sato T, Kahyo T, Setou M. Mass spectrometry-based phospholipid imaging: methods and findings. Expert Rev Proteomics 2021; 17:843-854. [PMID: 33504247 DOI: 10.1080/14789450.2020.1880897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Imaging is a technique used for direct visualization of the internal structure or distribution of biomolecules of a living system in a two-dimensional or three-dimensional fashion. Phospholipids are important structural components of biological membranes and have been reported to be associated with various human diseases. Therefore, the visualization of phospholipids is crucial to understand the underlying mechanism of cellular and molecular processes in normal and diseased conditions. Areas covered: Mass spectrometry imaging (MSI) has enabled the label-free imaging of individual phospholipids in biological tissues and cells. The commonly used MSI techniques include matrix-assisted laser desorption ionization-MSI (MALDI-MSI), desorption electrospray ionization-MSI (DESI-MSI), and secondary ion mass spectrometry (SIMS) imaging. This special report described those methods, summarized the findings, and discussed the future development for the imaging of phospholipids. Expert opinion: Phospholipids imaging in complex biological samples has been significantly benefited from the development of MSI methods. In MALDI-MSI, novel matrix that produces homogenous crystals exclusively with polar lipids is important for phospholipids imaging with greater efficiency and higher spatial resolution. DESI-MSI has the potential of live imaging of the biological surface while SIMS is expected to image at the subcellular level in the near future.
Collapse
Affiliation(s)
- Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Fumihiro Eto
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center , Hamamatsu, Shizuoka, Japan
| |
Collapse
|
19
|
Hoang Anh N, Min JE, Kim SJ, Phuoc Long N. Biotherapeutic Products, Cellular Factories, and Multiomics Integration in Metabolic Engineering. ACTA ACUST UNITED AC 2020; 24:621-633. [DOI: 10.1089/omi.2020.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|