1
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
2
|
Tang Y, Saul J, Nagaratnam N, Martin-Garcia JM, Fromme P, Qiu J, LaBaer J. Construction of gateway-compatible baculovirus expression vectors for high-throughput protein expression and in vivo microcrystal screening. Sci Rep 2020; 10:13323. [PMID: 32770037 PMCID: PMC7414197 DOI: 10.1038/s41598-020-70163-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Baculovirus mediated-insect cell expression systems have been widely used for producing heterogeneous proteins. However, to date, there is still the lack of an easy-to-manipulate system that enables the high-throughput protein characterization in insect cells by taking advantage of large existing Gateway clone libraries. To resolve this limitation, we have constructed a suite of Gateway-compatible pIEx-derived baculovirus expression vectors that allow the rapid and cost-effective construction of expression clones for mass parallel protein expression in insect cells. This vector collection also supports the attachment of a variety of fusion tags to target proteins to meet the needs for different research applications. We first demonstrated the utility of these vectors for protein expression and purification using a set of 40 target proteins of various sizes, cellular localizations and host organisms. We then established a scalable pipeline coupled with the SONICC and TEM techniques to screen for microcrystal formation within living insect cells. Using this pipeline, we successfully identified microcrystals for ~ 16% of the tested protein set, which can be potentially used for structure elucidation by X-ray crystallography. In summary, we have established a versatile pipeline enabling parallel gene cloning, protein expression and purification, and in vivo microcrystal screening for structural studies.
Collapse
Affiliation(s)
- Yanyang Tang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Justin Saul
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Nirupa Nagaratnam
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Jose M Martin-Garcia
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.
| | - Joshua LaBaer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
3
|
Nagaratnam N, Tang Y, Botha S, Saul J, Li C, Hu H, Zaare S, Hunter M, Lowry D, Weierstall U, Zatsepin N, Spence JCH, Qiu J, LaBaer J, Fromme P, Martin-Garcia JM. Enhanced X-ray diffraction of in vivo-grown μNS crystals by viscous jets at XFELs. Acta Crystallogr F Struct Biol Commun 2020; 76:278-289. [PMID: 32510469 PMCID: PMC7278499 DOI: 10.1107/s2053230x20006172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
μNS is a 70 kDa major nonstructural protein of avian reoviruses, which cause significant economic losses in the poultry industry. They replicate inside viral factories in host cells, and the μNS protein has been suggested to be the minimal viral factor required for factory formation. Thus, determining the structure of μNS is of great importance for understanding its role in viral infection. In the study presented here, a fragment consisting of residues 448-605 of μNS was expressed as an EGFP fusion protein in Sf9 insect cells. EGFP-μNS(448-605) crystallization in Sf9 cells was monitored and verified by several imaging techniques. Cells infected with the EGFP-μNS(448-605) baculovirus formed rod-shaped microcrystals (5-15 µm in length) which were reconstituted in high-viscosity media (LCP and agarose) and investigated by serial femtosecond X-ray diffraction using viscous jets at an X-ray free-electron laser (XFEL). The crystals diffracted to 4.5 Å resolution. A total of 4227 diffraction snapshots were successfully indexed into a hexagonal lattice with unit-cell parameters a = 109.29, b = 110.29, c = 324.97 Å. The final data set was merged and refined to 7.0 Å resolution. Preliminary electron-density maps were obtained. While more diffraction data are required to solve the structure of μNS(448-605), the current experimental strategy, which couples high-viscosity crystal delivery at an XFEL with in cellulo crystallization, paves the way towards structure determination of the μNS protein.
Collapse
Affiliation(s)
- Nirupa Nagaratnam
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yanyang Tang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Justin Saul
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Sahba Zaare
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Mark Hunter
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - David Lowry
- Eyring Materials Center, Arizona State University, Tempe, AZ 85287, USA
| | - Uwe Weierstall
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Nadia Zatsepin
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - John C. H. Spence
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua LaBaer
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jose M. Martin-Garcia
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Coulibaly F. Polyhedra, spindles, phage nucleus and pyramids: Structural biology of viral superstructures. Adv Virus Res 2019; 105:275-335. [PMID: 31522707 DOI: 10.1016/bs.aivir.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral infection causes comprehensive rearrangements of the cell that reflect as much host defense mechanisms as virus-induced structures assembled to facilitate infection. Regardless of their pro- or antiviral role, large intracellular structures are readily detectable by microscopy and often provide a signature characteristic of a specific viral infection. The structural features and localization of these assemblies have thus been commonly used for the diagnostic and classification of viruses since the early days of virology. More recently, characterization of viral superstructures using molecular and structural approaches have revealed very diverse organizations and roles, ranging from dynamic viral factories behaving like liquid organelles to ultra-stable crystals embedding and protecting virions. This chapter reviews the structures, functions and biotechnological applications of virus-induced superstructures with a focus on assemblies that have a regular organization, for which detailed structural descriptions are available. Examples span viruses infecting all domains of life including the assembly of virions into crystalline arrays in eukaryotic and bacterial viruses, nucleus-like compartments involved in the replication of large bacteriophages, and pyramid-like structures mediating the egress of archaeal viruses. Among these superstructures, high-resolution structures are available for crystalline objects produced by insect viruses: viral polyhedra which function as the infectious form of occluded viruses, and spindles which are potent virulence factors of entomopoxviruses. In turn, some of these highly symmetrical objects have been used to develop and validate advanced structural approaches, pushing the boundary of structural biology.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Infection & Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|