1
|
Wang XY, Wei WJ, Zhou SY, Pan YZ, Yang J, Gan T, Zhuang Z, Li WH, Zhang X, Pan YM, Tang HT, Wang D. Phosphorus-Doped Single Atom Copper Catalyst as a Redox Mediator in the Cathodic Reduction of Quinazolinones. Angew Chem Int Ed Engl 2025; 64:e202505085. [PMID: 40107943 DOI: 10.1002/anie.202505085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
The use of clean electric energy to activate inert compounds has garnered significant attention. Homogeneous redox mediators (RMs) in organic electrosynthesis are effective platforms for this purpose. However, understanding the RM's electronic structure under operational conditions, electron transport processes at the electrode surface, and substrate adsorption-desorption dynamics remains challenging. Here, we synthesized a Cu single-atom catalyst (SAC, named Cu─N─P@NC) with a CuN3P1 micro-coordination structure, employing it as a unique cathode redox mediator. Introducing phosphine atoms into the coordination system allowed modulation of the SAC's electronic metal-support interaction, optimizing catalyst-substrate adsorption-desorption dynamics and accelerating electrochemical reactions. Utilizing the heterogeneous SAC strategy, we achieved a novel electro-reduction coupling ring-opening reaction of inert quinazolinone frameworks. The Cu-SAC exhibited exceptionally high catalytic activity and substrate compatibility, operating smoothly at gram-scale production. Additionally, we applied the SAC to modify 11 natural product molecules. Integrating micro-coordination environment regulation and theoretical adsorption models elucidated the significant influence of electrode-RMs-substrate interactions on reaction kinetics and catalytic efficiency-a feat challenging for homogeneous RMs. This approach offers a novel pathway for advancing efficient organic electrosynthesis reactions and provides critical insights for mechanistic studies.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wan-Jie Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Si-Yu Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yong-Zhou Pan
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Zheng C, Zhang L, Song X, Tan X, Li W, Jin X, Sun X, Han B. Rational Construction of Cu Active Sites for CO 2 Electrolysis to C 2+ Product. Chem Asian J 2025; 20:e202500091. [PMID: 40019336 DOI: 10.1002/asia.202500091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising approach in advancing towards carbon neutrality and addressing renewable energy intermittency. Copper-based catalysts have received much attention due to their high catalytic activity to convert CO2 into high value-added C2+ products. However, CO2RR exhibits a diversity of reduction products and unavoidable hydrogen precipitation side reactions due to the moderate adsorption strength of *CO on the copper surface and the fact that the electrode potential for CO2 reduction is very close to that for hydrogen precipitation reduction. Here, we summarize recent advances in the structural design and active site construction of copper-based catalysts for CO2RR, and investigate their effects on the improvement of CO2RR performance, with the aim of deepening the understanding of catalyst structure and active sites, thereby facilitating the design of more efficient copper-based catalysts for the sustainable production of value-added chemicals.
Collapse
Affiliation(s)
- Chaofeng Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyuan Jin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Zhao T, Zhang J, Wang K, Xiao Y, Wang Q, Li L, Tseng J, Chen MC, Ma JJ, Lu YR, Hirofumi I, Shao YC, Zhao X, Hung SF, Su Y, Mu X, Hua W. Exploring the Mechanism of Surface Cationic Vacancy Induces High Activity of Metastable Lattice Oxygen in Li- and Mn-Rich Cathode Materials. Angew Chem Int Ed Engl 2025; 64:e202419664. [PMID: 39890590 DOI: 10.1002/anie.202419664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Li- and Mn-rich layered oxides exhibit high specific capacity due to the cationic and anionic reaction process during high-voltage cycling (≥4.6 V). However, they face challenges such as low initial coulombic efficiency (~70 %) and poor cycling stability. Here, we propose a combination of H3BO3 treatment and low temperature calcination to construct a shell with cationic vacancy on the surface of Li1.2Ni0.2Mn0.6O2 (LLNMO). The H3BO3 treatment produces cationic vacancy and lattice distortion, forming an oxidized On- (0
Collapse
Affiliation(s)
- Tian Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi, 710049, China
| | - Jilu Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi, 710049, China
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kai Wang
- School of Materials and Energy, Lanzhou University, No. 222, Tianshui South Road, Lanzhou, 730000, China
| | - Yao Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Qin Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi, 710049, China
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, China
| | - Longfei Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials, Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Jochi Tseng
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Meng-Cheng Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Jian-Jie Ma
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ishii Hirofumi
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Yu-Cheng Shao
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Xiaoxian Zhao
- Department of Chemistry, College of Science, Hebei Agriculture University, Baoding, 071001, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials, Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Xiaoke Mu
- School of Materials and Energy, Lanzhou University, No. 222, Tianshui South Road, Lanzhou, 730000, China
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi, 710049, China
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Li D, Liu J, Wang B, Huang C, Chu PK. Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO 2 to C 2+ Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416597. [PMID: 40013974 PMCID: PMC11967780 DOI: 10.1002/advs.202416597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The electrocatalytic conversion of CO2 into valuable multi-carbon (C2+) products using Cu-based catalysts has attracted significant attention. This review provides a comprehensive overview of recent advances in Cu-based catalyst design to improve C2+ selectivity and operational stability. It begins with an analysis of the fundamental reaction pathways for C2+ formation, encompassing both established and emerging mechanisms, which offer critical insights for catalyst design. In situ techniques, essential for validating these pathways by real-time observation of intermediates and material evolution, are also introduced. A key focus of this review is placed on how to enhance C2+ selectivity through intermediates manipulation, particularly emphasizing catalytic site construction to promote C─C coupling via increasing *CO coverage and optimizing protonation. Additionally, the challenge of maintaining catalytic activity under reaction conditions is discussed, highlighting the reduction of active charged Cu species and materials reconstruction as major obstacles. To address these, the review describes recent strategies to preserve active sites and control materials evolution, including novel catalyst design and the utilization and mitigation of reconstruction. By presenting these developments and the challenges ahead, this review aims to guide future materials design for CO2 conversion.
Collapse
Affiliation(s)
- Dan Li
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Jinyuan Liu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Bin Wang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Chao Huang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| |
Collapse
|
5
|
Husile A, Wang Z, Guan J. Bimetallic effects in carbon dioxide electroreduction. Chem Sci 2025; 16:5413-5446. [PMID: 40083971 PMCID: PMC11901347 DOI: 10.1039/d5sc00670h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
As a clean and sustainable technology, electrocatalytic carbon dioxide reduction reaction (ECO2RR) occupies a central position in the global energy transformation and climate change strategy. Compared with single metallic catalysts, bimetallic catalysts have many advantages, such as the synergistic effect between bimetals, enhanced CO2 adsorption capacity, and lower reaction energy barriers, which make them widely used in the CO2RR for the generation of multi-carbon products. This review systematically summarizes the latest advances in bimetallic effects for the CO2RR. In this paper, we start with a classified introduction on the CO2RR mechanisms, followed by a comprehensive discussion of the structure-activity relationships of various bimetallic catalysts, including regulation of metal centers, regulation of the distance between metal sites, regulation of the coordination environment, interface engineering, and strain engineering. Next, we showcase the advantages of bimetallic catalysts in the CO2RR. Then, the research progress of typical bimetallic catalysts for the ECO2RR is discussed, including diatomic catalysts, bimetallic alloys, bimetallic MOFs and bimetallic COFs. Finally, we summarize the challenges faced today from the five aspects of product selectivity, catalyst stability, product purification, theoretical simulations and in situ characterization techniques and put forward the research direction to promote the industrialization process of CO2RR.
Collapse
Affiliation(s)
- Anaer Husile
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| | - Zhenlu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| | - Jingqi Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| |
Collapse
|
6
|
Li RJ, Niu WJ, Zhao WW, Yu BX, Cai CY, Xu LY, Wang FM. Achievements and Challenges in Surfactants-Assisted Synthesis of MOFs-Derived Transition Metal-Nitrogen-Carbon as a Highly Efficient Electrocatalyst for ORR, OER, and HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408227. [PMID: 39463060 DOI: 10.1002/smll.202408227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites. This review mainly focuses on the synthesis methods of surfactants-assisted MOFs derived catalysts and comprehensively introduces the action of surfactants in MOFs derived materials and the structure-activity relationship between the catalysts and the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction performance. Apparently, the aims of this review not only introduce the status of surfactants-assisted MOFs derived catalysts in the field of electrocatalysis but also contribute to the rational design and synthesis of MOFs derived catalysts for fuel cells, metal-air cells, and electrolysis of water toward hydrogen production.
Collapse
Affiliation(s)
- Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Li-Yang Xu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fu-Ming Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
7
|
He X, Wang M, Wei Z, Wang Y, Wang J, Zang H, Zhang L. Dual-Anion-Stabilized Cu δ+ Sites in Cu 2(OH) 2CO 3 for High C 2+ Selectivity in the CO 2 Electroreduction Reaction. CHEMSUSCHEM 2024; 17:e202400871. [PMID: 38923833 DOI: 10.1002/cssc.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The excessive emission of CO2 has aroused increasingly serious environmental problems. Electrochemical CO2 reduction reaction (CO2RR) is an effective way to reduce CO2 concentration and simultaneously produce highly valued chemicals and fuels. Cuδ+ species are regarded as promising active sites to obtain multi-carbon compounds in CO2RR, however, they are easily reduced to Cu0 during the reaction and fail to retain the satisfying selectivity for C2+ products. Herein, via a one-step method, we synthesize Cu2(OH)2CO3 microspheres composed of nanosheets, which has achieved a superior Faraday efficiency for C2+ products as high as 76.29 % at -1.55 V vs. RHE in an H cell and 78.07 % at -100 mA cm-2 in a flow cell. Electrochemical measurements, in situ Raman spectra and attenuated total reflectance infrared spectra (ATR-IR) as well as the theoretic calculation unveil that, compared with Cu(OH)2 and CuO, the dual O-containing anionic groups (OH- and CO3 2-) in Cu2(OH)2CO3 can effectively stabilize the Cuδ+ species, promote the adsorption and activation of CO2, boost the coverage of *CO and the coupling of *CO-*COH, thus sustain the flourishment of C2+ products.
Collapse
Affiliation(s)
- Xin He
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Min Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zixuan Wei
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Yang Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Haojie Zang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Lingxia Zhang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
8
|
Poojita, Rom T, Meenu PC, Mandal K, Roy S, Chopra D, Paul AK. Unveiling the Structural Effects in Hybrid Copper Phosphonate Frameworks for Selective Electrocatalytic CO 2 Reduction Reaction. Inorg Chem 2024; 63:22594-22604. [PMID: 39529352 DOI: 10.1021/acs.inorgchem.4c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Electrochemical CO2 reduction holds tremendous promise for transforming carbon dioxide into several value-added energy feedstocks and utilizing renewable energy sources. Herein, we have developed two novel copper-based organophosphonates for selective electrocatalytic conversion of CO2 to CH3OH conversion. The two-dimensional layer structure of Cu3[(Hhedp)2(C4H4N2)].2H2O (I) and the three-dimensional Cu3[(H3hedp)2(C4H4N2)4(SO4)].2H2O (II) have been isolated as single crystals via a hydrothermal strategy. Compound I consists of Cu2+ oxidation states exclusively, while compound II has Cu1+ oxidation states in a network wherein a Cu2+-phosphonate template is embedded inside the framework. Depending on mixed valent oxidation states, compound II exhibits high selectivity compared to compound I for the electrocatalytic reduction of CO2 to CH3OH (C1) as the primary product and CH3COOH (C2) as the secondary product. Notably, product selectivity is enhanced as the Faradaic efficiency (FE) of the competing hydrogen evolution reaction (HER) is significantly reduced in compound II relative to that of I, particularly at higher applied reduction potentials. The optimal ratio of Cu1+ active sites in compound II plays a pivotal role in enhancing methanol selectivity, stabilizing critical intermediates, and maintaining ideal reduction potentials as a noble-metal free electrocatalyst. Moreover, the optical band gap and the Mott-Schottky measurements further suggest the title Cu-phosphonate materials could be promising and effective photocatalysts.
Collapse
Affiliation(s)
- Poojita
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
| | - Tanmay Rom
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka 560064, India
| | - Preetha Chandrasekharan Meenu
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koushik Mandal
- Crystallography and Crystal Chemistry Laboratory, Indian Institute of Science Education and Research, Bhauri, Bhopal 460066, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Indian Institute of Science Education and Research, Bhauri, Bhopal 460066, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
| |
Collapse
|
9
|
Zhu S, He C, Tan H, Xie C, Ma P, Fang F, Li Y, Chen M, Zhuang W, Xu H, Yang M, Luo H, Yao Y, Hu WW, Huang Q, Sun X, Ying B. Enhanced Peroxidase-like Activity of Ruthenium-Modified Single-Atom-Thick A Layers in MAX Phases for Biomedical Applications. ACS NANO 2024; 18:29522-29534. [PMID: 39422884 DOI: 10.1021/acsnano.4c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Nanozymes have demonstrated significant potential as promising alternatives to natural enzymes in biomedical applications. However, their lower catalytic activity compared to that of natural enzymes has limited their practical utility. Addressing this challenge necessitates the development of innovative enzymatic systems capable of achieving specific activity levels of natural enzymes. In this study, we focus on enhancing the catalytic performance of nanozymes by introducing Ru atoms into the single-atom-thick A layer of the V2SnC MAX phase, resulting in the formation of V2(Sn0.8Ru0.2)C with Ru single-atom sites. The V2(Sn0.8Ru0.2)C MAX phase demonstrated an exceptional peroxidase-like specific activity of up to 1792.6 U mg-1, surpassing the specific activity of a previously reported horseradish peroxidase (HRP). Through X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) investigations, it has been revealed that both the V2C atom layers and single-atom-thick Sn readily accept a negative charge from Ru, leading to a reduction of the energy barrier for H2O2 adsorption. This discovery has enabled the successful application of V2(Sn0.8Ru0.2)C in the development of a lateral flow immunoassay for heart failure biomarkers, achieving a detection sensitivity of 4 pg mL-1. Additionally, V2(Sn0.8Ru0.2)C demonstrated exceptional broad-spectrum antibacterial efficacy. This study lays the groundwork for the precise design of MAX phase-based nanozymes with high specific activity, offering a viable alternative to natural enzymes for various applications.
Collapse
Affiliation(s)
- Shuairu Zhu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chao He
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiling Tan
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Translational Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaoyin Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pengte Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fei Fang
- College of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo 315201, China
| | - Youbing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mao Chen
- Department of Cardiology, Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China
| | - Mei Yang
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China
| | - Han Luo
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Translational Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China
| |
Collapse
|
10
|
Lv X, Qian L, Tkachenko NV, Zhang T, Qiu F, Aratani N, Ikeue T, Pan J, Xue S. Copper complexation of rosarin: formation of bis-copper rosarin and mono-copper linear tridipyrrin complexes. Dalton Trans 2024; 53:16879-16884. [PMID: 39360845 DOI: 10.1039/d4dt02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A novel rosarin di-Cu complex 2Cu-1 and a linear six-pyrrolic mono-copper complex 1Cu-1 were synthesized using rosarin as the ligand. The molecular conformations of these complexes were confirmed by X-ray crystallography. The optical study of 1Cu-1 indicated NIR-II absorption due to the long six-pyrrolic ligand and the ICT effect. The 2Cu-1 complex exhibited a very narrow electronic reduction-oxidation gap of 0.50 eV, attributed to the antiaromatic characteristics of the rosarin ring. The first HER study of the di-copper rosarin complex 2Cu-1 indicated that the multi-metal poly-pyrrolic complexes are promising molecular hydrogen evolution reaction catalysts.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Long Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Nikolay V Tkachenko
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Nara 630-0192, Japan.
| | - Takahisa Ikeue
- Department of Materials Chemistry, Graduate School of Natural Science and Technology Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Lu C, Hong QL, Zhang HX, Zhang J. Enhancing CO 2 electroreduction to ethylene via microenvironment regulation in boron-imidazolate frameworks. Chem Commun (Camb) 2024; 60:10204-10207. [PMID: 39196608 DOI: 10.1039/d4cc02928c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Using the structure-induced effect of KBH(mim)3 ligand, four 2-dimensional (2D) boron imidazolate frameworks with identical body framework and different dangling monocarboxylate ligands, have been synthesized. Electrocatalytic results indicate that the surrounding microenvironment regulation could effectively affect the activity and selectivity towards C2H4. BIF-151 showed the highest electrocatalytic performances with the Faraday efficiency (FE) of 25.94% for C2H4 at -1.4 V vs. RHE.
Collapse
Affiliation(s)
- Chen Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
13
|
Yu H, Ji Y, Li C, Zhu W, Wang Y, Hu Z, Zhou J, Pao CW, Huang WH, Li Y, Huang X, Shao Q. Strain-Triggered Distinct Oxygen Evolution Reaction Pathway in Two-Dimensional Metastable Phase IrO 2 via CeO 2 Loading. J Am Chem Soc 2024; 146:20251-20262. [PMID: 38996085 DOI: 10.1021/jacs.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A strain engineering strategy is crucial for designing a high-performance catalyst. However, how to control the strain in metastable phase two-dimensional (2D) materials is technically challenging due to their nanoscale sizes. Here, we report that cerium dioxide (CeO2) is an ideal loading material for tuning the in-plane strain in 2D metastable 1T-phase IrO2 (1T-IrO2) via an in situ growth method. Surprisingly, 5% CeO2 loaded 1T-IrO2 with 8% compressive strain achieves an overpotential of 194 mV at 10 mA cm-2 in a three-electrode system. It also retained a high current density of 900 mA cm-2 at a cell voltage of 1.8 V for a 400 h stability test in the proton-exchange membrane device. More importantly, the Fourier transform infrared measurements and density functional theory calculation reveal that the CeO2 induced strained 1T-IrO2 directly undergo the *O-*O radical coupling mechanism for O2 generation, totally different from the traditional adsorbate evolution mechanism in pure 1T-IrO2. These findings illustrate the important role of strain engineering in paving up an optimal catalytic pathway in order to achieve robust electrochemical performance.
Collapse
Affiliation(s)
- Hao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Jing Zhou
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
14
|
Wu L, Li Z, Chen J, Zhang Y, Wang R, Cao S, Ding H, Liu M, Liu H, Wang X. Constructing a Cr-Substituted Co-Free Li-Rich Ternary Cathode with a Spinel-Layered Biphase Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34880-34891. [PMID: 38949126 DOI: 10.1021/acsami.4c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Lithium-rich manganese-based layered oxides (LRMOs) have recently attracted enormous attention on account of their remarkably big capacity and high working voltage. However, some inevitable inherent drawbacks impede their wide-scale commercial application. Herein, a kind of Cr-containing Co-free LRMO with a topical spinel phase (Li1.2Mn0.54Ni0.13Cr0.13O2) has been put forward. It has been found that the high valence of Cr6+ can reduce the Li+ ion content and induce the formation of a local spinel phase by combining more Li+ ions, which is beneficial to eliminate the phase boundary between the spinel phase and the bulk phase of the LRMO material, thus dramatically avoiding phase separation during the cycling process. In addition, the introduction of Cr can also expand the layer spacing and construct a stronger Cr-O bond compared with Mn-O, which enables to combine the transition metal (TM) slab to prevent the migration of TM ions and the transformation of the bulk phase to the spinel phase. Simultaneously, the synergistic effect of the successfully constructed spinel-layered biphase interface and the strong Cr-O bond can effectively impede the escape of lattice oxygen during the initial activation process of Li2MnO3 and provide the fast diffusion path for Li+ ion transmission, thus further reinforcing the configurable stability. Besides, Cr-LRMO presents an ultrahigh first discharge specific capacity of 310 mAh g-1, an initial Coulombic efficiency of as high as 92.09%, a good cycling stability (a capacity retention of 94.70% after 100 cycles at 1C), and a small voltage decay (3.655 mV per cycle), as well as a good rate capacity (up to 165.88 mAh g-1 at 5C).
Collapse
Affiliation(s)
- Lei Wu
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Zhi Li
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Jiarui Chen
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Yixu Zhang
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Ruijuan Wang
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Shuang Cao
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Hao Ding
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Min Liu
- College of New Energy, Ningbo University of Technology, Ningbo 315336, Zhejiang, China
| | - Hong Liu
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, Xiangtan 411100, Hunan, China
| |
Collapse
|
15
|
Shen Y, Yin D, Xue H, Sun W, Wang L, Cheng Y. A multifunctional dual cation doping strategy to stabilize high-voltage medium-nickel low-cobalt lithium layered oxide cathode. J Colloid Interface Sci 2024; 663:961-970. [PMID: 38447409 DOI: 10.1016/j.jcis.2024.02.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are intriguing for lithium-ion batteries (LIBs) applications because of their relatively low cost and high capacity. Unfortunately, high charging voltage induces bulk layered structure decline and interface environment deterioration, low cobalt content reduces lithium diffusion kinetics, severely limiting the performance liberation of this kind of cathode. Here, a multifunctional Al/Zr dual cation doping strategy is employed to enhance the electrochemical performance of LiNi0.6Co0.05Mn0.35O2 (NCM) cathode at a high charging cut-off voltage of 4.5 V. On the one hand, Al/Zr co-doping weakens the Li+/Ni2+ mixing through magnetic interactions due to the inexistence of unpaired electrons for Al3+ and Zr4+, thereby increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases. On the other hand, they enhance the lattice oxygen framework stability due to strong Al-O and Zr-O bonds, inhibiting the undesired H2 to H3 phase transition and interface lattice oxygen loss, thereby enhancing the stability of the bulk structure and cathode-electrolyte interface. As a result, Al/Zr co-doped NCM (NCMAZ) shows a 94.2 % capacity retention rate after 100 cycles, while that of NCM is only 79.4 %. NCMAZ also exhibits better rate performance than NCM, with output capacities of 92 mAh/g and 59 mAh/g at a high current density of 5C, respectively. The modification strategy will make the high-voltage medium-nickel low-cobalt cathode closer to practical applications.
Collapse
Affiliation(s)
- Yabin Shen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Dongming Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongjin Xue
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China.
| | - Wei Sun
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
16
|
Huang J, Zhang X, Yang J, Yu J, Chen Q, Peng L. Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO 2 Electrocatalysis: Unlocking the Mystery of Product Selectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309865. [PMID: 38634577 PMCID: PMC11199994 DOI: 10.1002/advs.202309865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.
Collapse
Affiliation(s)
- Jiabao Huang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xinping Zhang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Jiao Yang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
17
|
Li L, Wu S, Cheng D, Zhao ZJ, Gong J. Electronic structure modification of SnO 2 to accelerate CO 2 reduction towards formate. Chem Commun (Camb) 2024; 60:3922-3925. [PMID: 38501201 DOI: 10.1039/d3cc06337b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A systematic theoretical study probing the catalytic potential of metal-doped SnO2(110) was conducted. The incorporation of metals such as Zr, Ti, W, V, Hf, and Ge is shown to drive electron transfer to Sn. The increased charge of Sn is injected into anti-bonding orbitals, finely tuning the catalytic activity and reducing the overpotential to -0.34 V. AIMD simulations show the stability of the modified structures. This work sheds light on the rational design of low-cost metal oxides with a high catalytic performance for CO2ER to formate.
Collapse
Affiliation(s)
- Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
| | - Shican Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
18
|
Mustafa A, Guene Lougou B, Shuai Y, Wang Z, Ur-Rehman H, Razzaq S, Wang W, Pan R, Li F, Han L. Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO 2 reduction to CO. J Colloid Interface Sci 2024; 657:363-372. [PMID: 38043238 DOI: 10.1016/j.jcis.2023.11.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction (eCO2R) to industrially important feedstock has received great attention, but it faces different challenges. Among them, the poor CO2 mass transport due to low intrinsic CO2 solubility significantly limits the rate of reduction reactions, leading to lower catalytic performance; thereby, commercially relevant current densities can't be achieved. Moreover, the poor activity and selectivity of high-cost monometallic catalysts, including Cu, Zn, Ag, and Au, undermine the efficiency of eCO2R. Flow-through gas diffusion electrodes (FTGDE), a newly developed class of GDEs, can potentially solve the issue of poor CO2 mass transport because they directly feed the CO2 to the catalyst layer. In addition, abundant surface area, porous structure, and improved triple-phase interface make them an excellent candidate for extremely high rate eCO2R. Antimony, a low-cost and abundant metalloid, can be effectively tuned with Cu to produce useful products such as CO, formate, and C2H4 through eCO2R. Herein, a series of porous binary CuSb FTGDEs with different Sb compositions are fabricated for the electrocatalytic reduction of CO2 to CO. The results show that the catalytic performance of CuSb FTGDEs improved with increasing Sb content up to a certain threshold, beyond which it started to decrease. The CuSb FTGDE with 5.4 g of antimony demonstrated higher current density (206.4 mA/cm2) and faradaic efficiency (72.82 %) at relatively lower overpotentials. Compared to gas diffusion configuration, the poor catalytic activity and selectivity achieved by CuSb FTGDE in non-gas diffusion configuration signifies the importance of improved local CO2 concentration and improved triple-phase interface formation in GDE configuration. The several hours stable operation of CuSb FTGDEs during eCO2R demonstrates its potential for efficient electrocatalytic conversion applications.
Collapse
Affiliation(s)
- Azeem Mustafa
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Bachirou Guene Lougou
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Yong Shuai
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haseeb Ur-Rehman
- Mechanical Engineering Department, University of Engineering and Technology, 47050, Taxila, Pakistan
| | - Samia Razzaq
- School of Aerospace, Mechanical and Mechatronics Engineering, University of Sydney, Sydney 2006, Australia
| | - Wei Wang
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ruming Pan
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Fanghua Li
- Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Han
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
19
|
Chen T, Qiu C, Zhang X, Wang H, Song J, Zhang K, Yang T, Zuo Y, Yang Y, Gao C, Xiao W, Jiang Z, Wang Y, Xiang Y, Xia D. An Ultrasmall Ordered High-Entropy Intermetallic with Multiple Active Sites for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:1174-1184. [PMID: 38153040 PMCID: PMC10785812 DOI: 10.1021/jacs.3c12649] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.
Collapse
Affiliation(s)
- Tao Chen
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chunyu Qiu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinkai Zhang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hangchao Wang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Jin Song
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Kun Zhang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tonghuan Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuxuan Zuo
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yali Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chuan Gao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Wukun Xiao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zewen Jiang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yucheng Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Xiang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Dingguo Xia
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
20
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
21
|
Yuan H, Kong B, Liu Z, Cui L, Wang X. Dealloying-derived nanoporous Sn-doped copper with prior selectivity toward formate for CO 2 electrochemical reduction. Chem Commun (Camb) 2023; 60:184-187. [PMID: 38038960 DOI: 10.1039/d3cc04825j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We report nanoporous Cu-Sn catalysts fabricated by chemically dealloying rapid solidified Al-Cu-Sn alloys for the CO2RR. The np-Cu11Sn1 catalyst exhibits a three-dimensional interconnected ligament-channel network structure, which can efficiently convert CO2 to formate with a Faradaic efficiency (FE) of 72.1% at -1.0 V (vs. RHE).
Collapse
Affiliation(s)
- Hefeng Yuan
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China.
| | - Bohao Kong
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhehao Liu
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Li Cui
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China.
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
22
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Neog S, Dowerah D, Biswakarma N, Dutta P, Churi PP, Sarma PJ, Gour NK, Deka RC. Reaction Mechanism and Kinetics for the Selective Hydrogenation of Carbon Dioxide to Formic Acid and Methanol over the [Cu 2] 0,±1 Dimer. J Phys Chem A 2023; 127:8508-8529. [PMID: 37811794 DOI: 10.1021/acs.jpca.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
With the rapid growth of industrialization, deforestation, and burning of fossil fuels, undeniably there has been an incredible escalation of the CO2 concentration in the atmosphere. In order to mitigate the problem, the capture and utilization of CO2 in different value-added chemicals have thus remained topics of concerned research for more than a decade. Accordingly, we have performed molecular -level catalytic hydrogenation of CO2 to formic acid using bare [Cu2]0,±1 dimers as catalysts. The entire investigation has been performed using a density functional theory (DFT) method employing the Perdew-Burke-Ernzerhof (PBE) functional with the def2TZVPP basis set to explore the different possible routes and efficiency of the catalysts. Results reveal the feasibility of H2 dissociation on all three Cu2, Cu2+, and Cu2- dimers. The negatively charged hydride formed during H2 dissociation on Cu2 and Cu2+ dimers facilitates the formation of the HCOO* intermediate over COOH*, thereby providing product selectivity for HCOOH above CO. However, the reaction on the Cu2- dimer forms both HCOO* and COOH* intermediates, but HCOO*, being kinetically more favorable, results in HCOOH production. The free-energy change suggests that the complete reaction on Cu2 and Cu2+ dimers forms a stable product compared to the Cu2- dimer. Furthermore, H3COH production is studied using the title catalysts via the obtained HCOOH* intermediate from the reaction channel. Transition state theory (TST) has been considered to evaluate the rate constants for each step of the reaction. Overall results suggest Cu2 to be better compared to Cu2+ and Cu2- dimers for HCOOH formation and Cu2+ over Cu2 and Cu2- dimers to be more efficient for H3COH formation. This work opens the way for further investigation of the reaction mechanism and development of an efficient catalyst for CO2 hydrogenation.
Collapse
Affiliation(s)
- Shilpa Neog
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Nishant Biswakarma
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Priyanka Dutta
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Partha Pratim Churi
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
- Department of Chemistry, Dergaon Kamal Dowerah College, Dergaon-785614, Assam, India
| | - Plaban Jyoti Sarma
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
- Department of Chemistry, Gargaon College, Simaluguri-785686, Sivsagar, Assam, India
| | - Nand Kishor Gour
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Ramesh Chandra Deka
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| |
Collapse
|
24
|
Dong Y, Deng Z, Zhang H, Liu G, Wang X. A Highly Active and Durable Hierarchical Electrocatalyst for Large-Current-Density Water Splitting. NANO LETTERS 2023; 23:9087-9095. [PMID: 37747850 DOI: 10.1021/acs.nanolett.3c02940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Designing bifunctional catalysts with high current densities under industrial circumstances is crucial to propelling hydrogen energy with a boost from fundamental to practical application. In this work, heterojunction nanowire arrays consisting of manganese oxide and cobalt phosphide (denoted as MnO-CoP/NF) are designed to meet the industrial demand by regulating the synergic mass transport and electronic structure coupling with numerous nano-heterogeneous interfaces. The optimal MnO-CoP/NF electrode exhibits remarkable bifunctional electrocatalytic performance with overpotentials of 259.5 mV for hydrogen evolution at a large current density of 1000 mA cm-2 and 392.2 mV for oxygen evolution at 1500 mA cm-2. Moreover, the MnO-CoP/NF electrode demonstrates superior durability and an ultralow voltage of 1.76 V at 500 mA cm-2, outperforming that of a commercial RuO2||Pt/C electrode. This work sheds light on the design of metallic heterostructures with optimized interfacial electronic structures and a high abundance of active sites for practical industrial water splitting applications.
Collapse
Affiliation(s)
- Yan Dong
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Guangyi Liu
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
25
|
Wang F, Liu Z, Feng H, Wang Y, Zhang C, Quan Z, Xue L, Wang Z, Feng S, Ye C, Tan J, Liu J. Engineering CSFe Bond Confinement Effect to Stabilize Metallic-Phase Sulfide for High Power Density Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302200. [PMID: 37150868 DOI: 10.1002/smll.202302200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Metallic-phase iron sulfide (e.g., Fe7 S8 ) is a promising candidate for high power density sodium storage anode due to the inherent metal electronic conductivity and unhindered sodium-ion diffusion kinetics. Nevertheless, long-cycle stability can not be achieved simultaneously while designing a fast-charging Fe7 S8 -based anode. Herein, Fe7 S8 encapsulated in carbon-sulfur bonds doped hollow carbon fibers (NHCFs-S-Fe7 S8 ) is designed and synthesized for sodium-ion storage. The NHCFs-S-Fe7 S8 including metallic-phase Fe7 S8 embrace higher electron specific conductivity, electrochemical reversibility, and fast sodium-ion diffusion. Moreover, the carbonaceous fibers with polar CSFe bonds of NHCFs-S-Fe7 S8 exhibit a fixed confinement effect for electrochemical conversion intermediates contributing to long cycle life. In conclusion, combined with theoretical study and experimental analysis, the multinomial optimized NHCFs-S-Fe7 S8 is demonstrated to integrate a suitable structure for higher capacity, fast charging, and longer cycle life. The full cell shows a power density of 1639.6 W kg-1 and an energy density of 204.5 Wh kg-1 , respectively, over 120 long cycles of stability at 1.1 A g-1 . The underlying mechanism of metal sulfide structure engineering is revealed by in-depth analysis, which provides constructive guidance for designing the next generation of durable high-power density sodium storage anodes.
Collapse
Affiliation(s)
- Fei Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Zhendong Liu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Huiyan Feng
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuchen Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | | | - Zhuohua Quan
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Lingxiao Xue
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | | | - Songhao Feng
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Chong Ye
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jun Tan
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Jinshui Liu
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
26
|
Tong S, Pan H, Liu H, Zhang X, Liu X, Jia M, Kang Y, Yuan Y, Du X, Yan X. Titanium Doping Induced the Suppression of Irreversible Phase Transformation at High Voltage for V-based Phosphate Cathodes of Na-Ion Batteries. CHEMSUSCHEM 2023; 16:e202300244. [PMID: 37057378 DOI: 10.1002/cssc.202300244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Polyanionic material, specifically the NASICON-type material, is considered a promising cathode material for Na-ion batteries (SIBs) because of its stable structure and high operating voltage. Further, it improves the energy density correlated with the well utilization of all Na in the compound. For Na3 V2 (PO4 )2 F3 (NVPF), the extraction of the third Na, reported as the electrochemical inactivated, can be realized at a high voltage region while forming an irreversible tetragonal phase. In this study, we introduce Ti doping to the Na2 VTi(PO4 )2 F3 (NVTPF) material; we reveal that the Ti-doped NVTPF could effectively suppress the irreversible phase transformation, thus successfully harnessing Na in a wide voltage range. Experimental study discloses that the Ti-substituted Na2 VTi(PO4 )2 F3 could take up the Na+ from Amam phase to Cmc21 phase between 1.0 V and 4.8 V reversibly accounting for the 2 Na+ transportation that shows favorable Na+ kinetics and structural stability. Our research provides the strategy to stabilize the polyanion structure upon charging at a high voltage range and inspires the utilization of full sodium in the polyanionic materials, which could be considered as a material design for future conventional applications.
Collapse
Affiliation(s)
- Shuai Tong
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Pan
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hang Liu
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiaoyu Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiangyu Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Min Jia
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yahao Kang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yong Yuan
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xinyi Du
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaohong Yan
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
27
|
Dong C, Wang X, Zhu Z, Zhan C, Lin X, Bu L, Ye J, Wang Y, Liu W, Huang X. Highly Selective Synthesis of Monoclinic-Phased Platinum-Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023. [PMID: 37429024 DOI: 10.1021/jacs.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum-tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm-2 and 3.2 A mgPt-1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm-2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.
Collapse
Affiliation(s)
- Chengyuan Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyao Wang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhipeng Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Cu-THQ-EFG Composite for Highly Selective Electrochemical CO 2 Reduction to Formate at Low Overpotentials. Polymers (Basel) 2022; 14:polym14235112. [PMID: 36501512 PMCID: PMC9737261 DOI: 10.3390/polym14235112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Metal organic framework (MOFs) are promising materials for electrocatalysis. However, the active sites of bulk MOFs crystal normally cannot be fully utilized because of the slow reagent penetration of pores and blockage of active sites. Herein, we report a facile way to deposit copper-benzoquinoid (Cu-THQ) on the edge-functionalized graphene (EFG) which prevented material's aggregation. EFG used as a substrate provides higher electrical conductivity and stability in water than previously utilized graphene oxide (GO). Besides, the plate-like morphology of EFG proved to be more beneficial to support the MOF, because of the functional groups on its edge regions and much lower resistance compared to the sheet GO. Therefore, EFG can boost the resultant material's catalytic activity for CO2 electroreduction (CO2RR). Furthermore, Cu-THQ exhibits high selectivity for formate formation in CO2RR. Representing as the only CO2 reduced liquid product, formate can be separated from gaseous products and further extracted from the electrolyte for practical use. The electrocatalytic results of Cu-THQ-EFG indicate the composite exhibits a higher current density of -3 mA/cm2 and faradaic efficiency of -0.25 V vs. RHE, corresponding to 50 mV of overpotential. Moreover, it features a less negative on-set potential of -0.22 V vs. RHE, which is close to the equilibrium potential of CO2RR (-0.2 V vs. RHE) and is 0.16 V more positive than the on-set potential of Cu-THQ-GO (-0.38 V vs. RHE).
Collapse
|
29
|
Zoubir O, Atourki L, Ait Ahsaine H, BaQais A. Current state of copper-based bimetallic materials for electrochemical CO 2 reduction: a review. RSC Adv 2022; 12:30056-30075. [PMID: 36329940 PMCID: PMC9585392 DOI: 10.1039/d2ra05385c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The increasing CO2 concentration in the atmosphere has caused profound environmental issues such as global warming. The use of CO2 as a feedstock to replace traditional fossil sources holds great promise to reduce CO2 emissions. The electrochemical conversion of CO2 has attracted much attention because it can be powered by renewable sources such as solar energy. In this review article, we provide insight into the important parameters when studying CO2RR and give a comprehensive review on the description of synthesis methods with electrocatalytic CO2 reduction over bimetallic copper-based materials. Due to the important bibliographic data on Cu bimetallic materials, we have limited this review to Sn, In, Pd, Zn and Ag. At the end of this review, challenges and perspectives for further upgrading have been included to briefly highlight the important future considerations of this rapidly growing technology.
Collapse
Affiliation(s)
- Otmane Zoubir
- MANAPSE Lab, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Lahoucine Atourki
- MANAPSE Lab, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|