1
|
Kulshrestha P, Arora A, Aggarwal A, Hosseini-Bandegharaei A, Sudhakar MS, Sah MK. Advances in biomedical applications of bacterial cellulose: from synthesis mechanisms to commercial innovations. World J Microbiol Biotechnol 2025; 41:132. [PMID: 40216641 DOI: 10.1007/s11274-025-04354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025]
Abstract
Bacterial cellulose (BC) has various unique properties, such as sustainability and biocompatibility, which make it a "rising star" in biomedical applications. This comprehensive review delves into the intricacies of BC production and elucidates the pivotal role of rosette terminal complexes in the synthesis of BC. Moreover, it explores the diverse range of in-situ and ex-situ modifications, such as coating, genetic modification, and esterification, that can enhance its performance in biomedical applications, notably in tissue engineering, drug delivery and wound healing applications Beginning with an in-depth examination of BC synthesis mechanisms, this review sheds light on the fundamental processes underlying its unique structure and properties and subsequently delves into the vast landscape of modification strategies, encompassing techniques such as chemical functionalization, surface patterning, and composite formation. Of particular significance are the insights provided into commercial products derived from BC, which offers a comprehensive overview of their features and applications, followed by several recent case studies. By consolidating knowledge from the basic principles of BC synthesis to cutting-edge advancements in the field, this review illuminates the transformative impact of BC on the landscape of health and medical breakthroughs, paving the way for future advancements in biomedicine.
Collapse
Affiliation(s)
- Prachi Kulshrestha
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Ashish Arora
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Aakriti Aggarwal
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140417, India
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India
| | - Magapu Solomon Sudhakar
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, P.O.484, P.C.411, Sur, Oman
| | - Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
- Sports and Healthcare Research Centre, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
| |
Collapse
|
2
|
Ospennikov AS, Chesnokov YM, Shibaev AV, Lokshin BV, Philippova OE. Nanostructured Hydrogels of Carboxylated Cellulose Nanocrystals Crosslinked by Calcium Ions. Gels 2024; 10:777. [PMID: 39727535 DOI: 10.3390/gels10120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl2 using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl2 concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network. Comparison of the rheological data at the same ionic strength provided by NaCl and CaCl2 shows much higher dynamic moduli in the presence of CaCl2, which implies that calcium cations not only screen the repulsion between similarly charged nanocrystals favoring their self-assembly, but also crosslink the polyanionic nanocrystals. Crosslinking is endothermic and driven by increasing entropy, which is most likely due to the release of water molecules surrounding the interacting COO- and Ca2+ ions. The hydrogels can be easily destroyed by increasing the shear rate because of the alignment of rodlike nanocrystals along the direction of flow and then quickly recover up to 90% of their viscosity in 15 s, when the shear rate is decreased.
Collapse
Affiliation(s)
| | - Yuri M Chesnokov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Andrey V Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Karaganda E.A. Buketov University, Karaganda 100028, Kazakhstan
| | - Boris V Lokshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga E Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Arivendan A, Chen X, Zhang YF, Gao W. Recent advances in nanocellulose pretreatment routes, developments, applications and future prospects: A state-of-the-art review. Int J Biol Macromol 2024; 281:135925. [PMID: 39414533 DOI: 10.1016/j.ijbiomac.2024.135925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
In a quest to find eco-friendly materials from renewable resources, researchers have focused on cellulose materials, which is the primary reinforcing component of plant cell walls. Nanocellulose is at the forefront of research due to its wide range of sources, biocompatibility, large surface area and tunable surface chemistry. It has gained considerable attention in various industries as a nano-reinforcement for polymer matrices due to its hierarchical structure (medical and healthcare, oil and gas, packaging, paper, board, composites, printed and flexible electronics, 3D printing, aerogels). In this paper, we have reviewed the recent advances in nanocellulose production, physical properties, structural characterization, surface modification strategies, pretreatment methods, applications, limitations and future directions. This review emphasizes the quantification of nanocellulose extraction and applications of the most prevalent areas of nanocellulose research. In view of its increasing and broader applications, the demand for nanocellulose is expected to increase in the future.
Collapse
Affiliation(s)
- Ajithram Arivendan
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China
| | - Xiaoqi Chen
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China.
| | - Yuan-Fang Zhang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Xingye Ave, Guangzhou 511442, Guangdong, China.
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road, Guangzhou 510640, Guangdong, China
| |
Collapse
|
4
|
Farooq A, Islam SR, Al-Amin M, Patoary MK, Hossain MT, Khawar MT, Wang Z, Tian M. From farm to function: Exploring new possibilities with jute nanocellulose applications. Carbohydr Polym 2024; 342:122423. [PMID: 39048207 DOI: 10.1016/j.carbpol.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Recent scientific interest has surged in the application of bioresources within nanotechnology, primarily because of their eco-friendly nature, wide availability, and cost-effectiveness. Jute is globally recognized as the second most prevalent source of natural cellulose fibers, and it produces a significant quantity of jute sticks as a byproduct. Nanocellulose (NC), which includes cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC), exhibits exceptional properties such as high strength, toughness, crystallinity, thermal stability, and stiffness. These attributes enable its versatile use across various sectors. The extensive surface areas and abundant hydroxyl groups of nanocellulose allow for diverse surface modifications, facilitating the design of advanced functional materials. This comprehensive review provides an overview of recent advancements in the synthesis, characterization, and potential applications of nanocellulose derived from jute. As a versatile natural fiber, jute holds immense potential across various research domains, including nanocellulose synthesis, scaffold fabrication, nanocarbon material preparation, life sciences, electronics and energy storage devices, drug delivery systems, nanomaterial synthesis, food packaging and paper industries. Additionally, its use extends to polymeric nanocomposites, sensors, and coatings. This study summarizes the extensive utilization of jute, emphasizing its versatility and potential across diverse research fields.
Collapse
Affiliation(s)
- Amjad Farooq
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, China; School of Textile and Garment, Qingdao University, Qingdao City, Shandong Province, China
| | | | - Md Al-Amin
- Department of Plastics Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Mohammed Kayes Patoary
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Dr, Raleigh, NC 27606, USA
| | - Md Tanjim Hossain
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Dr, Raleigh, NC 27606, USA
| | - Muhammad Tauseef Khawar
- Department of Clothing, School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Mingwei Tian
- School of Textile and Garment, Qingdao University, Qingdao City, Shandong Province, China
| |
Collapse
|
5
|
Goswami R, Mishra A. Novel tempo oxidized polyvinyl alcohol/ cellulose nanocrystal-based nanocomposite membrane for malachite green dye removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1045. [PMID: 39392488 DOI: 10.1007/s10661-024-13196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
In this study, in-situ modification by TEMPO oxidation was performed after nanocomposite synthesis to improve its properties toward dye molecule removal. The unoxidized and oxidized polymeric-based nanocomposite was denoted as PNC6 and PNC6O respectively. The nanocomposites were characterized using FESEM, FTIR, contact angle, XRD and BET analysis. Measurements of swelling ratio and chemical stability were also performed to provide insight into the durability of the nanocomposites. The effects of changing variables included contact duration, pH of aqueous solution, initial pollutant concentration, and temperature were observed. The kinetic study showed that the experimental data is best fitted with pseudo-second-order kinetics (R2 = 0.988 and 0.997 respectively), whereas on observing isotherm data, in both unoxidized and oxidized nanocomposite it fits well with Langmuir isotherm (R2 = 0.951 and 0.993 respectively). In addition, the effects on Gibb's free energy, Enthalpy, and Entropy were measured in terms of thermodynamic characteristics, it was established that dye molecules adsorption mechanism is endothermic and spontaneous in behaviour. To check regeneration tendency of the nanocomposite seven consecutive adsorption desorption cycles were run and about 90% and 80%, regeneration ability could be seen in an unoxidized state (PNC6) and an oxidized state (PNC6O) respectively upto 5th cycle after that the tendency get reduced. This study suggests that this novel polymeric nanocomposite can be employed as an efficient and relatively inexpensive adsorbent for dye removal from aqueous solutions.
Collapse
Affiliation(s)
- Rekha Goswami
- Department of Environmental Science, Graphic Era Hill University, Dehradun, Uttarakhand, India.
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to Be) University, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
7
|
Guivier M, Chevigny C, Domenek S, Casalinho J, Perré P, Almeida G. Water vapor transport properties of bio-based multilayer materials determined by original and complementary methods. Sci Rep 2024; 14:50. [PMID: 38168534 PMCID: PMC10761724 DOI: 10.1038/s41598-023-50298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
To enhance PLA gas barrier properties, multilayer designs with highly polar barrier layers, such as nanocelluloses, have shown promising results. However, the properties of these polar layers change with humidity. As a result, we investigated water transport phenomena in PLA films coated with nanometric layers of chitosan and nanocelluloses, utilizing a combination of techniques including dynamic vapor sorption (DVS) and long-term water vapor adsorption-diffusion experiments (back-face measurements) to understand the influence of each layer on the behavior of multilayer films. Surprisingly, nanometric coatings impacted PLA water vapor transport. Chitosan/nanocelluloses layers, representing less than 1 wt.% of the multilayer film, increased the water vapor uptake of the film by 14.6%. The nanometric chitosan coating appeared to have localized effects on PLA structure. Moreover, nanocelluloses coatings displayed varying impacts on sample properties depending on their interactions (hydrogen, ionic bonds) with chitosan. The negatively charged CNF TEMPO coating formed a dense network that demonstrated higher resistance to water sorption and diffusion compared to CNF and CNC coatings. This work also highlights the limitations of conventional water vapor permeability measurements, especially when dealing with materials containing ultrathin nanocelluloses layers. It shows the necessity of considering the synergistic effects between layers to accurately evaluate the transport properties.
Collapse
Affiliation(s)
- Manon Guivier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Chloé Chevigny
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Sandra Domenek
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Joel Casalinho
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Patrick Perré
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
- CentraleSupélec, LGPM, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Giana Almeida
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France.
| |
Collapse
|
8
|
Nitodas S(S, Skehan M, Liu H, Shah R. Current and Potential Applications of Green Membranes with Nanocellulose. MEMBRANES 2023; 13:694. [PMID: 37623755 PMCID: PMC10456796 DOI: 10.3390/membranes13080694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose (NC) is a naturally occurring nanomaterial and a high-performance additive extracted from plant fibers. This sustainable material is characterized by a unique combination of exceptional properties, including high tensile strength, biocompatibility, and electrical conductivity. In recent studies, these unique properties of nanocellulose have been analyzed and applied to processes related to membrane technology. This article provides a review of recent synthesis methods and characterization of nanocellulose-based membranes, followed by a study of their applications on a larger scale. The article reviews successful case studies of the incorporation of nanocellulose in different types of membrane materials, as well as their utilization in water purification, desalination, gas separations/gas barriers, and antimicrobial applications, in an effort to provide an enhanced comprehension of their capabilities in commercial products.
Collapse
Affiliation(s)
- Stefanos (Steve) Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Meredith Skehan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| | - Henry Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Raj Shah
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| |
Collapse
|
9
|
Antibacterial Activity of Ulva/Nanocellulose and Ulva/Ag/Cellulose Nanocomposites and Both Blended with Fluoride against Bacteria Causing Dental Decay. Polymers (Basel) 2023; 15:polym15041047. [PMID: 36850336 PMCID: PMC9961151 DOI: 10.3390/polym15041047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
One of the most prevalent chronic infectious disorders is tooth decay. Acids produced when plaque bacteria break down sugar in the mouth cause tooth decay. Streptococcus mutans and Lactobacillus acidophilus are the most prominent species related to dental caries. Innovative biocidal agents that integrate with a biomaterial to prevent bacterial colonization have shown remarkable promise as a result of the rapid advancement of nanoscience and nanotechnology. In this study, Ulva lactuca was used as a cellulose source and reducing agent to synthesize nanocellulose and Ulva/Ag/cellulose/nanocomposites. The characterizations of nanocellulose and Ulva/Ag/cellulose/nanocomposites were tested for FT-IR, TEM, SEM, EDS, XRD, and zeta potential. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose, both blended with fluoride, were tested as an antibacterial against S. mutans ATCC 25175 and L. acidophilus CH-2. The results of the SEM proved that nanocellulose is filament-shaped, and FT-IR proved that the functional groups of Ulva/nanocellulose and Ulva/Ag/cellulose/nanocomposites and cellulose are relatively similar but present some small diffusion in peaks. The TEM image demonstrated that the more piratical size distribution of Ulva/Ag/cellulose/nanocomposites ranged from 15 to 20 nm, and Ulva/nanocellulose ranged from 10 to 15 nm. Ulva/Ag/cellulose/nanocomposites have higher negativity than Ulva/nanocellulose. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose possess antibacterial activity against S. mutans ATCC 25175 and L. acidophilus CH-2, but Ulva/Ag/cellulose/nanocomposites are more effective, followed by that blended with fluoride. It is possible to use Ulva/Ag/cellulose/nanocomposites as an antimicrobial agent when added to toothpaste. It is promising to discover an economic and safe nanocomposite product from a natural source with an antimicrobial agent that might be used against tooth bacteria.
Collapse
|
10
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
|
12
|
Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules 2022; 27:7170. [PMID: 36363998 PMCID: PMC9657650 DOI: 10.3390/molecules27217170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
Collapse
Affiliation(s)
- Shao Hui Teo
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching Yern Chee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
13
|
Tom M, Thomas S, Seantier B, Grohens Y, Mohamed PK, Haponiuk JT, Kim J. APPROACHING SUSTAINABILITY: NANOCELLULOSE REINFORCED ELASTOMERS—A REVIEW. RUBBER CHEMISTRY AND TECHNOLOGY 2022. [DOI: 10.5254/rct.22.77013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Awareness of the environmental implications of conventional reinforcing fillers and the urge to reduce the carbon footprint have lead researchers to focus more on natural and sustainable materials. Nanocellulose from multitudinous sources finds use in elastomer engineering because of its distinctive properties, such as renewability, sustainability, abundance, biodegradability, high aspect ratio, excellent mechanical properties, and low cost. Green alternatives for conventional fillers in elastomer reinforcing have gained considerable interest to curb the risk of fillers from nonrenewable sources. The differences in properties of nanocellulose and elastomers render attractiveness in the search for synergistic properties resulting from their combination. This review addresses the isolation techniques for nanocellulose and challenges in its incorporation into the elastomer matrix. Surface modifications for solving incompatibility between filler and matrices are discussed. Processing of nanocomposites, various characterization techniques, mechanical behavior, and potential applications of nanocellulose elastomer composites are also discussed in detail.
Collapse
Affiliation(s)
- Milanta Tom
- 1 School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India 686560
- 2 Université Bretagne Sud, UMR CNRS 6027, IRDL, 56100 Lorient, France
| | - Sabu Thomas
- 1 School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India 686560
- 3 Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa 17011
| | - Bastien Seantier
- 2 Université Bretagne Sud, UMR CNRS 6027, IRDL, 56100 Lorient, France
| | - Yves Grohens
- 2 Université Bretagne Sud, UMR CNRS 6027, IRDL, 56100 Lorient, France
| | - P. K. Mohamed
- 4 Global R&D Centre, Asia, Apollo Tyres Ltd., Chennai, Tamil Nadu, India 602105
| | - Józef T. Haponiuk
- 5 Department of Polymer Technology, Gdansk University of Technology, Gdańsk, Poland 80-233
| | - Jaehwan Kim
- 6 Department of Mechanical Engineering, Inha University, Incheon, South Korea 22212
| |
Collapse
|
14
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Hussin MH, Brosse N, Thakur VK. Cellulose nanofibrils-graphene hybrids: recent advances in fabrication, properties, and applications. NANOSCALE 2022; 14:12515-12546. [PMID: 35983896 DOI: 10.1039/d2nr01967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the fast-developing social economy and the acceleration of industrialization, seeking effective renewable, sustainable, and environmentally friendly resources that show promising properties is an urgent task and a crucial means to achieve sustainable progress in the face of the growing depletion of non-renewable resources and the deterioration of environmental issues. Cellulose nanofibrils (CNFs) are natural polymeric nanomaterials with excellent biocompatibility, biodegradability, good mechanical features, high strength, low density, high specific surface area, and tunable chemistry. Their combination with other nanomaterials, such as graphene derivatives (GNMs), has been demonstrated to be effective since they produce hybrids with outstanding physicochemical properties, tailorable functionality, and high performance. In this review, recent advances in the preparation, modification, and emerging application of CNFs/GNMs hybrids are described and discussed using the latest studies. First, the concise background of nanocellulose and graphene derivatives is provided, followed by the interfacial interactions between CNFs and GNMs. The different hybrids exhibit great promise in separation, adsorption, optics, flexible electronics, energy storage, thermal management, barrier and packaging, and electromagnetic shielding. The main challenges that inhibit the applicability of these hybrids are finally highlighted, and some perspectives for future research directions are provided.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500, Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007 Uttarakhand, India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| |
Collapse
|
15
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
16
|
Barbash VA, Yashchenko OV, Gondovska AS, Deykun IM. Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Trache D, Hussin MH, Brosse N. Editorial: Recent Trends in Preparation, Characterization and Applications of Nanocellulose. Front Chem 2020; 8:594379. [PMID: 33195100 PMCID: PMC7604381 DOI: 10.3389/fchem.2020.594379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Djalal Trache
- Teaching and Research Unit of Energetic Processes, Energetic Materials Laboratory, Ecole Militaire Polytechnique, Algiers, Algeria
| | - M Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
18
|
Teo HL, Wahab RA. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. Int J Biol Macromol 2020; 161:1414-1430. [PMID: 32791266 DOI: 10.1016/j.ijbiomac.2020.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
Abstract
There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
Collapse
Affiliation(s)
- Hwee Li Teo
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
19
|
Trache D, Thakur VK, Boukherroub R. Cellulose Nanocrystals/Graphene Hybrids-A Promising New Class of Materials for Advanced Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1523. [PMID: 32759691 PMCID: PMC7466521 DOI: 10.3390/nano10081523] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
With the growth of global fossil-based resource consumption and the environmental concern, there is an urgent need to develop sustainable and environmentally friendly materials, which exhibit promising properties and could maintain an acceptable level of performance to substitute the petroleum-based ones. As elite nanomaterials, cellulose nanocrystals (CNC) derived from natural renewable resources, exhibit excellent physicochemical properties, biodegradability and biocompatibility and have attracted tremendous interest nowadays. Their combination with other nanomaterials such as graphene-based materials (GNM) has been revealed to be useful and generated new hybrid materials with fascinating physicochemical characteristics and performances. In this context, the review presented herein describes the quickly growing field of a new emerging generation of CNC/GNM hybrids, with a focus on strategies for their preparation and most relevant achievements. These hybrids showed great promise in a wide range of applications such as separation, energy storage, electronic, optic, biomedical, catalysis and food packaging. Some basic concepts and general background on the preparation of CNC and GNM as well as their key features are provided ahead.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Rabah Boukherroub
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520—IEMN, F-59000 Lille, France;
| |
Collapse
|
20
|
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020; 8:392. [PMID: 32435633 PMCID: PMC7218176 DOI: 10.3389/fchem.2020.00392] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Mehdi Derradji
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nanang Masruchin
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M. Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|