1
|
Badreldin A, Li Y. A critical appraisal of advances in integrated CO 2 capture and electrochemical conversion. Chem Sci 2025; 16:2483-2513. [PMID: 39867956 PMCID: PMC11758242 DOI: 10.1039/d4sc06642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
This perspective work examines the current advancements in integrated CO2 capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate in situ generation of CO2 to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate. Furthermore, technoeconomic analysis (TEA) was conducted using a net present value (NPV) model to determine the minimum selling prices (MSPs) for CO, HCOOH, CH3OH, C2H5OH, and C2H4 as target products based on cell-performance metrics from contemporary literature for SCCC, eRCC, and ACC. Additionally, sensitivity analyses were performed, focusing on cell-level parameters (voltage requirements, Faradaic efficiencies, current density), production scale factors, and other relevant variables (levelized costs of electricity and stack). This analysis sheds light on the cost-driving factors influencing commercial viability, revealing key techno-economic challenges for eRCC, particularly with liquid products. However, it also identifies optimization opportunities in current designs. By pinpointing critical areas for improvement, this work helps advance electrochemical CO2 reduction technologies towards more sustainable and economically competitive applications at different scales.
Collapse
Affiliation(s)
- Ahmed Badreldin
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
2
|
Vezzù K, Triolo C, Moulaee K, Pagot G, Ponti A, Pinna N, Neri G, Santangelo S, Di Noto V. Interplay Between Calcination Temperature and Alkaline Oxygen Evolution of Electrospun High-Entropy (Cr 1/5Mn 1/5Fe 1/5Co 1/5Ni 1/5) 3O 4 Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408319. [PMID: 39580689 PMCID: PMC11753503 DOI: 10.1002/smll.202408319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Spinel-structured transition metal (TM) oxides have shown great potential as a sustainable alternative to platinum group metal-based electrocatalysts. Among them, high-entropy oxides (HEOs) with multiple TM-cation sites are suitable for engineering octahedral redox-active centers to enhance the catalyst reactivity. This paper reports on the preparation of electrospun (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4 nanofibers (NFs) and their evaluation as electrocatalysts. Its main aim is to unveil the nanostructural features that play a key role in the alkaline oxygen evolution reaction. Differing calcination temperature (300-800 °C) and duration (2 or 4 h) leads to different morphology of the NFs, crystallinity of the oxide, density of defects, and cation distribution in the lattice, which reflect in different electrocatalytic behaviors. The best performance (overpotential and Tafel slope at 10 mA cm-2: 325 mV and 40 mV dec-1, respectively) pertains to the NFs calcined at 400 °C for 2 h. To gain a deeper understanding of their electrocatalytic properties, the pristine NFs are investigated by a combination of analytical techniques. In particular, broadband electric spectroscopy reveals that the mobility of oxygen vacancies in the best electrocatalyst is associated to very fast local dielectric relaxations of metal coordination octahedral geometries and experimentally demonstrates the key role of O-deficient octahedra.
Collapse
Affiliation(s)
- Keti Vezzù
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Claudia Triolo
- Dipartimento di Ingegneria Civiledell'Energiadell'Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Via Zehender, Loc. Feo di VitoReggio Calabria89122Italy
- National Reference Center for Electrochemical Energy Storage (GISEL)Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)Firenze50121Italy
| | - Kaveh Moulaee
- Dipartimento di IngegneriaUniversità di MessinaContrada di Dio, Vill. Sant'AgataMessina98166Italy
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Alessandro Ponti
- Laboratorio di NanotecnologieIstituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)Consiglio Nazionale delle RicercheVia Fantoli 16/15Milano20138Italy
| | - Nicola Pinna
- Department of Chemistry & The Center for the Science of Materials BerlinHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Giovanni Neri
- Dipartimento di IngegneriaUniversità di MessinaContrada di Dio, Vill. Sant'AgataMessina98166Italy
| | - Saveria Santangelo
- Dipartimento di Ingegneria Civiledell'Energiadell'Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Via Zehender, Loc. Feo di VitoReggio Calabria89122Italy
- National Reference Center for Electrochemical Energy Storage (GISEL)Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)Firenze50121Italy
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| |
Collapse
|
3
|
Zhao JW, Li Y, Luan D, Lou XW(D. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 PMCID: PMC11804782 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen (David) Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
4
|
Ahad A, Hossain AA. Enhancement of microstructural and magnetic properties of high spin Mn substituted nanocrystalline Ni-Mn-Cu-Zn ferrites. Heliyon 2024; 10:e26050. [PMID: 38404875 PMCID: PMC10884436 DOI: 10.1016/j.heliyon.2024.e26050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Mn-substituted Cu and Zn co-doped spinel-typed nano-crystalline ferrites having nominal composition Ni0.50-xMnxCu0.15Zn0·35Fe2O4 (x = 0.00-0.25 in 0.05 increments) have been prepared through the citric acid assisted sol-gel auto-combustion technique. From the XRD measurements, it was found that several intense peaks ensured the cubic spinel-based ferrite structure beyond the formation of any impurity peaks. The crystallite sizes varied from 20 to 28 nm for ash-burnt powders following the coalescence process that decreased the lattice defects and strain. With an increase in Mn concentration, the hopping length (LA) of the tetrahedral A-site increases, while the hopping length (LB) of the octahedral B-site decreases with enhanced lattice constant. The sintered samples' average grain sizes, as measured using the Field Emission Scanning Micrographs (FESEM), differed from around 1.40 to 5.30 μm. Incorporating Mn-ion accelerates grain growth and crystallite size with increased bulk density and reduced porosity due to heat treatment. For increasing sintering temperature along with Mn concentration, porosity drops from 42% to 3%, resulting in enhancing the magnetic induction of the prepared ferrites. The 25% Mn substituted composition displays the maximum initial permeability (μ i ' = 315), which is ∼7 times larger than the pristine composition. Due to the reduction of Ni content, the relative quality factor rises but the magnetic loss tangent reduces. An increased trends of μ i ' are accompanied by decreased resonant frequency, obeying Snoek's law. According to the experimental findings, the high spin Mn substitution in the composition causes the saturation magnetization to increase while the coercivity and Néel temperature drop with increasing grain size. Hence, the locally prepared low-cost Nano-crystalline Ni-Mn-Cu-Zn ferrites bearing excellent properties can be a good candidate for promising future applications in nanotechnology.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Physics, Bangladesh University of Engineering & Technology, Dhaka, 1000, Bangladesh
| | - A.K.M. Akther Hossain
- Department of Physics, Bangladesh University of Engineering & Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
5
|
Oxygen-Deficient Engineering for Perovskite Oxides in the Application of AOPs: Regulation, Detection, and Reduction Mechanism. Catalysts 2023. [DOI: 10.3390/catal13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A perovskite catalyst combined with various advanced oxidation processes (AOPs) to treat organic wastewater attracted extensive attention. The physical and chemical catalytic properties of perovskite were largely related to oxygen vacancies (OVs). In this paper, the recent advances in the regulation of OVs in perovskite for enhancing the functionality of the catalyst was reviewed, such as substitution, doping, heat treatment, wet-chemical redox reaction, exsolution, and etching. The techniques of detecting the OVs were also reviewed. An insight was provided into the OVs of perovskite and reduction mechanism in AOPs in this review, which is helpful for the reader to better understand the methods of regulating and detecting OVs in various AOPs.
Collapse
|
6
|
Erdil T, Lokcu E, Yildiz I, Okuyucu C, Kalay YE, Toparli C. Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba 2CoMnO 6-δ as a New Member in Double Perovskite Oxides. ACS OMEGA 2022; 7:44147-44155. [PMID: 36506127 PMCID: PMC9730773 DOI: 10.1021/acsomega.2c05627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Perovskite oxides have been considered promising oxygen evolution reaction (OER) electrocatalysts due to their high intrinsic activity. Yet, their poor long-term electrochemical and structural stability is still controversial. In this work, we apply an A-site management strategy to tune the activity and stability of a new hexagonal double perovskite oxide. We synthesized the previously inaccessible 2H-Ba2CoMnO6-δ (BCM) perovskite oxide via the universal sol-gel method followed by a novel air-quench method. The new 2H-BCM perovskite oxide exhibits outstanding OER activity with an overpotential of 288 mV at 10 mA cm-2 and excellent long-term stability without segregation or structural change. To understand the origin of outstanding OER performance of BCM, we substitute divalent Ba with trivalent La at the A-site and investigate crystal and electronic structure change. Fermi level and valence band analysis presents a decline in the work function with the Ba amount, suggesting a structure-oxygen vacancy-work function-activity relationship for Ba x La2-x CoMnO6-δ (x = 0, 0.5, 1, 1.5, 2) electrocatalysts. Our work suggests a novel production strategy to explore the single-phase new structures and develop enhanced OER catalysts.
Collapse
Affiliation(s)
- Tuncay Erdil
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ersu Lokcu
- Department
of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ilker Yildiz
- Central
Laboratory, Middle East Technical University, 06800 Ankara, Turkey
| | - Can Okuyucu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Yunus Eren Kalay
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Cigdem Toparli
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Heymann L, Weber ML, Wohlgemuth M, Risch M, Dittmann R, Baeumer C, Gunkel F. Separating the Effects of Band Bending and Covalency in Hybrid Perovskite Oxide Electrocatalyst Bilayers for Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14129-14136. [PMID: 35293734 PMCID: PMC8972245 DOI: 10.1021/acsami.1c20337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The Co-O covalency in perovskite oxide cobaltites such as La1-xSrxCoO3 is believed to impact the electrocatalytic activity during electrochemical water splitting at the anode where the oxygen evolution reaction (OER) takes place. Additionally, space charge layers through band bending at the interface to the electrolyte may affect the electron transfer into the electrode, complicating the analysis and identification of true OER activity descriptors. Here, we separate the influence of covalency and band bending in hybrid epitaxial bilayer structures of highly OER-active La0.6Sr0.4CoO3 and undoped and less-active LaCoO3. Ultrathin LaCoO3 capping layers of 2-8 unit cells on La0.6Sr0.4CoO3 show intermediate OER activity between La0.6Sr0.4CoO3 and LaCoO3 evidently caused by the increased surface Co-O covalency compared to single LaCoO3 as detected by X-ray photoelectron spectroscopy. A Mott-Schottkyanalysis revealed low flat band potentials for different LaCoO3 capping layer thicknesses, indicating that no limiting extended space charge layer exists under OER conditions as all catalyst bilayer films exhibited hole accumulation at the surface. The combined X-ray photoelectron spectroscopy and Mott-Schottky analysis thus enables us to differentiate between the influence of the covalency and intrinsic space charge layers, which are indistinguishable in a single physical or electrochemical characterization. Our results emphasize the prominent role of transition metal oxygen covalency in perovskite electrocatalysts and introduce a bilayer approach to fine-tune the surface electronic structure.
Collapse
Affiliation(s)
- Lisa Heymann
- Peter
Gruenberg Institute 7, Forschungszentrum
Juelich GmbH, 52425 Juelich, Germany
- JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany
| | - Moritz L. Weber
- Peter
Gruenberg Institute 7, Forschungszentrum
Juelich GmbH, 52425 Juelich, Germany
- JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany
| | - Marcus Wohlgemuth
- Peter
Gruenberg Institute 7, Forschungszentrum
Juelich GmbH, 52425 Juelich, Germany
- JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany
| | - Marcel Risch
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Regina Dittmann
- Peter
Gruenberg Institute 7, Forschungszentrum
Juelich GmbH, 52425 Juelich, Germany
- JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany
| | - Christoph Baeumer
- Peter
Gruenberg Institute 7, Forschungszentrum
Juelich GmbH, 52425 Juelich, Germany
- JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, Netherlands
| | - Felix Gunkel
- Peter
Gruenberg Institute 7, Forschungszentrum
Juelich GmbH, 52425 Juelich, Germany
- JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
8
|
Badreldin A, Youssef K, El Ghenymy A, Wubulikasimu Y, Ghouri ZK, Elsaid K, Kumar D, Abdel-Wahab A. Solution Combustion Synthesis of Novel S,B-Codoped CoFe Oxyhydroxides for the Oxygen Evolution Reaction in Saline Water. ACS OMEGA 2022; 7:5521-5536. [PMID: 35187367 PMCID: PMC8851632 DOI: 10.1021/acsomega.1c06968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 05/13/2023]
Abstract
Green hydrogen presents itself as a clean energy vector, which can be produced by electrolysis of water by utilizing renewable energy such as solar or wind. While current technologies are sufficient to support commercial deployment of fresh water electrolyzers, there remain a few well-defined challenges in the path of commercializing direct seawater electrolyzers, predominantly related to the sluggish oxygen evolution reaction (OER) kinetics and the competing chlorine evolution reaction (CER) at the anode. Herein, we report the facile and swift fabrication of an S,B-codoped CoFe oxyhydroxide via solution combustion synthesis for the OER with apparent CER suppression abilities. The as-prepared S,B-(CoFe)OOH-H attained ultralow overpotentials of 161 and 278 mV for achieving current densities of 10 and 1000 mA cm-2, respectively, in an alkaline saline (1 M KOH + 0.5 M NaCl) electrolyte, with a low Tafel slope of 46.7 mV dec-1. Chronoamperometry testing of the codoped bimetallic oxyhydroxides showed very stable behavior in harsh alkaline saline and in neutral pH saline environments. S,B-(CoFe)OOH-H oxyhydroxide showed a notable decrease in CER production in comparison to the other S,B-codoped counterparts. Selectivity measurements through online FE calculations showed high OER selectivity in alkaline (FE ∼ 97%) and neutral (FE ∼ 91%) pH saline conditions under standard 10 mA cm-2 operation. Moreover, systematic testing in electrolytes at pH values of 14 to 7 yielded promising results, thus bringing direct seawater electrolysis at near-neutral pH conditions closer to realization.
Collapse
Affiliation(s)
- Ahmed Badreldin
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Karim Youssef
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
- Qatar
Shell Service Company W.L.L., P.O. Box 3747 Doha, Qatar
| | | | - Yiming Wubulikasimu
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Zafar Khan Ghouri
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
- International
Center for Chemical and Biological Sciences, HEJ Research Institute
of Chemistry, University of Karachi, 75270 Karachi, Pakistan
| | - Khaled Elsaid
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Dharmesh Kumar
- Qatar
Shell Service Company W.L.L., P.O. Box 3747 Doha, Qatar
| | - Ahmed Abdel-Wahab
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| |
Collapse
|
9
|
Gao R, Deng M, Yan Q, Fang Z, Li L, Shen H, Chen Z. Structural Variations of Metal Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL METHODS 2021; 5:e2100834. [PMID: 34928041 DOI: 10.1002/smtd.202100834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER), an important electrode reaction in electrocatalytic and photoelectrochemical cells for a carbon-free energy cycle, has attracted considerable attention in the last few years. Metal oxides have been considered as good candidates for electrocatalytic OER because they can be easily synthesized and are relatively stable during the OER process. However, inevitable structural variations still occur to them due to the complex reaction steps and harsh working conditions of OER, thus impending the further insight into the catalytic mechanism and rational design of highly efficient electrocatalysts. The aim of this review is to disclose the current research progress toward the structural variations of metal oxide-based OER electrocatalysts. The origin of structural variations of metal oxides is discussed. Based on some typical oxides performing OER activity, the external and internal factors that influence the structural stability are summarized and then some general approaches to regulate the structural variation process are provided. Some operando methods are also concluded to monitor the structural variation processes and to identify the final active structure. Additionally, the unresolved problems and challenges are presented in an attempt to get further insight into the mechanism of structural variations and establish a rational structure-catalysis relationship.
Collapse
Affiliation(s)
- Ruiqin Gao
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Meng Deng
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Qing Yan
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhenxing Fang
- College of Science and Technology, Ningbo University, 521 Wenwei Road, Ningbo, 315100, P. R. China
| | - Lichun Li
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Roady, Hangzhou, 310032, P. R. China
| | - Haoyu Shen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| |
Collapse
|
10
|
Badreldin A, Nabeeh A, Ghouri ZK, Abed J, Wang N, Wubulikasimu Y, Youssef K, Kumar D, Stodolny MK, Elsaid K, Sargent EH, Abdel-Wahab A. Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53702-53716. [PMID: 34730350 DOI: 10.1021/acsami.1c13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using abundant seawater can reduce reliance on freshwater resources for hydrogen production from electrocatalytic water splitting. However, seawater has detrimental effects on the stability and activity of the hydrogen evolution reaction (HER) electrocatalysts under different pH conditions. In this work, we report the synthesis of binary metallic core-sheath nitride@oxynitride electrocatalysts [Ni(ETM)]δ+-[O-N]δ-, where ETM is an early transition metal V or Cr. Using NiVN on a nickel foam (NF) substrate, we demonstrate an HER overpotential as low as 32 mV at -10 mA cm-2 in saline water (0.6 M NaCl). The results represent an advancement in saline water HER performance of earth-abundant electrocatalysts, especially under near-neutral pH range (i.e., pH 6-8). Doping ETMs in nickel oxynitrides accelerates the typically rate-determining H2O dissociation step for HER and suppresses chloride deactivation of the catalyst in neutral-pH saline water. Heterointerface synergism occurs through H2O adsorption and dissociation at interfacial oxide character, while adsorbed H* proceeds via Heyrovsky or Tafel step on the nitride character. This electrocatalyst showed stable performance under a constant current density of -50 mA cm-2 for 50 h followed by additional 50 h at -100 mA cm-2 in a neutral saline electrolyte (1 M PB + 0.6 M NaCl). Contrarily, under the same conditions, Pt/C@NF exhibited significantly low performance after a mere 4 h at -50 mA cm-2. The low Tafel slope of 25 mV dec-1 indicated that the reaction is Tafel limited, unlike commercial Pt/C, which is Heyrovsky limited. We close by discussing general principles concerning surface charge delocalization for the design of HER electrocatalysts in pH saline environments.
Collapse
Affiliation(s)
- Ahmed Badreldin
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874 Doha, Qatar
| | - Ahmed Nabeeh
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874 Doha, Qatar
| | - Zafar Khan Ghouri
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874 Doha, Qatar
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4 Ontario, Canada
| | - Ning Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4 Ontario, Canada
| | - Yiming Wubulikasimu
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874 Doha, Qatar
| | - Karim Youssef
- Qatar Shell Research and Technology Centre, P.O. Box 3747 Doha, Qatar
| | - Dharmesh Kumar
- Qatar Shell Research and Technology Centre, P.O. Box 3747 Doha, Qatar
| | - Maciej K Stodolny
- Shell Global Solutions International B.V., 1031 HW Amsterdam, Netherlands
| | - Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874 Doha, Qatar
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4 Ontario, Canada
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874 Doha, Qatar
| |
Collapse
|
11
|
Abstract
The use of water splitting has been investigated as a good alternate for storing electrical energy. While the general interest in developing non-toxic, high-performance, and economically feasible catalysts for oxygen evolution reaction (OER) is noteworthy, there is also significant interest in water splitting research. Recently, perovskite-type oxides have performed as an alternative to non-precious metal catalysts and can act as a new class of effective catalysts in water splitting systems. Herein, a perovskite-structured FeTiO3 was prepared via a facile one-step solvothermal method using ionic liquid as templates. The results of structural and morphological studies have supported the formation of FeTiO3 perovskite. Furthermore, FeTiO3 perovskite demonstrated OER activity with a lower onset potential of 1.45 V vs. RHE and Tafel slope value of 0.133 V.dec−1 at 1 M KOH solution using mercury/mercurous oxide (Hg/HgO) were used as working electrodes.
Collapse
|
12
|
Ji D, Liu C, Yao Y, Luo L, Wang W, Chen Z. Cerium substitution in LaCoO 3 perovskite oxide as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. NANOSCALE 2021; 13:9952-9959. [PMID: 34076006 DOI: 10.1039/d1nr00069a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Perovskite oxides have attracted great attention in electrochemistry due to their compositional and structural flexibility. Herein, microwave/ultrasound assisted hydrothermal procedures were developed to synthesize Ce-doped LaCoO3 perovskite oxide as bifunctional electrocatalysts for OER and HER application, achieving highly efficient bifunctional catalytic performance. The obtained LCC4 exhibited excellent electrocatalytic activity with an overpotential of 380 mV and 305 mV at 10 mA cm-2 toward OER and HER, respectively. The lower Tafel slopes of 80 mV per decade and 144 mV per decade for OER and HER, respectively, indicated the faster reaction kinetics for the improved inherent electrocatalytic activity. The outstanding long-term durability of LCC4 in alkaline conditions was also vital to the practical applications of water electrolysis. The improved bifunctional electrocatalytic activity was attributed to the synergistic effects of excellent conductivity and enriched active sites arising from A-site substitution. This work not only provides an efficient strategy for the development of perovskite oxide-based electrocatalysts but also puts forward a new insight on bifunctional electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Dingwei Ji
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | | | | | | | | | | |
Collapse
|
13
|
Mechanochemically Synthetized PAN-Based Co-N-Doped Carbon Materials as Electrocatalyst for Oxygen Evolution Reaction. NANOMATERIALS 2021; 11:nano11020290. [PMID: 33499395 PMCID: PMC7911492 DOI: 10.3390/nano11020290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
We report a new class of polyacrylonitrile (PAN)-based Co-N-doped carbon materials that can act as suitable catalyst for oxygen evolution reactions (OER). Different Co loadings were mechanochemically added into post-consumed PAN fibers. Subsequently, the samples were treated at 300 °C under air (PAN-A) or nitrogen (PAN-N) atmosphere to promote simultaneously the Co3O4 species and PAN cyclization. The resulting electrocatalysts were fully characterized and analyzed by X-ray diffraction (XRD) and photoelectron spectroscopy (XPS), transmission (TEM) and scanning electron (SEM) microscopies, as well as nitrogen porosimetry. The catalytic performance of the Co-N-doped carbon nanomaterials were tested for OER in alkaline environments. Cobalt-doped PAN-A samples showed worse OER electrocatalytic performance than their homologous PAN-N ones. The PAN-N/3% Co catalyst exhibited the lowest OER overpotential (460 mV) among all the Co-N-doped carbon nanocomposites, reaching 10 mA/cm2. This work provides in-depth insights on the electrocatalytic performance of metal-doped carbon nanomaterials for OER.
Collapse
|