1
|
Xue B, Zeng Q, Yu S, Su K. Theoretical Investigation of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on Two-Dimensional Tetragonal V 2C 2 and V 3C 3. MATERIALS (BASEL, SWITZERLAND) 2025; 18:931. [PMID: 40077157 PMCID: PMC11901156 DOI: 10.3390/ma18050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Developing stable and effective catalysts for the hydrogen evolution reaction (HER) has been a long-standing pursuit. In this work, we propose a series of single-atom catalysts (SACs) by importing transition-metal atoms into the carbon and vanadium vacancies of tetragonal V2C2 and V3C3 slabs, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. By means of first-principles computations, the possibility of applying these SACs in HER catalysis was investigated. All the SACs are conductive, which is favorable to charge transfer during HER. The Gibbs free energy change (ΔGH*) during hydrogen adsorption was adopted to assess their catalytic ability. For the V2C2-based SACs with V, Cr, Mn, Fe, Ni, and Cu located at the carbon vacancy, excellent HER catalytic performance was achieved, with a |ΔGH*| smaller than 0.2 eV. Among the V3C3-based SACs, apart from the SAC with Mn located at the carbon vacancy, all the SACs can act as outstanding HER catalysts. According to the ΔGH*, these excellent V2C2- and V3C3-based SACs are comparable to the best-known Pt-based HER catalysts. However, it should be noted that the V2C2 and V3C3 slabs have not been successfully synthesized in the laboratory, leading to a pure investigation without practical application in this work.
Collapse
Affiliation(s)
- Bo Xue
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qingfeng Zeng
- MSEA International Institute for Materials Genome, Langfang 065500, China; (Q.Z.); (S.Y.)
- Particle Cloud Biotechnology (Hangzhou) Co., Ltd., Hangzhou 310018, China
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyin Yu
- MSEA International Institute for Materials Genome, Langfang 065500, China; (Q.Z.); (S.Y.)
- Particle Cloud Biotechnology (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Kehe Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
2
|
Guterman V, Alekseenko A, Belenov S, Menshikov V, Moguchikh E, Novomlinskaya I, Paperzh K, Pankov I. Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1672. [PMID: 39453008 PMCID: PMC11510532 DOI: 10.3390/nano14201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen-air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs.
Collapse
Affiliation(s)
- Vladimir Guterman
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Anastasia Alekseenko
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Sergey Belenov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Vladislav Menshikov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Elizaveta Moguchikh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Irina Novomlinskaya
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Kirill Paperzh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Ilya Pankov
- Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia;
| |
Collapse
|
3
|
Yao X, Song Z, Yao X, Guan Y, Hamada N, Zhang J, Huo Z, Zhang L, Singh CV, Sun X. Synergistic Ni-W Dimer Sites Induced Stable Compressive Strain for Boosting the Performance of Pt as Electrocatalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202318872. [PMID: 38503685 DOI: 10.1002/anie.202318872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Alloying Pt catalysts with transition metal elements is an effective pathway to enhance the performance of oxygen reduction reaction (ORR), but often accompanied with severe metal dissolution issue, resulting in poor stability of alloy catalysts. Here, instead of forming traditional alloy structure, we modify Pt surface with a novel Ni-W dimer structure by the atomic layer deposition (ALD) technique. The obtained NiW@PtC catalyst exhibits superior ORR performance both in liquid half-cell and practical fuel cell compared with initial Pt/C. It is discovered that strong synergistic Ni-W dimer structure arising from short atomic distance induced a stable compressive strain on the Pt surface, thus boosting Pt catalytic performance. This surface modification by synergistic dimer sites offers an effective strategy in tailoring Pt with excellent activity and stability, which provides a significant perspective in boosting the performance of commercial Pt catalyst modified with polymetallic atom sites.
Collapse
Affiliation(s)
- Xiaozhang Yao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Yi Guan
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Natalie Hamada
- Canadian Centre for Electron Microscopy, Hamilton, ON, L8S 4M1, Canada
| | - Jingyan Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Ziwei Huo
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 3150200, China
| |
Collapse
|
4
|
Higareda A, Mares F, Bahena D, Esparza R. Structural Analysis of PtPd Core‐Shell Bimetallic Nanoparticles and their Enhanced Catalytic Performance for Ethanol Oxidation Reaction. ChemCatChem 2023. [DOI: 10.1002/cctc.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- América Higareda
- Unidad de Energía Renovable Centro de Investigación Científica de Yucatán A.C. Carretera Sierra Papacal – Chuburná Puerto, Km 5. Sierra Papacal 97302 Mérida Yucatán México
| | - Fabian Mares
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 76230 Santiago de Querétaro Querétaro México
| | - Daniel Bahena
- Laboratorio Avanzado de Nanoscopía Electrónica Centro de Investigación y de Estudios Avanzados del I.P.N. Av. Instituto Politécnico Nacional 2508 07360 Ciudad de México México
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 76230 Santiago de Querétaro Querétaro México
| |
Collapse
|
5
|
Wang J, Zhang B, Guo W, Wang L, Chen J, Pan H, Sun W. Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211099. [PMID: 36706444 DOI: 10.1002/adma.202211099] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Indexed: 05/30/2023]
Abstract
The study of direct methanol fuel cells (DMFCs) has lasted around 70 years, since the first investigation in the early 1950s. Though enormous effort has been devoted in this field, it is still far from commercialization. The methanol oxidation reaction (MOR), as a semi-reaction of DMFCs, is the bottleneck reaction that restricts the overall performance of DMFCs. To date, there has been intense debate on the complex six-electron reaction, but barely any reviews have systematically discussed this topic. To this end, the controversies and progress regarding the electrocatalytic mechanisms, performance evaluations as well as the design science toward MOR electrocatalysts are summarized. This review also provides a comprehensive introduction on the recent development of emerging MOR electrocatalysts with a focus on the innovation of the alloy, core-shell structure, heterostructure, and single-atom catalysts. Finally, perspectives on the future outlook toward study of the mechanisms and design of electrocatalysts are provided.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
6
|
An Innovative PEMFC Magnetic Field Emulator to Validate the Ability of a Magnetic Field Analyzer to Detect 3D Faults. HYDROGEN 2023. [DOI: 10.3390/hydrogen4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An original non-invasive methodology of the fuel cell diagnosis is proposed to identify different positions of the faults in Proton Exchange Membrane Fuel Cell (PEMFC) stacks from external magnetic field measurements. The approach is based on computing the external magnetic field difference between normal and faulty PEMFC operating conditions. To evaluate the external magnetic field distribution, in this paper, we propose an improved design of the magnetic field analyzer. This analyzer amplifies the magnetic field around the cell to perform an accurate detection of the fault position. Moreover, the main contribution of this work is represented by conceiving and implementing a 3D multi-physical current distribution emulator of a proton exchange membrane fuel cell. The new concept of a proton exchange membrane fuel cell emulator has been specially designed to emulate the magnetic field of a real fuel cell stack. This emulator concept is also beneficial for a new model of the fuel cell, which implies a multi-physical coupling between electrochemical electric conduction and the generated magnetic field. Finally, finally, the numerical model and the emulator have been involved in the realization of numerical simulations and experimental analysis to prove the ability of the system to detect and localize 3D faults.
Collapse
|
7
|
Li H, Zhao H, Tao B, Xu G, Gu S, Wang G, Chang H. Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4173. [PMID: 36500796 PMCID: PMC9735689 DOI: 10.3390/nano12234173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have attracted extensive attention because of their high efficiency, environmental friendliness, and lack of noise pollution. However, PEMFCs still face many difficulties in practical application, such as insufficient power density, high cost, and poor durability. The main reason for these difficulties is the slow oxygen reduction reaction (ORR) on the cathode due to the insufficient stability and catalytic activity of the catalyst. Therefore, it is very important to develop advanced platinum (Pt)-based catalysts to realize low Pt loads and long-term operation of membrane electrode assembly (MEA) modules to improve the performance of PEMFC. At present, the research on PEMFC has mainly been focused on two areas: Pt-based catalysts and the structural design of catalytic layers. This review focused on the latest research progress of the controllable preparation of Pt-based ORR catalysts and structural design of catalytic layers in PEMFC. Firstly, the design principle of advanced Pt-based catalysts was introduced. Secondly, the controllable preparation of catalyst structure, morphology, composition and support, and their influence on catalytic activity of ORR and overall performance of PEMFC, were discussed. Thirdly, the effects of optimizing the structure of the catalytic layer (CL) on the performance of MEA were analyzed. Finally, the challenges and prospects of Pt-based catalysts and catalytic layer design were discussed.
Collapse
Affiliation(s)
- Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiao Xu
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Haixin Chang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Kong F, Liu X, Song Y, Qian Z, Li J, Zhang L, Yin G, Wang J, Su D, Sun X. Selectively Coupling Ru Single Atoms to PtNi Concavities for High‐Performance Methanol Oxidation via
d
‐Band Center Regulation. Angew Chem Int Ed Engl 2022; 61:e202207524. [DOI: 10.1002/anie.202207524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Xiaozhi Liu
- Institute of Physics Chinese Academy of Sciences Beijing China
| | - Yajie Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Zhengyi Qian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Junjie Li
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Lei Zhang
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
| | - Dong Su
- Institute of Physics Chinese Academy of Sciences Beijing China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| |
Collapse
|
9
|
Kong F, Liu X, Song Y, Qian Z, Li J, Zhang L, Yin G, Su D, Wang J, Sun X. Selectively Coupling Ru Single Atoms to PtNi Concavities for High Performance Methanol Oxidation via d‐Band Center Regulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanpeng Kong
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage No. 92, Xidazhi street 150000 Harbin CHINA
| | - Xiaozhi Liu
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Yajie Song
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Zhengyi Qian
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Junjie Li
- Western University Department of Mechanical and Materials Engineering CANADA
| | - Lei Zhang
- Western University Department of Mechanical and Materials Engineering CANADA
| | - Geping Yin
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Dong Su
- Chinese Academy of Sciences Institute of Physics CANADA
| | - Jiajun Wang
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Xueliang Sun
- Western University 1151 Richmond Street N6A 3K7 London CANADA
| |
Collapse
|
10
|
Li Q, Zhang G, Yuan B, Zhong S, Ji Y, Liu Y, Wu X, Kong Q, Han J, He W. Core‐shell nanocatalysts with reduced platinum content toward more cost‐effective proton exchange membrane fuel cells. NANO SELECT 2022. [DOI: 10.1002/nano.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Qun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Guisheng Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Botao Yuan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Shijie Zhong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Yuanpeng Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
| | - Yuanpeng Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Xiaoqiang Wu
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Qingquan Kong
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
- School of Mechanical Engineering Chengdu University Chengdu China
| |
Collapse
|
11
|
Enhanced durability of PdPt/C electrocatalyst during the ethanol oxidation reaction in alkaline media. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Architecture Evolution of Different Nanoparticles Types: Relationship between the Structure and Functional Properties of Catalysts for PEMFC. Catalysts 2022. [DOI: 10.3390/catal12060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review considers the features of the catalysts with different nanoparticle structures architecture transformation under the various pre-treatment types. Based on the results of the publications analysis, it can be concluded that the chemical or electrochemical activation of bimetallic catalysts has a significant effect on their composition, microstructure, and catalytic activity in the oxygen reduction reaction. The stage of electrochemical activation is recommended for use as a mandatory catalyst pre-treatment to obtain highly active de-alloyed materials. The literature is studied, which covers possible variants of the structural modification under the influence of thermal treatment under different processing conditions. Additionally, based on the literature data analysis, recommendations are given for the thermal treatment of catalysts alloyed with various d-metals.
Collapse
|
13
|
Abrari S, Daneshvari-Esfahlan V, Hosseini MG, Mahmoodi R, Hacker V. Multi-walled carbon nanotube-supported Ni@Pd core–shell electrocatalyst for direct formate fuel cells. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
A Comparative Study of Equivalent Circuit Models for Electro-Chemical Impedance Spectroscopy Analysis of Proton Exchange Membrane Fuel Cells. ENERGIES 2022. [DOI: 10.3390/en15010386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrochemical impedance spectroscopy is one of the important tools for the performance analysis and diagnosis of proton exchange membrane fuel cells. The equivalent circuit model is an effective method for electrochemical impedance spectroscopy resolution. In this paper, four typical equivalent circuit models are selected to comprehensively compare and analyze the difference in the fitting results of the models for the electrochemical impedance spectroscopy under different working conditions (inlet pressure, stoichiometry, and humidity) from the perspective of the fitting accuracy, change trend of the model parameters, and the goodness of fit. The results show that the fitting accuracy of the model with the Warburg element is the best for all under each working condition. When considering the goodness of fit, the model with constant phase components is the best choice for fitting electrochemical impedance spectroscopy under different inlet pressure and air stoichiometry. However, under different air humidity, the model with the Warburg element is best. This work can help to promote the development of internal state analysis, estimation, and diagnosis of the fuel cell based on the equivalent circuit modeling of electrochemical impedance spectroscopy.
Collapse
|
15
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
16
|
Catalysts for Oxygen Reduction Reaction in the Polymer Electrolyte Membrane Fuel Cells: A Brief Review. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This mini-review presents a short account of materials with exceptional activity towards oxygen reduction reaction. Two main classes of catalytic materials are described, namely platinum group metal (PGM) catalyst and Non-precious metal catalyst. The classes are discussed in terms of possible application in low-temperature hydrogen fuel cells with proton exchange membrane and further commercialization of these devices. A short description of perspective approaches is provided and challenging issues associated with developed catalytic materials are discussed.
Collapse
|
17
|
Park AH, Shi W, Jung JU, Kwon YU. Mechanism study of Single-Step synthesis of Fe(core)@Pt(shell) nanoparticles by sonochemistry. ULTRASONICS SONOCHEMISTRY 2021; 77:105679. [PMID: 34315059 PMCID: PMC8326433 DOI: 10.1016/j.ultsonch.2021.105679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Transition metal (TM) core-platinum (Pt) shell nanoparticles (TM@Pt NPs) are attracting a great deal of attention as highly active and durable oxygen reduction reaction (ORR) electrocatalysts of fuel cells and metal-air batteries. However, most of the reported synthesis methods of TM@Pt NPs are multistep in nature, a significant disadvantage for real applications. In this regard, our group has reported a single-step method to synthesize TM@Pt NPs for TM = Mn, Fe, Co, and Ni by using sonochemistry, namely the UPS (ultrasound-assisted polyol synthesis) method. Previously, we proposed the mechanism of the formation of these TM@Pt NPs by UPS method, but rather in a rough sense. Some details are missing and the optimal conditions have not been established. In the present work, we performed detailed studies on the formation mechanism of UPS reaction by using Fe@Pt NPs as the model system. Effects of synthesis parameters such as the nature of metal precursor, conditions of ultrasound, and temperature profile as a function of reaction time were assessed, along with the analyses of intermediates during the UPS reaction. As results, we verified our previously proposed mechanism that, under appropriate conditions, Fe core is formed through the cavitation and implosion of the solvent, induced by the ultrasound, and the Pt shell is formed by the chemical reaction between Fe core and Pt reagent, independent from the direct effect of ultrasound. In addition, we established the optimal conditions to obtain a high purity Fe@Pt NPs in a high yield (>90% based on Pt), which may enable the increase of synthesis scale of Fe@Pt NPs, a necessary step for the real application of TM@Pt NPs.
Collapse
Affiliation(s)
- Ah-Hyeon Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea
| | - Wenjuan Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea
| | - Jong-Un Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea
| | - Young-Uk Kwon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea.
| |
Collapse
|
18
|
Salvatore KL, Wong SS. Exploring Strategies toward Synthetic Precision Control within Core-Shell Nanowires. Acc Chem Res 2021; 54:2565-2578. [PMID: 33989501 DOI: 10.1021/acs.accounts.1c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAchieving precision and reproducibility in terms of physical structure and chemical composition within arbitrary nanoscale systems remains a "holy grail" challenge for nanochemistry. Because nanomaterials possess fundamentally distinctive size-dependent electronic, optical, and magnetic properties with wide-ranging applicability, the ability to produce homogeneous and monodisperse nanostructures with precise size and shape control, while maintaining a high degree of sample quality, purity, and crystallinity, remains a key synthetic objective. Moreover, it is anticipated that the methodologies developed to address this challenge ought to be reasonably simple, scalable, mild, nontoxic, high-yield, and cost-effective, while minimizing reagent use, reaction steps, byproduct generation, and energy consumption.The focus of this Account revolves around the study of various types of nanoscale one-dimensional core-shell motifs, prepared by our group. These offer a compact structural design, characterized by atom economy, to bring together two chemically distinctive (and potentially sharply contrasting) material systems into contact within the structural context of an extended, anisotropic configuration. Herein, we describe complementary strategies aimed at resolving the aforementioned concerns about precise structure and compositional control through the infusion of careful "quantification" and systematicity into customized, reasonably sustainable nanoscale synthetic protocols, developed by our group. Our multipronged approach involved the application of (a) electrodeposition, (b) electrospinning, (c) a combination of underpotential deposition and galvanic displacement reactions, and (d) microwave-assisted chemistry to diverse core-shell model systems, such as (i) carbon nanotube-SiO2 composites, (ii) SnO2/TiO2 motifs, (iii) ultrathin Pt-monolayer shell-coated alloyed metal core nanowires, and (iv) Cu@TiO2 nanowires, for applications spanning optoelectronics, photocatalysis, electrocatalysis, and thermal CO2 hydrogenation, respectively.In so doing, over the years, we have reported on a number of different characterization tools involving spectroscopy (e.g., extended X-ray absorption fine structure (EXAFS) spectroscopy) and microscopy (e.g., high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM)) for gaining valuable insights into the qualitative and quantitative nature of not only the inner core and outer shell themselves but also their intervening interface. While probing the functional catalytic behavior of a few of these core-shell structures under realistic operando conditions, using dynamic, in situ characterization techniques, we found that local and subtle changes in chemical composition and physical structure often occur during the reaction process itself. As such, nuanced differences in atomic packing, facet exposure, degree of derivatization, defect content, and/or extent of crystallinity can impact upon observed properties with tangible consequences for performance, mechanism, and durability.
Collapse
Affiliation(s)
- Kenna L. Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Stanislaus S. Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
19
|
Leteba G, Wang YC, Slater TJA, Cai R, Byrne C, Race CP, Mitchell DRG, Levecque PBJ, Young NP, Holmes SM, Walton A, Kirkland AI, Haigh SJ, Lang CI. Oleylamine Aging of PtNi Nanoparticles Giving Enhanced Functionality for the Oxygen Reduction Reaction. NANO LETTERS 2021; 21:3989-3996. [PMID: 33899489 PMCID: PMC8289299 DOI: 10.1021/acs.nanolett.1c00706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to Pt1Ni2. We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral Pt1Ni2 particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of Pt2Ni1. We show that the modified atomic nanostructures catalytically outperform the original PtNi rhombic dodecahedral particles by more than two-fold and also yield improved cycling durability. Their functionality for the ORR far exceeds commercially available Pt/C nanoparticle electrocatalysts, both in terms of mass-specific activities (up to a 25-fold increase) and intrinsic area-specific activities (up to a 27-fold increase).
Collapse
Affiliation(s)
- Gerard
M. Leteba
- Catalysis
Institute, Department of Chemical Engineering, University of Cape Town, Corner of Madiba Circle and South Lane, Rondebosch 7701, South Africa
- School of
Engineering, Macquarie University, Sydney, New South Wales 2109 Australia
| | - Yi-Chi Wang
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing, 100049, China
| | - Thomas J. A. Slater
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
- Electron
Physical Sciences Imaging Centre, Diamond
Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom
| | - Rongsheng Cai
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Conor Byrne
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher P. Race
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David R. G. Mitchell
- Electron
Microscopy Centre, Innovation Campus, University
of Wollongong, Wollongong, New South Wales 2517, Australia
| | - Pieter B. J. Levecque
- Catalysis
Institute, Department of Chemical Engineering, University of Cape Town, Corner of Madiba Circle and South Lane, Rondebosch 7701, South Africa
| | - Neil P. Young
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Stuart M. Holmes
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alex Walton
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Angus I. Kirkland
- Electron
Physical Sciences Imaging Centre, Diamond
Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Sarah J. Haigh
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Candace I. Lang
- School of
Engineering, Macquarie University, Sydney, New South Wales 2109 Australia
| |
Collapse
|
20
|
Li J, Shao T, Meng B, He S, Zhang Q, Zhang D, Zhou X. Advanced catalytic performance for the electro-oxidation of methanol enabled by channel-rich Au@GQDs@Pt3.5Pb nano-pompons. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Li X, Peng X, Wang Y, Yan B. Synthesis of Pd nanonetworks with abundant defects for oxygen reduction electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d0nj05881e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Pd nanonetworks with abundant defects were synthesized by a one-pot method for enhanced oxygen reduction reaction performance.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials and Chemical Engineering, Xi'an Technological University
- Xi'an
- China
| | - Xinyuan Peng
- School of Materials and Chemical Engineering, Xi'an Technological University
- Xi'an
- China
| | - Yixuan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University
- Xi'an
- China
| | - Bo Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University
- Yichang 443002
- China
| |
Collapse
|
22
|
Hirata N, Katsura Y, Gunji H, Tona M, Tsukamoto K, Eguchi M, Ando T, Nakajima A. Platinum nanocluster catalysts supported on Marimo carbon via scalable dry deposition synthesis. RSC Adv 2021; 11:39216-39222. [PMID: 35492459 PMCID: PMC9044432 DOI: 10.1039/d1ra07717a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
The development of efficient fuel cells greatly promotes reducing the consumption of fossil energy, and it is crucial to enhance the platinum (Pt) catalytic activity by optimizing both the nanoparticle size and support effect.
Collapse
Affiliation(s)
- Naoyuki Hirata
- Ayabo Co., Ltd., 1 Hosogute, Fukukama-cho, Anjo, Aichi 446-0052, Japan
| | - Yui Katsura
- College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Hiroyuki Gunji
- College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Masahide Tona
- Ayabo Co., Ltd., 1 Hosogute, Fukukama-cho, Anjo, Aichi 446-0052, Japan
| | - Keizo Tsukamoto
- Ayabo Co., Ltd., 1 Hosogute, Fukukama-cho, Anjo, Aichi 446-0052, Japan
| | - Mika Eguchi
- College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Toshihiro Ando
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
23
|
Dry synthesis of single-nanometer-scale Pt Si fine particles for electrocatalysis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Khalafallah D, Zhi M, Hong Z. Development Trends on Nickel‐Based Electrocatalysts for Direct Hydrazine Fuel Cells. ChemCatChem 2020. [DOI: 10.1002/cctc.202001018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
- Mechanical Design and Materials Department Faculty of Energy Engineering Aswan University P.O. Box 81521 Aswan Egypt
| | - Mingjia Zhi
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| |
Collapse
|
25
|
Song Z, Zhu YN, Liu H, Banis MN, Zhang L, Li J, Doyle-Davis K, Li R, Sham TK, Yang L, Young A, Botton GA, Liu LM, Sun X. Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003096. [PMID: 33015944 DOI: 10.1002/smll.202003096] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Configuring metal single-atom catalysts (SACs) with high electrocatalytic activity and stability is one efficient strategy in achieving the cost-competitive catalyst for fuel cells' applications. Herein, the atomic layer deposition (ALD) strategy for synthesis of Pt SACs on the metal-organic framework (MOF)-derived N-doped carbon (NC) is proposed. Through adjusting the ALD exposure time of the Pt precursor, the size-controlled Pt catalysts, from Pt single atoms to subclusters and nanoparticles, are prepared on MOF-NC support. X-ray absorption fine structure spectra determine the increased electron vacancy in Pt SACs and indicate the Pt-N coordination in the as-prepared Pt SACs. Benefiting from the low-coordination environment and anchoring interaction between Pt atoms and nitrogen-doping sites from MOF-NC support, the Pt SACs deliver an enhanced activity and stability with 6.5 times higher mass activity than that of Pt nanoparticle catalysts in boosting the oxygen reduction reaction (ORR). Density functional theory calculations indicate that Pt single atoms prefer to be anchored by the pyridinic N-doped carbon sites. Importantly, it is revealed that the electronic structure of Pt SAs can be adjusted by adsorption of hydroxyl and oxygen, which greatly lowers free energy change for the rate-determining step and enhances the activity of Pt SACs toward the ORR.
Collapse
Affiliation(s)
- Zhongxin Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Ya-Nan Zhu
- Beijing Computational Science Research Center, Beijing, 100193, China
- School of Physics, Beihang University, Beijing, 100083, China
| | - Hanshuo Liu
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Junjie Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Kieran Doyle-Davis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Ruying Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lijun Yang
- Ballard Power Systems Inc., Burnaby, British Columbia, V5J 5J8, Canada
| | - Alan Young
- Ballard Power Systems Inc., Burnaby, British Columbia, V5J 5J8, Canada
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Li-Min Liu
- Beijing Computational Science Research Center, Beijing, 100193, China
- School of Physics, Beihang University, Beijing, 100083, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
26
|
Jilani SZ, Cohen CP, Iyanobor EE, Zager D, Zheng R, Frankenfield KM, Tong YJ. Surfactant-Free One-Pot Synthesis of Homogeneous Trimetallic PtNiCu Nanoparticles with Size Control by Using Glycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5902-5907. [PMID: 32378413 DOI: 10.1021/acs.langmuir.0c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homogeneous platinum alloy nanoparticles (NPs) are of great interest to the electrocatalytic community for potential use in various fuel cell electrodes. Increasing the surface area available per unit mass by decreasing the size of NPs while maintaining or improving activity is one of the key tasks of fuel cell catalysis. Achieving both in a synthesis of multielement NPs is still a challenging workup. In this investigation, we report the use of glycine as a size control agent to make ultrasmall homogeneous trimetallic PtNiCu NPs within 2-5 nm range. The mechanistic roles of dimethyl formamide (DMF), formaldehyde, water, and glycine are explored to understand the formation of these small NPs. Interestingly, it was observed that these PtNiCu NPs exhibited substantially enhanced mass activities toward the electro-oxidation of ethanol in comparison to commercial Pt black.
Collapse
Affiliation(s)
- Safia Z Jilani
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Carter P Cohen
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Esther E Iyanobor
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Daniel Zager
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Rongfeng Zheng
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Kaitlyn M Frankenfield
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - YuYe J Tong
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
27
|
Xu C, Fan C, Zhang X, Chen H, Liu X, Fu Z, Wang R, Hong T, Cheng J. MXene (Ti 3C 2T x) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19539-19546. [PMID: 32270995 DOI: 10.1021/acsami.0c02446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metal-support interaction offers electronic, compositional, and geometric effects that could enhance catalytic activity and stability. Herein, a high corrosion resistance and an excellent electrical conductivity MXene (Ti3C2Tx) hybrid with a carbon nanotube (CNT) composite material is developed as a support for Pt. Such a composite catalyst enhances durability and improved oxygen reduction reaction activity compared to the commercial Pt/C catalyst. The mass activity of Pt/CNT-MXene demonstrates a 3.4-fold improvement over that of Pt/C. The electrochemical surface area of Pt/CNT-Ti3C2Tx (1:1) catalysts shows only 6% drop with respect to that in Pt/C of 27% after 2000 cycle potential sweeping. Furthermore, the Pt/CNT-Ti3C2Tx (1:1) is used as a cathode catalyst for single cell and stack, and the maximum power density of the stack reaches 138 W. The structure distortion of the Pt cluster induced by MXene is disadvantageous to the desorption of O atoms. This issue can be solved by adding CNT on MXene to stabilize the Pt cluster. These remarkable catalytic performances could be attributed to the synergistic effect between Pt and CNT-Ti3C2Tx.
Collapse
Affiliation(s)
- Chenxi Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Chanchan Fan
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Xiaole Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Haotian Chen
- School of Physics, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xiaoteng Liu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Zhaoming Fu
- School of Physics, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | | | - Tao Hong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Jigui Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| |
Collapse
|
28
|
Lori O, Elbaz L. Recent Advances in Synthesis and Utilization of Ultra‐low Loading of Precious Metal‐based Catalysts for Fuel Cells. ChemCatChem 2020. [DOI: 10.1002/cctc.202000001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oran Lori
- Chemistry DepartmentBar-Ilan University Ramat-Gan 5290002 Israel
| | - Lior Elbaz
- Chemistry DepartmentBar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
29
|
Yin S, Ding Y. Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Trans 2020; 49:4189-4199. [PMID: 32191785 DOI: 10.1039/d0dt00205d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active, durable oxygen reduction reaction (ORR) electrocatalysts have an essential role in promoting the continuous operation of advanced energy technologies such as fuel cells and metal-air batteries. Considering the scarce reserve of Pt and its unsatisfactory overall performance, there is an urgent demand for the development of new generation ORR electrocatalysts that are substantially better than the state-of-the-art supported Pt-based nanocatalysts, such as Pt/C. Among various nanostructures, bimetallic PtAu represents one unique alloy system where highly contradictory performance has been reported. While it is generally accepted that Au may contribute to stabilizing Pt, its role in modulating the intrinsic activity of Pt remains unclear. This perspective will discuss critical structural issues that affect the intrinsic ORR activities of bimetallic PtAu, with an eye on elucidating the origin of seemingly inconsistent experimental results from the literature. As a relatively new class of electrodes, we will also highlight the performance of dealloyed nanoporous gold (NPG) based electrocatalysts, which allow a unique combination of structural properties highly desired for this important reaction. Finally, we will put forward the challenges and opportunities for the incorporation of these advanced electrocatalysts into membrane electrode assemblies (MEA) for actual fuel cells.
Collapse
Affiliation(s)
- Shuai Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
30
|
Fortunato GV, Cardoso ESF, Martini BK, Maia G. Ti/Pt−Pd‐Based Nanocomposite: Effects of Metal Oxides on the Oxygen Reduction Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.202000268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guilherme V. Fortunato
- Institute of Chemistry Universidade Federal de Mato Grosso do Sul Av. Senador Filinto Muller, 1555 Campo Grande MS 79074-460 Brazil
| | - Eduardo S. F. Cardoso
- Institute of Chemistry Universidade Federal de Mato Grosso do Sul Av. Senador Filinto Muller, 1555 Campo Grande MS 79074-460 Brazil
| | - Bibiana K. Martini
- Institute of Chemistry Universidade Federal de Mato Grosso do Sul Av. Senador Filinto Muller, 1555 Campo Grande MS 79074-460 Brazil
| | - Gilberto Maia
- Institute of Chemistry Universidade Federal de Mato Grosso do Sul Av. Senador Filinto Muller, 1555 Campo Grande MS 79074-460 Brazil
| |
Collapse
|
31
|
Kong F, Ren Z, Norouzi Banis M, Du L, Zhou X, Chen G, Zhang L, Li J, Wang S, Li M, Doyle-Davis K, Ma Y, Li R, Young A, Yang L, Markiewicz M, Tong Y, Yin G, Du C, Luo J, Sun X. Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05133] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Zhouhong Ren
- Ceter for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lei Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Guangyu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Junjie Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Sizhe Wang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Minsi Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Kieran Doyle-Davis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yulin Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Ruying Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Alan Young
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Lijun Yang
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Matthew Markiewicz
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Jun Luo
- Ceter for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
32
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
33
|
He C, Ma Z, Wu Q, Cai Y, Huang Y, Liu K, Fan Y, Wang H, Li Q, Qi J, Li Q, Wu X. Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Structural and Electrochemical Properties of Nesting and Core/Shell Pt/TiO2 Spherical Particles Synthesized by Ultrasonic Spray Pyrolysis. METALS 2019. [DOI: 10.3390/met10010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pt/TiO2 composites were synthesized by single-step ultrasonic spray pyrolysis (USP) at different temperatures. In an in-situ method, Pt and TiO2 particles were generated from tetra-n-butyl orthotitanate and chloroplatinic acid, and hydrothermally-prepared TiO2 colloidal dispersion served as Pt support in an ex-situ USP approach. USP-synthesized Pt/TiO2 composites were generated in the form of a solid mixture, morphologically organized in nesting huge hollow and small solid spheres, or TiO2 core/Pt shell regular spheroids by in-situ or ex-situ method, respectively. This paper exclusively reports on characteristic mechanisms of the formation of novel two-component solid composites, which are intrinsic from the USP approach and controlled precursor composition. The generation of the two morphological components within the in-situ approach, the hollow spheres and all-solid spheres, was indicated to be caused by characteristic sol-gel/solid phase transition of TiO2. Both the walls of the hollow spheres and the cores of all-solid ones consist of TiO2 matrix populated by 10 nm-sized Pt. On the other hand, spherical, uniformly-sized, Pt particles of a few nanometers in size created a shell uniformly deposited onto TiO2 spheres of ca. 150 nm size. Activities of the prepared samples in an oxygen reduction reaction and combined oxygen reduction and hydrogen evolution reactions were electrochemically tested. The ex-situ synthesized Pt/TiO2 was more active for oxygen reduction and combined oxygen reduction and hydrogen reactions in comparison to the in-situ Pt/TiO2 samples, due to better availability of Pt within a core/shell structure for the reactions.
Collapse
|
35
|
Li Y, Li Q, Wang H, Zhang L, Wilkinson DP, Zhang J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00052-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application.
Graphic Abstract
Collapse
|
36
|
Santos JRN, Viégas DSS, Alves ICB, Rabelo AD, Costa WM, Marques EP, Zhang L, Zhang J, Marques ALB. Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00539-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Klein J, Brimaud S, Engstfeld A, Behm R. Atomic scale insights on the electronic and geometric effects in the electro-oxidation of CO on PtxRu1-x/Ru(0001) surface alloys. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Zhang M, Miao S, Xu BQ. Core@shell nanostructured Au-d@NimPtm for electrochemical oxygen reduction reaction: effect of the core size and shell thickness. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01056d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au-d@NimPtm nanostructures are studied to address the effects of the Au-core size (d) and NiPt-shell thickness (m) on the electrocatalytic performance of Pt for the ORR.
Collapse
Affiliation(s)
- Min Zhang
- Innovative Catalysis Program
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Shu Miao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Bo-Qing Xu
- Innovative Catalysis Program
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|
39
|
|