1
|
Ali MF, Ochiai B. Click Chemistry for Well-Defined Graft Copolymers. Polymers (Basel) 2024; 16:3275. [PMID: 39684020 DOI: 10.3390/polym16233275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Graft copolymers have gained significant importance in various fields due to their tunable functionality and well-defined architecture. However, there are still limitations due to the compatibility of monomers and functional groups depending on the polymerization mode. Click chemistry has solved this problem through its ability to easily and quantitatively link a wide range of polymers and functional groups. The combination of click chemistry, including copper-catalyzed azide-alkyne cycloaddition (CuAAC), thiol-ene, and thiol-yne reactions, with various polymerization techniques offers a promising solution for the robust and efficient preparation of graft copolymers with the desired architecture and functionality. In this review, we present successful applications of click chemistry in the production of well-defined graft copolymers with diverse functionalities such as for electronics, energy devices, biomedical applications, and nanotechnology.
Collapse
Affiliation(s)
- Muhammad Faizan Ali
- Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| | - Bungo Ochiai
- Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| |
Collapse
|
2
|
Akacha R, Abdelhedi-Miladi I, Serghei A, Ben Romdhane H, Drockenmuller E. 1,3,4,5-Tetrasubstituted Poly(1,2,3-triazolium) Obtained through Metal-Free AA+BB Polyaddition of a Diazide and an Activated Internal Dialkyne. Macromol Rapid Commun 2024; 45:e2300644. [PMID: 38350089 DOI: 10.1002/marc.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Indexed: 02/15/2024]
Abstract
A tetra(ethylene glycol)-based 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) is synthesized in two steps including: i) the catalyst-free polyaddition of a diazide and an activated internal dialkyne and ii) the N-alkylation of the resulting 1,2,3-triazole groups. In order to provide detailed structure/properties correlations different analogs are also synthesized. First, parent poly(1,2,3-triazole)s are obtained via AA+BB polyaddition using copper(I)-catalyzed alkyne-azide cycloaddition or metal-free thermal alkyne-azide cycloaddition (TAAC). Poly(1,2,3-triazole)s with higher molar masses are obtained in higher yields by TAAC polyaddition. A 1,3,4-trisubstituted poly(1,2,3-triazolium) structural analog obtained by TAAC polyaddition using a terminal activated dialkyne and subsequent N-alkylation of the 1,2,3-triazole groups enables discussing the influence of the methyl group in the C-4 or C-5 position on thermal and ion conducting properties. Obtained polymers are characterized by 1H, 13C, and 19F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and broadband dielectric spectroscopy. The targeted 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) exhibits a glass transition temperature of -23 °C and a direct current ionic conductivity of 2.0 × 10-6 S cm-1 at 30 °C under anhydrous conditions. The developed strategy offers opportunities to further tune the electron delocalization of the 1,2,3-triazolium cation and the properties of poly(1,2,3-triazolium)s using this additional substituent as structural handle.
Collapse
Affiliation(s)
- Rania Akacha
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| | - Imen Abdelhedi-Miladi
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
| | - Anatoli Serghei
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| | - Hatem Ben Romdhane
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
| | - Eric Drockenmuller
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| |
Collapse
|
3
|
Sánchez-Bodón J, García-García A, Diaz-Galbarriatu M, Vilas-Vilela JL, Moreno-Benítez I. An easy and simple method for the immobilization of dyes through click reactions: activated alkyne, copper not needed. RSC Adv 2024; 14:14289-14295. [PMID: 38690116 PMCID: PMC11060046 DOI: 10.1039/d4ra01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
The copper-free azide-alkyne click reaction has shown to be a successful alternative to immobilize covalently a fluorescente compound onto poly(-l-lactic) acid (PLLA) surfaces. Proceded by basic hydrolysis and amidation reaction, typical surface characterization techniques have validated each functionaliztion step and the success of the conjugation. This method offers a catalyst-free option for various surface conjugations, extremely demanded in biomedical and biosensory fields.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU 48940 Leioa Spain
| | - Ane García-García
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU 48940 Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Maria Diaz-Galbarriatu
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU 48940 Leioa Spain
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU 48940 Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Isabel Moreno-Benítez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU 48940 Leioa Spain
| |
Collapse
|
4
|
Arslan R, Atilla Tasdelen M, Arslan M. Covalent Modification of Poly(vinyl chloride) via Organometallic Barbier Reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Ozukanar O, Cakmakci E, Daglar O, Durmaz H, Kumbaraci V. A double‐click strategy for the synthesis of P and N‐containing hydrolytically stable reactive flame retardant for photocurable networks. J Appl Polym Sci 2022. [DOI: 10.1002/app.52837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ozge Ozukanar
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Emrah Cakmakci
- Department of Chemistry Marmara University Istanbul Turkey
| | - Ozgun Daglar
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Hakan Durmaz
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Volkan Kumbaraci
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
6
|
Pektas B, Sagdic G, Daglar O, Luleburgaz S, Gunay US, Hizal G, Tunca U, Durmaz H. Ultrafast synthesis of dialkyne-functionalized polythioether and post-polymerization modification via click chemistry. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Chernikova EV, Kudryavtsev YV. RAFT-Based Polymers for Click Reactions. Polymers (Basel) 2022; 14:570. [PMID: 35160559 PMCID: PMC8838018 DOI: 10.3390/polym14030570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The parallel development of reversible deactivation radical polymerization and click reaction concepts significantly enriches the toolbox of synthetic polymer chemistry. The synergistic effect of combining these approaches manifests itself in a growth of interest to the design of well-defined functional polymers and their controlled conjugation with biomolecules, drugs, and inorganic surfaces. In this review, we discuss the results obtained with reversible addition-fragmentation chain transfer (RAFT) polymerization and different types of click reactions on low- and high-molar-mass reactants. Our classification of literature sources is based on the typical structure of macromolecules produced by the RAFT technique. The review addresses click reactions, immediate or preceded by a modification of another type, on the leaving and stabilizing groups inherited by a growing macromolecule from the chain transfer agent, as well as on the side groups coming from monomers entering the polymerization process. Architecture and self-assembling properties of the resulting polymers are briefly discussed with regard to their potential functional applications, which include drug delivery, protein recognition, anti-fouling and anti-corrosion coatings, the compatibilization of polymer blends, the modification of fillers to increase their dispersibility in polymer matrices, etc.
Collapse
Affiliation(s)
- Elena V. Chernikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Yaroslav V. Kudryavtsev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| |
Collapse
|
8
|
Panchal SS, Vasava DV. Fabricating approaches for synthesis of miktoarm star-shaped polymers having tailored biodegradability. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1981319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
9
|
Giofrè SV, Tiecco M, Ferlazzo A, Romeo R, Ciancaleoni G, Germani R, Iannazzo D. Base‐Free Copper‐Catalyzed Azide‐Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media**. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali Università di Messina Viale Annunziata 98168 Messina Italy
| | - Matteo Tiecco
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Angelo Ferlazzo
- Dipartimento di Ingegneria Università of Messina Contrada Di Dio 98166 Messina Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali Università di Messina Viale Annunziata 98168 Messina Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale (DCCI) Università di Pisa Via Giuseppe Moruzzi, 13 56124 Pisa Italy
| | - Raimondo Germani
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria Università of Messina Contrada Di Dio 98166 Messina Italy
| |
Collapse
|
10
|
Shahrokhinia A, Biswas P, Reuther JF. Orthogonal synthesis and modification of polymer materials. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Priyanka Biswas
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - James F. Reuther
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
11
|
Butzelaar AJ, Schneider S, Molle E, Theato P. Synthesis and Post-Polymerization Modification of Defined Functional Poly(vinyl ether)s. Macromol Rapid Commun 2021; 42:e2100133. [PMID: 34031945 DOI: 10.1002/marc.202100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Indexed: 11/11/2022]
Abstract
Living cationic polymerization is known for a good control over chain growth yielding polymers with well-defined molar mass distributions and low dispersities. However, the practical challenges involved in the synthesis of poly(vinyl ether)s limited suitable post-polymerization modifications (PPM) via chemoselective click reactions. Herein the successful controlled cationic polymerization of vinyl ethers bearing pendant CC double and C≡C triple bonds using a single-component initiation under ambient conditions is reported. Furthermore, the PPM via thiol-ene/-yne and copper(I)-catalyzed alkyne-azide cycloaddition reaction of the obtained polymers is successfully realized laying the foundation for the synthesis of unprecedented functional poly(vinyl ether)s.
Collapse
Affiliation(s)
- Andreas J Butzelaar
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Sven Schneider
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Edgar Molle
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Patrick Theato
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131, Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), Soft Matter Synthesis Laboratory-Institute for Biological Interfaces III (IBG-3), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Gungor B, Daglar O, Gunay US, Hizal G, Tunca U, Durmaz H. One‐Step Modification of Diacid‐Functional Polythioethers via Simultaneous Passerini and Esterification Reactions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Begum Gungor
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Ozgun Daglar
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Gurkan Hizal
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Umit Tunca
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Hakan Durmaz
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
13
|
Arslan M, Ceylan O, Arslan R, Tasdelen MA. Facile UV-induced covalent modification and crosslinking of styrene-isoprene-styrene copolymer via Paterno-Büchi [2 + 2] photocycloaddition. RSC Adv 2021; 11:8585-8593. [PMID: 35423409 PMCID: PMC8695305 DOI: 10.1039/d1ra00033k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
The chemical functionalization or modification of polymers to alter or improve the physical and mechanical properties constitutes an important field in macromolecular research. Fabrication of polymeric materials via structural tailoring of commercial or commodity polymers that are produced in vast quantities especially possess unique advantages in material applications. In the present study, we report on benign chemical modification of unsaturated styrene–isoprene–styrene (SIS) copolymer using available backbone alkene groups. Covalent attachment of aldehyde functional substrates onto reactive isoprene double bond residues was conveniently carried out using UV-induced Paterno–Büchi [2 + 2] cycloaddition. Model organic compounds with different structures were utilized in high efficiency chemical modification of parent polymer chains via oxetane ring formation. Functionalization studies were confirmed via1H NMR, FT-IR and SEC analyses. The methodology was extended to covalent crosslinking of polymer chains to obtain organogels with tailorable crosslinking degrees and physical characteristics. Considering the outstanding elastic properties of unsaturated rubbers and their high commercial availability, abundant reactive double bonds in backbone chains of these polymers offer easy to implement structural modification via proposed Paterno–Büchi photocycloaddition. Paterno–Büchi reaction is reported as a convenient chemical reaction tool to modify unsaturated copolymer elastomers.![]()
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University 77100 Yalova Turkey
| | - Ozgur Ceylan
- Central Research Laboratory, Yalova University 77100 Yalova Turkey
| | - Rabia Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University 77100 Yalova Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University 77100 Yalova Turkey
| |
Collapse
|
14
|
Oliveira ASR, Mendonça PV, Simões S, Serra AC, Coelho JFJ. Amphiphilic well‐defined degradable star block copolymers by combination of ring‐opening polymerization and atom transfer radical polymerization: Synthesis and application as drug delivery carriers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andreia S. R. Oliveira
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering University of Coimbra Coimbra Portugal
| | - Patrícia V. Mendonça
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering University of Coimbra Coimbra Portugal
| | - Sérgio Simões
- Faculty of Pharmacy University of Coimbra Coimbra Portugal
| | - Arménio C. Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering University of Coimbra Coimbra Portugal
| | - Jorge F. J. Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering University of Coimbra Coimbra Portugal
| |
Collapse
|
15
|
Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes (Basel) 2020. [DOI: 10.3390/pr8111350] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study aims to prepare a smart copolymeric for controlled delivery of Galantamine hydrobromide. The synthesis of the hydrogel was executed through free radical polymerization using HPMC (Hydroxypropyl methylcellulose) and pectin as polymers and acrylic acid as monomer. Cross-linking was performed by methylene bisacrylamide (MBA). HPMC-pectin-co-acrylic acid hydrogel was loaded with Galantamine hydrobromide (antidementia drug) as a model drug for treatment of Alzheimer based dementia. Formulated hydrogels (SN1–SN9) were characterized for Fourier transform-infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and energy dispersive X-ray. Drug loading efficiency, gel fraction, measurements of porosity, and tensile strength were reported. Swelling and release studies were performed at pH 1.2 and 7.4. Drug liberation mechanism was evaluated by applying different release kinetic models. Galantamine hydrobromide was released from prepared hydrogels by Fickian release mechanism. Swelling, gel fraction, porosity, and drug release percentages were found to be dependent on hydroxypropyl methylcellulose, pectin, acrylic acid, and methylene bisacrylamide concentrations. By increasing HPMC amount, swelling was increased from 76.7% to 95.9%. Toxicity studies were conducted on albino male rabbits for a period of 14 days. Hematological and histopathological studies were carried out to evaluate safety level of hydrogel. Successfully prepared HPMC-pectin-co-acrylic acid hydrogel showed good swelling and release kinetics, which may help greatly in providing controlled release drug effect leading to enhanced patient compliance for dementia patients.
Collapse
|
16
|
Serkova OS, Glushko VV, Toropygin IY, Maslennikova VI. Synthesis of Triazole‐Containing
rctt
Tetra‐
C
‐Naphthyl‐Calix [4]resorcinarene and 1,1‐Dinaphthylmethane Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202003503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga S. Serkova
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| | - Valentina V. Glushko
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| | - Ilya Yu. Toropygin
- Institute of Biomedical Chemistry Pogodinskaya Str. 10 Moscow 119121 Russia
| | - Vera I. Maslennikova
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| |
Collapse
|
17
|
Daglar O, Luleburgaz S, Baysak E, Gunay US, Hizal G, Tunca U, Durmaz H. Nucleophilic Thiol-yne reaction in Macromolecular Engineering: From synthesis to applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Yates ND, Dowsett MR, Bentley P, Dickenson-Fogg JA, Pratt A, Blanford CF, Fascione MA, Parkin A. Aldehyde-Mediated Protein-to-Surface Tethering via Controlled Diazonium Electrode Functionalization Using Protected Hydroxylamines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5654-5664. [PMID: 31721585 DOI: 10.1021/acs.langmuir.9b01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a diazonium electro-grafting method for the covalent modification of conducting surfaces with aldehyde-reactive hydroxylamine functionalities that facilitate the wiring of redox-active (bio)molecules to electrode surfaces. Hydroxylamine near-monolayer formation is achieved via a phthalimide-protection and hydrazine-deprotection strategy that overcomes the multilayer formation that typically complicates diazonium surface modification. This surface modification strategy is characterized using electrochemistry (electrochemical impedance spectroscopy and cyclic voltammetry), X-ray photoelectron spectroscopy, and quartz crystal microbalance with dissipation monitoring. Thus-modified glassy carbon, boron-doped diamond, and gold surfaces are all shown to ligate to small molecule aldehydes, yielding surface coverages of 150-170, 40, and 100 pmol cm-2, respectively. Bioconjugation is demonstrated via the coupling of a dilute (50 μM) solution of periodate-oxidized horseradish peroxidase enzyme to a functionalized gold surface under biocompatible conditions (H2O solvent, pH 4.5, 25 °C).
Collapse
Affiliation(s)
- Nicholas D Yates
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Mark R Dowsett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Phillip Bentley
- Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Jack A Dickenson-Fogg
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Andrew Pratt
- Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Christopher F Blanford
- School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
19
|
Sun X, Chwatko M, Lee DH, Bachman JL, Reuther JF, Lynd NA, Anslyn EV. Chemically Triggered Synthesis, Remodeling, and Degradation of Soft Materials. J Am Chem Soc 2020; 142:3913-3922. [PMID: 32011873 PMCID: PMC8574170 DOI: 10.1021/jacs.9b12122] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer topology dictates dynamic and mechanical properties of materials. For most polymers, topology is a static characteristic. In this article, we present a strategy to chemically trigger dynamic topology changes in polymers in response to a specific chemical stimulus. Starting with a dimerized PEG and hydrophobic linear materials, a lightly cross-linked polymer, and a cross-linked hydrogel, transformations into an amphiphilic linear polymer, lightly cross-linked and linear random copolymers, a cross-linked polymer, and three different hydrogel matrices were achieved via two controllable cross-linking reactions: reversible conjugate additions and thiol-disulfide exchange. Significantly, all the polymers, before or after topological changes, can be triggered to degrade into thiol- or amine-terminated small molecules. The controllable transformations of polymeric morphologies and their degradation herald a new generation of smart materials.
Collapse
Affiliation(s)
- Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , 710049 , People's Republic of China
| | - Malgorzata Chwatko
- Department of Chemistry/McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Doo-Hee Lee
- Department of Chemistry/McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - James L Bachman
- Department of Chemistry/McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - James F Reuther
- Department of Chemistry , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Nathaniel A Lynd
- Department of Chemistry/McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eric V Anslyn
- Department of Chemistry/McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
20
|
Kohsaka Y, Nagatsuka N. End-reactive poly(tetrahydrofuran) for functionalization and graft copolymer synthesis via a conjugate substitution reaction. Polym J 2019. [DOI: 10.1038/s41428-019-0258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Anaya O, Haddane A, Drockenmuller E, Abdelhedi-Miladi I, Ben Romdhane H. Poly(1,2,3-triazolium imide)s Obtained Through AA + BB Click Polyaddition. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Arslan M, Acik G, Tasdelen MA. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym Chem 2019. [DOI: 10.1039/c9py00510b] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry reactions have been applied to the modification of major industrial polymers by analysing the synthetic approaches and the resulting material properties.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Gokhan Acik
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| |
Collapse
|