1
|
Song E, Lee K, Kim J. Tetrazolium-Based Visually Indicating Bacteria Sensor for Colorimetric Detection of Point of Contamination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38153-38161. [PMID: 35946791 PMCID: PMC9415389 DOI: 10.1021/acsami.2c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Protective equipment for detecting bacterial contamination has been in high demand with increasing interest in public health and hygiene. Herein, a fiber-based visually indicating bacteria sensor (VIBS) embedded with iodonitrotetrazolium chloride is developed for the general purpose of detecting live bacteria, and its chromogenic effectiveness is investigated for Gram-negative Escherichia coli and Gram-positive Micrococcus luteus. The developed color intensity is measured by the light absorption coefficient to the scattering coefficient (K/S) based on the Kubelka-Munk equation, and the colorimetric sensitivities of different membranes are examined by calculating the limit of detection (LOD) and the limit of quantification (LOQ). The results demonstrate that the interactions between VIBS and bacteria depend on the wetting properties of membranes. A hydrophobic membrane shows excessive interactions at high concentrations of Gram-negative E. coli bacteria, whose cell membrane is lipophilic. The membrane blended with hydrophobic and hydrophilic polymers displays linear colorimetric responses for both Gram-negative and Gram-positive bacteria strains, demonstrating a reliable sensing capability in the range of the tested bacteria concentration. This study is significant in that explorative experimentations are performed to conceive a proof of concept of a fiber-based bacteria sensor, which is readily applicable in various fields where bacteria pose a threat.
Collapse
Affiliation(s)
- Eugene Song
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Kyeongeun Lee
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability
Assessment Center, FITI Testing & Research
Institute, Seoul 07791, Korea
| | - Jooyoun Kim
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research
Institute of Human Ecology, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
2
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, Thomas S. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr Polym 2022; 282:119123. [DOI: 10.1016/j.carbpol.2022.119123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
|
4
|
Tharayil A, Rajakumari R, Mozetic M, Primc G, Thomas S. Contact transmission of SARS-CoV-2 on fomite surfaces: surface survival and risk reduction. Interface Focus 2022; 12:20210042. [PMID: 34956610 PMCID: PMC8662391 DOI: 10.1098/rsfs.2021.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
There is an unprecedented concern regarding the viral strain SARS-CoV-2 and especially its respiratory disease more commonly known as COVID-19. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months. The new infectious properties of SARS-CoV-2 vary depending on the properties of fomite surfaces. In this review, we summarize the risk factors involved in the indirect transmission pathways of SARS-CoV-2 strains on fomite surfaces. The main mode of indirect transmission is the contamination of porous and non-porous inanimate surfaces such as textile surfaces that include clothes and most importantly personal protective equipment like personal protective equipment kits, masks, etc. In the second part of the review, we highlight materials and processes that can actively reduce the SARS-CoV-2 surface contamination pattern and the associated transmission routes. The review also focuses on some general methodologies for designing advanced and effective antiviral surfaces by physical and chemical modifications, viral inhibitors, etc.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kerala 686560, India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala 686560, India
| | - Miran Mozetic
- Department of Surface Engineering, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kerala 686560, India
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala 686560, India
| |
Collapse
|
5
|
An Overview of COVID-19 and the Potential Plant Harboured Secondary Metabolites against SARS-CoV-2: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causes COVID-19, a pandemic disease, and it is called the novel coronavirus. It belongs to the Coronaviridae family and has been plagued the world since the end of 2019. Viral infection to the lungs causes fluid filling and breathing difficulties, which leads to pneumonia. Pneumonia progresses to ARDS (Acute Respiratory Distress Syndrome), in which fluid fills the air sac and seeps from the pulmonary veins. In the current scenario, several vaccines have been used to control the pandemic worldwide. Even though vaccines are available and their effectiveness is short, it may be helpful to curb the pandemic, but long-term protection is inevitable when we look for other options. Plants have diversified components such as primary and secondary metabolites. These molecules show several activities such as anti-microbial, anti-cancer, anti-helminthic. In addition, these molecules have good binding ability to the SARS-CoV-2 virus proteins such as RdRp (RNA-dependent RNA polymerase), Mpro (Main Protease), etc. Therefore, these herbal molecules could probably be used to control the COVID-19. However, pre-requisite tests, such as cytotoxicity, in vivo, and human experimental studies, are required before plant molecules can be used as potent drugs. Plant metabolites such as alkaloids, isoquinoline ß-carboline, and quinoline alkaloids such as skimmianine, quinine, cinchonine, and dictamine are present in plants and used in a traditional medicinal system.
Collapse
|
6
|
Santos TS, Silva TM, Cardoso JC, de Albuquerque-Júnior RLC, Zielinska A, Souto EB, Severino P, Mendonça MDC. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics (Basel) 2021; 10:852. [PMID: 34356773 PMCID: PMC8300670 DOI: 10.3390/antibiotics10070852] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.
Collapse
Affiliation(s)
- Tárcio S. Santos
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Tarcisio M. Silva
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Juliana C. Cardoso
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Ricardo L. C. de Albuquerque-Júnior
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Aleksandra Zielinska
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Eliana B. Souto
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Patrícia Severino
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Marcelo da Costa Mendonça
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
- Sergipe Agricultural Development Company (Emdagro), Av. Carlos Rodrigues da Cruz s/n, Aracaju 49081-015, Brazil
| |
Collapse
|
7
|
Choi G, Piao H, Rejinold NS, Yu S, Kim KY, Jin GW, Choy JH. Hydrotalcite-Niclosamide Nanohybrid as Oral Formulation towards SARS-CoV-2 Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14050486. [PMID: 34069716 PMCID: PMC8160721 DOI: 10.3390/ph14050486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has been affecting millions of individuals worldwide and, thus far, there is no accurate therapeutic strategy. This critical situation necessitates novel formulations for already existing, FDA approved, but poorly absorbable drug candidates, such as niclosamide (NIC), which is of great relevance. In this context, we have rationally designed NIC-loaded hydrotalcite composite nanohybrids, which were further coated with Tween 60 or hydroxypropyl methyl cellulose (HPMC), and characterized them in vitro. The optimized nanohybrids showed particle sizes <300 nm and were orally administrated to rats to determine whether they could retain an optimum plasma therapeutic concentration of NIC that would be effective for treating COVID-19. The pharmacokinetic (PK) results clearly indicated that hydrotalcite-based NIC formulations could be highly potential options for treating the ongoing pandemic and we are on our way to understanding the in vivo anti-viral efficacy sooner. It is worth mentioning that hydrotalcite–NIC nanohybrids maintained a therapeutic NIC level, even above the required IC50 value, after just a single administration in 8–12 h. In conclusion, we were very successfully able to develop a NIC oral formulation by immobilizing with hydrotalcite nanoparticles, which were further coated with Tween 60 or HPMC, in order to enhance their emulsification in the gastrointestinal tract.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
| | - Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Ki-yeok Kim
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
| | - Geun-woo Jin
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
- Correspondence: (G.-w.J.); (J.-H.C.)
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence: (G.-w.J.); (J.-H.C.)
| |
Collapse
|
8
|
Assis M, Simoes LGP, Tremiliosi GC, Coelho D, Minozzi DT, Santos RI, Vilela DCB, do Santos JR, Ribeiro LK, Rosa ILV, Mascaro LH, Andrés J, Longo E. SiO 2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:638. [PMID: 33806671 PMCID: PMC8001031 DOI: 10.3390/nano11030638] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
COVID-19, as the cause of a global pandemic, has resulted in lockdowns all over the world since early 2020. Both theoretical and experimental efforts are being made to find an effective treatment to suppress the virus, constituting the forefront of current global safety concerns and a significant burden on global economies. The development of innovative materials able to prevent the transmission, spread, and entry of COVID-19 pathogens into the human body is currently in the spotlight. The synthesis of these materials is, therefore, gaining momentum, as methods providing nontoxic and environmentally friendly procedures are in high demand. Here, a highly virucidal material constructed from SiO2-Ag composite immobilized in a polymeric matrix (ethyl vinyl acetate) is presented. The experimental results indicated that the as-fabricated samples exhibited high antibacterial activity towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as towards SARS-CoV-2. Based on the present results and radical scavenger experiments, we propose a possible mechanism to explain the enhancement of the biocidal activity. In the presence of O2 and H2O, the plasmon-assisted surface mechanism is the major reaction channel generating reactive oxygen species (ROS). We believe that the present strategy based on the plasmonic effect would be a significant contribution to the design and preparation of efficient biocidal materials. This fundamental research is a precedent for the design and application of adequate technology to the next-generation of antiviral surfaces to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Marcelo Assis
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Luiz Gustavo P. Simoes
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Guilherme C. Tremiliosi
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Dyovani Coelho
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Daniel T. Minozzi
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Renato I. Santos
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Daiane C. B. Vilela
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Jeziel Rodrigues do Santos
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Lara Kelly Ribeiro
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Ieda Lucia Viana Rosa
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Lucia Helena Mascaro
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Elson Longo
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| |
Collapse
|