1
|
Ying Y, Fan K, Lin Z, Huang H. Facing the "Cutting Edge:" Edge Site Engineering on 2D Materials for Electrocatalysis and Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418757. [PMID: 39887476 PMCID: PMC11899551 DOI: 10.1002/adma.202418757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance. Here it is comprehensively aimed to summarize the state-of-the-art advancements in the utilization of edge sites on 2D materials for electrocatalysis and photocatalysis, with applications ranging from water splitting, oxygen reduction, and nitrogen reduction to CO2 reduction. Additionally, various approaches for harnessing and modifying edge sites are summarized and discussed. Here guidelines for the rational engineering of 2D materials for heterogeneous catalysis are provided.
Collapse
Affiliation(s)
- Yiran Ying
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Ke Fan
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- School of Materials Science and EngineeringAnhui UniversityHefei230601P. R. China
| | - Zezhou Lin
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Haitao Huang
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
2
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Aubry TJ, Clary JM, Miller EM, Vigil-Fowler D, van de Lagemaat J. Activating Nitrogen for Electrochemical Ammonia Synthesis via an Electrified Transition-Metal Dichalcogenide Catalyst. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7063-7072. [PMID: 38720956 PMCID: PMC11075086 DOI: 10.1021/acs.jpcc.3c08230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025]
Abstract
The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T'-phase MoS2 and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N2 structure properties are potential-independent. In contrast, GC-DFT calculations show that reductive potentials activate N2 toward electroreduction by controlling its back-bonding strength and lengthening the N-N triple bond while decreasing its bond order. Similar trends are observed for another classic back-bonding ligand in CO, suggesting that this mechanism may be broadly relevant to other electrochemistries involving back-bonded adsorbates. Furthermore, reductive potentials are required to make the subsequent N2 hydrogenation steps favorable but simultaneously destabilizes the N2 adsorbed structure resulting in a trade-off between the favorability of N2 adsorption and the subsequent reaction steps. We show that GC-DFT facilitates modeling all these phenomena and that together they can have important implications in predicting electrocatalyst selectivity for the NRR and potentially other reactions.
Collapse
Affiliation(s)
- Taylor J. Aubry
- Materials, Chemistry, and Computational
Science Directorate, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob M. Clary
- Materials, Chemistry, and Computational
Science Directorate, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Elisa M. Miller
- Materials, Chemistry, and Computational
Science Directorate, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Derek Vigil-Fowler
- Materials, Chemistry, and Computational
Science Directorate, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Jao van de Lagemaat
- Materials, Chemistry, and Computational
Science Directorate, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Yu Z, Ren T, Xie J, Yu H, Deng K, Wang Z, Wang H, Wang L, Xu Y. Yttrium atomically incorporated into Co(OH)F nanowires enables efficient electrochemical reduction of nitrate to ammonia. Chem Commun (Camb) 2023; 59:13875-13878. [PMID: 37933464 DOI: 10.1039/d3cc03293k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A new kind of electrocatalyst consisting of yttrium-doped Co(OH)F (Y-Co(OH)F) nanowires was synthesized by one hydrothermal method for nitrate electroreduction to ammonia. It was demonstrated that the rare earth element Y, as an oxophilic metal, can be approximated as Lewis acid sites enhancing nitrate adsorption on the catalyst surface. Therefore, the Y-Co(OH)F exhibits excellent nitrate reduction performance, reaching an optimal ammonia production rate of 0.2149 mmol h-1 cm-2 and ammonia faradaic efficiency of 91.81%.
Collapse
Affiliation(s)
- Zuan Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Jiangwei Xie
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| |
Collapse
|
6
|
Hai G, Wang H. A Readily Achieved Potentiostatic Method in Density Functional Theory Calculation for Improved Prediction of the Performance for Electrocatalytic Nitrogen Reduction Reaction. SMALL METHODS 2023; 7:e2300756. [PMID: 37670561 DOI: 10.1002/smtd.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Accurate prediction of the catalytic performance of nitrogen reduction reaction catalysts based on density functional theory (DFT) calculation is of great significance for developing catalytic materials for nitrogen fixation. However, the applied electrode potential induced the fixation of Fermi level and solvation effect are commonly ignored in the current computational hydrogen electrode method, which leads to the large deviation between the calculation predicted limit potential and the experimentally measured limit potential. In this work, the simple external iteration method is proposed to simulate the Fermi level of the catalysts that are fixed by the applied electrode potential, along with the hybrid solvent model to describe the strong interaction, such as hydrogen bond, between the solvent molecules and the intermediates. This method allowed the theoretical and experimental limit potentials to be in good agreement, indicating the significant effect of the electrode potential and solvation in the DFT calculation. These results will guide the calculation-based prediction of other reaction systems in the field of electrocatalysis.
Collapse
Affiliation(s)
- Guangtong Hai
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Wang H, Mu X, Mao Q, Deng K, Yu H, Xu Y, Li X, Wang Z, Wang L. Interfacial engineering of hydrophobic octadecanethiol/Pd metallene toward electrocatalytic nitrogen reduction. Chem Commun (Camb) 2023; 59:6552-6555. [PMID: 37162291 DOI: 10.1039/d3cc01234d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we propose the modification of ultrathin and wrinkled Pd metallene by hydrophobic octadecanethiol (Pdene@C18) via Pd-S bonds for the nitrogen reduction reaction. The hydrophobic self-assembled monolayer C18 can effectively capture more N2 and inhibit the hydrogen evolution reaction. As a result, a high NH3 yield and Faraday efficiency of 27.97 μg h-1 mgcat.-1 and 14.29% are achieved for Pdene@C18 under neutral conditions, respectively, highlighting the modification of hydrophobic monolayers for efficient nitrogen electro-reduction to ammonia.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xu Mu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|