1
|
He C, Li Y, Liu J, Li Z, Li X, Choi JW, Li H, Liu S, Li CZ. Application of CRISPR-Cas System in Human Papillomavirus Detection Using Biosensor Devices and Point-of-Care Technologies. BME FRONTIERS 2025; 6:0114. [PMID: 40110345 PMCID: PMC11922499 DOI: 10.34133/bmef.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Abstract
Human papillomavirus (HPV) is the most common virus for genital tract infections. Cervical cancer ranks as the fourth most prevalent cancer globally, with over 99% of cases in women attributed to HPV infection. This infection continues to pose an ongoing threat to public health. Therefore, the development of rapid, high-throughput, and sensitive HPV detection platforms is important, especially in regions with limited access to advanced medical resources. CRISPR-based biosensors, a promising new method for nucleic acid detection, are now rapidly and widely used in basic and applied research and have received much attention in recent years for HPV diagnosis and treatment. In this review, we discuss the mechanisms and functions of the CRISPR-Cas system, focusing on its applications in HPV diagnostics. The review covers CRISPR technologies such as CRISPR-Cas9, CRISPR-Cas12, and CRISPR-Cas13, along with nucleic acid amplification methods, CRISPR-based signal output systems, and point-of-care testing (POCT) strategies. This comprehensive overview highlights the versatility and potential of CRISPR technologies in HPV detection. We also discuss the numerous CRISPR biosensors developed since the introduction of CRISPR to detect HPV. Finally, we discuss some of the challenges faced in HPV detection by the CRISPR-Cas system.
Collapse
Affiliation(s)
- Chang He
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Yongqi Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jinkuan Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xue Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Heng Li
- Healton Animal Health Biotech Co. Ltd., Neijiang 641000, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610072, China
| |
Collapse
|
2
|
Li Y, Li Y, Hu Y, Liu R, Lv Y. CRISPR-Cas12a/Cas13a Multiplex Bioassay for ctDNA and miRNA by Mass Spectrometry. Anal Chem 2025; 97:5049-5056. [PMID: 39980302 DOI: 10.1021/acs.analchem.4c05961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The CRISPR-Cas system, particularly CRISPR-Cas12a and CRISPR-Cas13a, has been widely utilized in constructing various biosensors due to their "trans-cleavage" ability as a means of signal amplification. However, this universal "trans-cleavage" characteristic also presents a challenge for realizing CRISPR-Cas multiplexed bioanalysis. Besides, potential signal cascading interference and complicated design are notable obstacles in CRISPR-Cas multiplexed bioanalysis. Herein, we propose a mass spectrometry method that leverages the CRISPR-Cas12a/13a system to achieve simultaneous detection of ctDNA and miRNA. Based on the properties of the CRISPR-Cas12a/13a system, two types of nanoparticle reporter probes have been engineered, using cancer-related biomarkers ctDNA and miR-21 as our model analytes. The nanoparticle tags, which intrinsically incorporated millions of detectable atoms, combined with the CRISPR-Cas12a/Cas13a system's "trans-cleavage" ability, allow the proposed mass spectrometry strategy to achieve fmol-level detection limits without any nucleic acid amplification procedures. The assay was successfully applied to human serum samples, demonstrating its potential for early disease diagnosis and progression tracking.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yichen Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yueli Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
- Analytical and Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
3
|
Li H, Wang Y, Wan Y, Li M, Xu J, Wang Q, Wu D. Stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a feedback amplification permits ultrasensitive molecular diagnosis of esophageal cancer-related microRNA. Talanta 2024; 271:125675. [PMID: 38245957 DOI: 10.1016/j.talanta.2024.125675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Development of new diagnostic methods is essential for disease diagnosis and treatment. In this work, we present a stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a (SRI-DNA machine/CRISPR-Cas12a) feedback amplification for ultrasensitive molecular detection of miRNA-21, which is an important biomarker related closely to the initiation and development of cancers, such as esophageal cancer. Strategically, the powerful SRI-DNA machine and efficient trans-cleavage activity of the CRISPR-Cas12a system are ingeniously integrated via a rationally designed probe termed as stem-elongated functional hairpin probe (SEF-HP). The SRI-DNA machine begins with the target miRNA, the trigger of the reaction, binding complementarily to the SEF-HP, followed by autonomously performed mechanical strand replication, cleavage, and displacement circuit at multiple sites. This conversion process led to the amplified generation of numerous DNA activators that are complementary with CRISPR RNA (CrRNA). Once formed the DNA activator/CrRNA heteroduplex, the trans-cleavage activity of the CRISPR-Cas12a was activated to nonspecific cleavage of single-stranded areas of a reporter probe for fluorescence emission. Under optimal conditions, the target miRNA can be detected with a wide linear range and an excellent specificity. As a proof-of-concept, this SRI-DNA machine/CRISPR-Cas12a feedback amplification system is adaptable and scalable to higher-order artificial amplification circuits for biomarkers detection, highlighting its promising potential in early diagnosis and disease treatment.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yi Wang
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yu Wan
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Meimei Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Jianguo Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, Jiaxing, 314001, PR China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Donglei Wu
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
4
|
Peng Y, Xue P, Wang R, Shang H, Yao B, Zheng Z, Yan C, Chen W, Xu J. Engineering of an adaptive tandem CRISPR/Cas12a molecular amplifier permits robust analysis of Vibrio parahaemolyticus. Talanta 2024; 266:125061. [PMID: 37567119 DOI: 10.1016/j.talanta.2023.125061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Seeking new molecular diagnostic method for pathogenic bacteria detection is of utmost importance for ensuring food safety and protecting human health. Herein, we have engineered an adaptive tandem CRISPR/Cas12a molecular amplifier specifically designed for robust analysis of vibrio parahaemolyticus (V. parahaemolyticus), one of the most harmful pathogens. Our strategy involves the integration of three crucial processes: recombinase polymerase amplification (RPA) for copy number amplification, terminal deoxynucleotidyl transferase (TdT) for template-free strand elongation, and CRISPR/Cas12a-mediated trans-cleavage of a reporter molecule. By combining these processes, the target genomic DNA extracted from V. parahaemolyticus is able to activate many CRISPR/Cas12a units (CRISPR/Cas12an) simultaneously, resulting in a greatly amplified target signal to indicate the presence and concentration of V. parahaemolyticus. This unique model offers more advantages compared to traditional amplification models that use one RPA amplicon to activate one CRISPR/Cas12a unit. Under optimized conditions, our method enables the detection of target V. parahaemolyticus within a linear range of 1 × 102-1 × 107 CFU/mL, with an impressive limit of detection as low as 12.4 CFU/mL. It is conceivable that the adaptive tandem CRISPR/Cas12a molecular amplifier could be adapted as routine diagnostic kits in future for in-field detection of pathogens.
Collapse
Affiliation(s)
- Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Renjing Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Huijie Shang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Bangben Yao
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, 230051, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, 230601, PR China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
5
|
Liang T, Qin X, Zhang Y, Yang Y, Chen Y, Yuan L, Liu F, Chen Z, Li X, Yang F. CRISPR/dCas9-Mediated Specific Molecular Assembly Facilitates Genotyping of Mutant Circulating Tumor DNA. Anal Chem 2023; 95:16305-16314. [PMID: 37874695 DOI: 10.1021/acs.analchem.3c03481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Breakthroughs in circulating tumor DNA (ctDNA) analysis are critical in tumor liquid biopsies but remain a technical challenge due to the double-stranded structure, extremely low abundance, and short half-life of ctDNA. Here, we report an electrochemical CRISPR/dCas9 sensor (E-dCas9) for sensitive and specific detection of ctDNA at a single-nucleotide resolution. The E-dCas9 design harnesses the specific capture and unzipping of target ctDNA by dCas9 to introduce a complementary reporter probe for specific molecular assembly and signal amplification. By efficient homogeneous assembly and interfacial click reaction, the assay demonstrates superior sensitivity (up to 2.86 fM) in detecting single-base mutant ctDNA and a broad dynamic range spanning 6 orders of magnitude. The sensor is also capable of measuring 10 fg/μL of a mutated target in excess of wild-type ones (1 ng/μL), equivalent to probing 0.001% of the mutation relative to the wild type. In addition, our sensor can monitor the dynamic expression of cellular genomic DNA and allows accurate analysis of blood samples from patients with nonsmall cell lung cancer, suggesting the potential of E-dCas9 as a promising tool in ctDNA-based cancer diagnosis.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuyuan Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| | - Feng Liu
- Department of Blood Transfusion, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Zhizhong Chen
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
6
|
Li L, Tian H, Wang G, Ren S, Ma T, Wang Y, Ge S, Zhang Y, Yu J. Ready-to-use interactive dual-readout differential lateral flow biosensor for two genotypes of human papillomavirus. Biosens Bioelectron 2023; 228:115224. [PMID: 36924688 DOI: 10.1016/j.bios.2023.115224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Ready-to-use in vitro diagnosis of multiple genotypes is vital for the prevention and treatment of cervical cancer. Herein, a paper-film-based interactive dual readout differential lateral flow biosensor is proposed to simultaneously assay two high-risk types of human papillomavirus (HPV) within the body-fluid. The CuCo2S4/ZnIn2S4 heterostructure is fabricated on the paper-film compound chip with high thermostability, and surface sulfur vacancy is introduced by mild annealing treatment to endow unexceptionable photoexcitation activity, such structure can be served as an initial energy harvester and converter. With the assistance of differential channels, the dual-target-propelled self-assembly of annular DNA and the cleavage activity of CRISPR-Cas12a are stepwise activated by sequential solution transfer. Accordingly, the input and release of polydopamine-coated gold nanoparticles with photothermal/photoelectric characteristic were implemented. The fabricated biosensor not only realized intelligent thermal-response without large instruments, but also actuated dynamic interfacial charge separation and transfer kinetics to further transmit photoelectric-signal, resulting in desirable interactive dual-signal with low limit-of-detection (0.21 pM for HPV-18 and 42.92 pM for HPV-16). Thanks to the sophisticated design of differential lateral flow paper-film compound chip and interactive dual-signal amplification strategy, sensitive detection of two HPV genotypes is realized, which provides a promising candidate for home medical intelligent diagnosis.
Collapse
Affiliation(s)
- Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hui Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Guofu Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
7
|
Liu Z, Quan L, Ma F, Yang M, Jiang X, Chen X. Determination of adenosine by CRISPR-Cas12a system based on duplexed aptamer and molecular beacon reporter linked to gold nanoparticles. Mikrochim Acta 2023; 190:173. [PMID: 37020072 PMCID: PMC10075494 DOI: 10.1007/s00604-023-05748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
Adenosine as a potential tumor marker is of great value for clinical disease diagnosis. Since the CRISPR-cas12a system is only capable of recognizing nucleic acid targets we expanded the CRISPR-cas12a system to determine small molecules by designing a duplexed aptamer (DA) converting g-RNA recognition of adenosine to recognition of aptamer complementary DNA strands (ACD). To further improve the sensitivity of determination, we designed a molecule beacon (MB)/gold nanoparticle (AuNP)-based reporter, which has higher sensitivity than traditional ssDNA reporter. In addition, the AuNP-based reporter enables more efficient and fast determination. The determination of adenosine under 488-nm excitation can be realized within 7 min, which is more than 4 times faster than traditional ssDNA reporter. The linear determination range of the assay to adenosine was 0.5-100 μM with the determination limit of 15.67 nM. The assay was applied to recovery determination of adenosine in serum samples with satisfactory results. The recoveries were between 91 and 106% and the RSD values of different concertation were below 4.8%. This sensitive, highly selective, and stable sensing system is expected to play a role in the clinical determination of adenosine and other biomolecules.
Collapse
Affiliation(s)
- Zhenhua Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | | | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
| | - Xinyu Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
8
|
Huang M, Xiang Y, Chen Y, Lu H, Zhang H, Liu F, Qin X, Qin X, Li X, Yang F. Bottom-Up Signal Boosting with Fractal Nanostructuring and Primer Exchange Reaction for Ultrasensitive Detection of Cancerous Exosomes. ACS Sens 2023; 8:1308-1317. [PMID: 36855267 DOI: 10.1021/acssensors.2c02819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Exosomes are emerging as promising biomarkers for cancer diagnosis, yet sensitive and accurate quantification of tumor-derived exosomes remains a challenge. Here, we report an ultrasensitive and specific exosome sensor (NPExo) that initially leverages hierarchical nanostructuring array and primer exchange reaction (PER) for quantitation of cancerous exosomes. This NPExo uses a high-curvature nanostructuring array (bottom) fabricated by single-step electrodeposition to enhance capturing of the target exosomes. The immuno-captured exosome thus provides abundant membrane sites to insert numerous cholesterol-DNA probes with a density much higher than that by immune pairing, which further allows PER-based DNA extension to assemble enzyme concatemers (up) for signal amplification. Such a bottom-up signal-boosting design imparts NPExo with ultrahigh sensitivity up to 75 particles/mL (i.e., <1 exosome per 10 μL) and a broad dynamic range spanning 6 orders of magnitude. Furthermore, our sensor allows monitoring subtle exosomal phenotypic transition and shows high accuracy in discrimination of liver cancer patients from healthy donors via blood samples, suggesting the great potential of NPExo as a promising tool in clinical diagnostics.
Collapse
Affiliation(s)
- Minmin Huang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuanhang Xiang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hui Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fengfei Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoling Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
9
|
CRISPR-Cas assisted diagnostics: A broad application biosensing approach. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
10
|
Piskunen P, Latham R, West CE, Castronovo M, Linko V. Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. iScience 2022; 25:104389. [PMID: 35633938 PMCID: PMC9130510 DOI: 10.1016/j.isci.2022.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing with CRISPR/Cas paves the way for many biochemical, biotechnological, and medical applications, and consequently, it may enable treatment of already known and still-to-be-found genetic diseases. Meanwhile, another rapidly emerging field—structural DNA nanotechnology—provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective.
Collapse
|
11
|
Habimana JDD, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, Li Z. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron 2022; 203:114033. [DOI: 10.1016/j.bios.2022.114033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
12
|
Integration of electrochemical interface and cell-free synthetic biology for biosensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|