1
|
Tong WK, Dai C, Hu J, Li J, Gao MT, You X, Feng XR, Li Z, Zhou L, Zhang Y, Lai X, Kahon L, Fu R. A novel eco-friendly strategy for removing phenanthrene from groundwater: Synergism of nanobubbles and rhamnolipid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168099. [PMID: 37884130 DOI: 10.1016/j.scitotenv.2023.168099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %-19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
Collapse
Affiliation(s)
- Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueji You
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xin Ru Feng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Li
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin 300072, China
| | - Long Kahon
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universitiy Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Huang M, Nhung NTH, Dodbiba G, Fujita T. Mitigation of arsenic accumulation in rice (Oryza sativa L.) seedlings by oxygen nanobubbles in hydroponic cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115700. [PMID: 37976934 DOI: 10.1016/j.ecoenv.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Arsenic (As) is a toxic non-essential metal. Its accumulation in rice has not only seriously affected the growth of rice, but also poses a significant threat to human health. Many reports have been published to decrease the arsenic accumulation in the rice plant by various additives such as chemicals, fertilizers, adsorbents, microorganisms and analyzing the mechanism. Nanobubble is a new technology widely used in agriculture because of its long existence time and high mass transfer efficiency. However, a few studies have investigated the effect of nanobubbles on arsenic uptake in rice. This study investigated the effect of oxygen nanobubbles on the growth and uptake of As in rice. The oxygen nanobubbles could rupture the salinity of nutrients and produce the hydroxyl radical. The hydroxyl radical caused the oxidation of arsenic As(III) to As (V) and the oxidation of ferrous ions. At the same time, the oxidized iron adsorbing As (V) created the iron plaque on the rice roots to stop arsenic introduction into the rice plant. The results indicated that the treatment of oxygen nanobubbles increased rice biomass under As stress, while they increased the chlorophyll content and promoted plant photosynthesis. Oxygen nanobubbles reduced the As content in rice roots to 12.5% and shoots to 46.4%. In other words, it significantly decreased As accumulation in rice. Overall, oxygen nanobubbles mitigated the toxic effects of arsenic on rice and had the potential to reduce the accumulation of arsenic in rice.
Collapse
Affiliation(s)
- Minyi Huang
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nguyen Thi Hong Nhung
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Viet Nam
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Bunkyo 113-8656, Japan
| | - Toyohisa Fujita
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Lee S, Anwer H, Park JW. Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131530. [PMID: 37172384 DOI: 10.1016/j.jhazmat.2023.131530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023]
Abstract
Nanobubble and ultrasonic cavitation were applied to support and prolong oxidation reactions of ozonation. Nanobubbles increased ozone dissolution by a factor of 16 due to low buoyancy, high surface area, and stability in water. Hydroxyl radicals generated by ultrasonic cavitation produced hydrogen peroxide rather than recombining due to additional oxygen atoms supplied by the nanobubbles. The generated hydrogen peroxide formed hydroperoxyl ions that reacted with ozone to generate hydroxyl radicals. The process achieved improvements in both the loss of emitted ozone and radical recombination. Rhodamine B decomposition was used to gauge the effectiveness of the process, with the highest rhodamine B decomposition evident at a high initial pH and power and a frequency of 132 kHz as revealed in ultrasonic experiments. The process achieved more than 99% of the rhodamine B decomposition in 20 min under the most efficient conditions. The generation of hydrogen peroxide exhibited tendencies similar to those of rhodamine B decomposition, supporting the proposed mechanism. An ozonation process combined with nanobubble and ultrasonic cavitation can therefore sustain oxidizing power using continuous dissolution by nanobubbles and successive radical generation caused by hydrogen peroxide generated by cavitation.
Collapse
Affiliation(s)
- Sangbin Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea
| | - Hassan Anwer
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea; Department of Environmental Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| | - Jae-Woo Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea.
| |
Collapse
|