1
|
Bharsakale RD, Gubyad MG, Mukherjee K, Kokane AD, Kokane SB, Misra P, Ghosh DK. Development of diagnostic tools and discovery of two novel Indian citrus ringspot virus species: insights into global mandarivirus phylogeography. Front Microbiol 2025; 16:1513291. [PMID: 40028458 PMCID: PMC11868068 DOI: 10.3389/fmicb.2025.1513291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Emerging viral pathogens, Indian citrus ringspot virus (ICRSV) and Citrus yellow vein clearing virus (CYVCV), pose significant threats to global citrus production, a cornerstone of agriculture and trade. The rapid transboundary spread of CYVCV underscores the urgent need for effective diagnostic tools. To tackle this issue, we developed a novel RT-PCR assay capable of simultaneously detecting ICRSV and CYVCV with high sensitivity and specificity in a single reaction. This assay, targeting conserved genomic regions, provides a cost-effective, reliable, and scalable diagnostic solution. Field validation across 49 citrus samples revealed infection rates of 61.22% for ICRSV and 24.48% for CYVCV, with notable co-infections, highlighting its precision and utility. Phylogenetic analyses uncovered substantial genetic diversity, delineating two ICRSV species (ICRSV-A and ICRSV-B) and eight geographically clustered CYVCV clades, reflecting trade-driven and environmental dispersal patterns. These findings emphasize the need for region-specific diagnostics and tailored management strategies. By addressing critical diagnostic gaps, this assay enables early detection and intervention, reducing economic losses and enhancing efforts to control emerging citrus pathogens. Additionally, it provides a foundation for future epidemiological research and contributes to the sustainability of global citrus production.
Collapse
Affiliation(s)
- Rushikesh D. Bharsakale
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Mrugendra G. Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Krishanu Mukherjee
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Amol D. Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Sunil B. Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Pragati Misra
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
2
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
3
|
Ghosh DK, Kokane A, Kokane S, Mukherjee K, Tenzin J, Surwase D, Deshmukh D, Gubyad M, Biswas KK. A Comprehensive Analysis of Citrus Tristeza Variants of Bhutan and Across the World. Front Microbiol 2022; 13:797463. [PMID: 35464978 PMCID: PMC9024366 DOI: 10.3389/fmicb.2022.797463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Mandarin orange is economically one of the most important fruit crops in Bhutan. However, in recent years, orange productivity has dropped due to severe infection of citrus tristeza virus (CTV) associated with the gradual decline of citrus orchards. Although the disease incidence has been reported, very limited information is available on genetic variability among the Bhutanese CTV variants. This study used reverse transcription PCR (RT-PCR) to detect CTV in collected field samples and recorded disease incidence up to 71.11% in Bhutan’s prominent citrus-growing regions. To elucidate the extent of genetic variabilities among the Bhutanese CTV variants, we targeted four independent genomic regions (5′ORF1a, p25, p23, and p18) and analyzed a total of 64 collected isolates. These genomic regions were amplified and sequenced for further comparative bioinformatics analysis. Comprehensive phylogenetic reconstructions of the GenBank deposited sequences, including the corresponding genomic locations from 53 whole-genome sequences, revealed unexpected and rich diversity among Bhutanese CTV variants. A resistant-breaking (RB) variant was also identified for the first time from the Asian subcontinent. Our analyses unambiguously identified five (T36, T3, T68, VT, and HA16-5) major, well-recognized CTV strains. Bhutanese CTV variants form two additional newly identified distinct clades with higher confidence, B1 and B2, named after Bhutan. The origin of each of these nine clades can be traced back to their root in the north-eastern region of India and Bhutan. Together, our study established a definitive framework for categorizing global CTV variants into their distinctive clades and provided novel insights into multiple genomic region-based genetic diversity assessments, including their pathogenicity status.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
- *Correspondence: Dilip Kumar Ghosh,
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Krishanu Mukherjee
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Jigme Tenzin
- National Citrus Program, Department of Agriculture, Royal Government of Bhutan, Thimpu, Bhutan
| | - Datta Surwase
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dhanshree Deshmukh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Kajal Kumar Biswas
- Department of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Development of a real-time RT-PCR method for the detection of Citrus tristeza virus (CTV) and its implication in studying virus distribution in planta. 3 Biotech 2021; 11:431. [PMID: 34603909 DOI: 10.1007/s13205-021-02976-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Tristeza is an economically important disease of the citrus caused by Citrus tristeza virus (CTV) of genus Closterovirus and family Closteroviridae. The disease has caused tremendous losses to citrus industry worldwide by killing millions of trees, reducing the productivity and total production. Enormous efforts have been made in many countries to prevent the viral spread and the losses caused by the disease. To understand the reason behind this scenario, studies on virus distribution and tropism in the citrus plants are needed. Different diagnostic methods are available for early CTV detection but none of them is employed for in planta virus distribution study. In this study, a TaqMan RT-PCR-based method to detect and quantify CTV in different tissues of infected Mosambi plants (Citrus sinensis) has been standardized. The assay was very sensitive with the pathogen detection limit of > 0.0595 fg of in vitro-transcribed CTV-RNA. The assay was implemented for virus distribution study and absolute CTV titer quantification in samples taken from Tristeza-infected trees. The highest virus load was observed in the midribs of the symptomatic leaf (4.1 × 107-1.4 × 108/100 mg) and the lowest in partial dead twigs (1 × 103-1.7 × 104/100 mg), and shoot tip (2.3 × 103-4.5 × 103/100 mg). Interestingly, during the peak summer months, the highest CTV load was observed in the feeder roots (3 × 107-1.1 × 108/100 mg) than in the midribs of symptomatic leaf. The viral titer was highest in symptomatic leaf midrib followed by asymptomatic leaf midrib, feeder roots, twig bark, symptomatic leaf lamella, and asymptomatic leaf lamella. Overall, high CTV titer was primarily observed in the phloem containing tissues and low CTV titer in the other tissues. The information would help in selecting tissues with higher virus titer in disease surveillance that have implication in Tristeza management in citrus.
Collapse
|
5
|
Kokane AD, Lawrence K, Kokane SB, Gubyad MG, Misra P, Reddy MK, Ghosh DK. Development of a SYBR Green-based RT-qPCR assay for the detection of Indian citrus ringspot virus. 3 Biotech 2021; 11:359. [PMID: 34295604 DOI: 10.1007/s13205-021-02903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022] Open
Abstract
The Indian citrus ringspot virus (ICRSV) that causes ringspot disease, especially to 'Kinnow mandarin' hampers the sustainability of crop production. Presently, the disease is not amenable for control through host resistance or the introduction of chemicals, hence raising virus-free plants is one of the most effective approaches to manage the disease. Consequently, it is necessary to develop rapid, sensitive, specific, and early diagnostic methods for disease control. In the present study, newly designed primers targeting a 164 bp region of the ICRSV coat protein gene were used to develop and optimize a SYBR Green-based quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay, for the detection of ICRSV. The RT-qPCR assay was evaluated and confirmed using viral RNA extracted from ICRSV infected plants maintained in screen house as well as field samples. The standard curves displayed a dynamic linear range across eight log units of ICRSV-cRNA copy number ranging from 9.48.1 fmol (5.709 × 109) to 0.000948 amol (5.709 × 102), with detection limit of 5.709 × 102 copies per reaction using serial tenfold diluted in vitro transcribed viral cRNA. The developed RT-qPCR is very specific to ICRSV does not react to other citrus pathogens, and approximately 100-fold more sensitive than conventional RT-PCR. Thus, this assay will be useful in laboratories, KVKs, and nurseries for the citrus budwood certification program as well as in plant quarantine stations. To our knowledge, this is the first study of the successful detection of ICRSV by RT-qPCR.
Collapse
|
6
|
Kokane AD, Kokane SB, Warghane AJ, Gubyad MG, Sharma AK, Reddy MK, Ghosh DK. A Rapid and Sensitive Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for the Detection of Indian Citrus Ringspot Virus. PLANT DISEASE 2021; 105:1346-1355. [PMID: 32990524 DOI: 10.1094/pdis-06-20-1349-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Indian citrus ringspot virus (ICRSV) is a devastating pathogen that has a particularly deleterious effect on the 'Kinnow mandarin', a commercial citrus crop cultivated in the northwest of India. ICRSV belongs to the Mandarivirus genus within the family of Alphaflexiviridae and has a positive sense single-stranded RNA (ssRNA) genome consisting of six open reading frames (ORFs). Severe cases of ICRSV result in a significant reduction in both the yield and quality of crops. Consequently, there is an urgent need to develop methods to detect ICRSV in an accurate and timely manner. Current methods involve a two-step reverse transcription polymerase chain reaction (RT-PCR) that is time consuming. Here, we describe a novel, one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the sensitive and rapid detection of ICRSV. To standardize the RT-LAMP assay, four different primers were designed and tested to target the coat protein gene of ICRSV. Amplification results were visualized by a color change after addition of SYBR Green I. The standardized RT-LAMP assay was highly specific and successfully detected all 35 ICRSV isolates tested from the Punjab and Haryana states of India. Furthermore, there was no cross-reaction with 17 isolates of five other citrus pathogens that are common in India. The ICRSV RT-LAMP assay developed in the present study is a simple, rapid, sensitive, specific technique. Moreover, the assay consists of only a single step and is more cost effective than existing methods. This is the first application of RT-LAMP for the detection of ICRSV. Our RT-LAMP assay is a powerful tool for the detection of ICRSV and will be particularly useful for large-scale indexing of field samples in diagnostic laboratories, in nurseries, and for quarantine applications.
Collapse
Affiliation(s)
- Amol D Kokane
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Sunil B Kokane
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashish J Warghane
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Mrugendra G Gubyad
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247 667, Uttarakhand, India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Bangalore-560 089, Karnataka, India
| | - Dilip Kumar Ghosh
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| |
Collapse
|
7
|
Ghosh DK, Kokane AD, Kokane SB, Tenzin J, Gubyad MG, Wangdi P, Murkute AA, Sharma AK, Gowda S. Detection and Molecular Characterization of 'C andidatus Liberibacter asiaticus' and Citrus Tristeza Virus Associated with Citrus Decline in Bhutan. PHYTOPATHOLOGY 2021; 111:870-881. [PMID: 33090079 DOI: 10.1094/phyto-07-20-0266-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus, mainly mandarin (Citrus reticulata Blanco), is an economically important fruit crop in Bhutan. Despite having favorable agroclimatic conditions for citrus cultivation, the early decline of fruit-bearing orchards coupled with low crop productivity is a major concern among citrus growers. During a recent survey, an association of 'Candidatus Liberibacter asiaticus' (citrus greening) and citrus tristeza virus (CTV), either singly or as mixed infections in declined citrus trees, was recorded in all four major citrus-growing districts (Tsirang, Dagana, Zhemgang, and Sarpang). Using PCR-based diagnosis, a higher incidence of citrus greening (27.45%) and tristeza (70.58%) was observed in symptomatic field samples. Detection and characterization of 'Ca. L. asiaticus' was performed based on the 16S ribosomal DNA, prophage gene, 50S ribosomal rplA-rplJ gene, and tandem repeats of the CLIBASIA_01645 locus. Similarly, the coat protein, p23, and p18 genes were used as genetic markers for the detection and characterization of Bhutanese CTV. The 'Ca. L. asiaticus' isolates from Bhutan segregated into classes II and III based on the CLIBASIA_01645 locus, analogous to Indian isolates from the northeast region and Term-A based on the CLIBASIA_05610 locus. CTV isolates of Bhutan were observed as closely related to the VT strain, which is considered to be the most devastating. To the best of our knowledge, this is the first study on molecular characterization of 'Ca. L. asiaticus' and CTV isolates and their association with citrus decline in Bhutan.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Amol D Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Sunil B Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Jigme Tenzin
- National Citrus Program, Department of Agriculture, Royal Government of Bhutan, Thimphu 11001, Bhutan
| | - Mrugendra G Gubyad
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Phuntsho Wangdi
- National Citrus Repository, Department of Agriculture, Royal Government of Bhutan, Tsirang, Bhutan
| | - Ashutosh A Murkute
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee - 247 667, India
| | - Siddarame Gowda
- University of Florida, Citrus Research and Education Centre, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
8
|
Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus. Sci Rep 2020; 10:20593. [PMID: 33244066 PMCID: PMC7693335 DOI: 10.1038/s41598-020-77692-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Tristeza is a highly destructive disease of citrus caused by the phloem-limited, flexuous filamentous Citrus tristeza virus (CTV) in the genus Closterovirus and the family Closteroviridae. It has been a major constraint for higher productivity and has destroyed millions of citrus trees globally. CTV is graft transmissible and spread through use of virus infected nursery plants. Therefore, virus detection by using specific and reliable diagnostic tools is very important to mitigate disease outbreaks. Currently, the standard molecular techniques for CTV detection include RT-PCR and RT-qPCR. These diagnostic methods are highly sensitive but time consuming, labor intensive and require sophisticated expensive instruments, thus not suitable for point-of-care use. In the present study, we report the development of a rapid, sensitive, robust, reliable, and highly specific reverse transcription-RPA technique coupled with a lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA). RT-RPA technique was standardized to amplify the coat protein gene of CTV (CTV-p25) and detect double labeled amplicons on a sandwich immunoassay by designing specific labeled primer pair and probe combinations. The optimally performing primer set (CTRPA-F1/CTRPA-R9-Btn) and the corresponding TwistAmp nfo probe (CTRPA-Probe) was optimized for temperature and reaction time using purified cDNA and viral RNA as template. The sensitivity of the developed assay was compared with other detection techniques using in vitro-transcribed RNA. The efficacy and specificity of the assay was evaluated using CTV positive controls, healthy samples, field grown citrus plants of unknown status, and other virus and bacterial pathogens that infect citrus plants. The RT-RPA-LFICA was able to detect ≤ 141 fg of RNA when cDNA used as a template. The assay detected ≤ 0.23 ng/µl of CTV RNA when directly used as template without cross-reactivity with other citrus pathogens. Best results were achieved at the isothermal temperature of 40 °C within 15-20 min. The study demonstrated that RT-RPA-LFICA has potential to become an improved detection technique for end users in bud-wood certification and quarantine programs and a promising platform for rapid point-of-care diagnostics for citrus farmers and small nurseries in low resource settings.
Collapse
|
9
|
Kokane SB, Kokane AD, Misra P, Warghane AJ, Kumar P, Gubyad MG, Sharma AK, Biswas KK, Ghosh DK. In-silico characterization and RNA-binding protein based polyclonal antibodies production for detection of citrus tristeza virus. Mol Cell Probes 2020; 54:101654. [PMID: 32866661 DOI: 10.1016/j.mcp.2020.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 01/31/2023]
Abstract
Citrus tristeza virus (CTV) is the etiologic agent of the destructive Tristeza disease, a massive impediment for the healthy citrus industry worldwide. Routine indexing of CTV is an essential component for disease surveys and citrus budwood certification for production of disease-free planting material. Therefore, the present study was carried out to develop an efficient serological assay for CTV detection based on the RNA binding protein (CTV-p23), which is translated from a subgenomic RNA (sgRNA) that accumulates at higher levels in CTV-infected plants. CTV-p23 gene was amplified, cloned and polyclonal antibodies were raised against recombinant CTV-p23 protein. The efficacy of the produced polyclonal antibodies was tested by Western blots and ELISA to develop a quick, sensitive and economically affordable CTV detection tool and was used for indexing of large number of plant samples. The evaluation results indicated that the developed CTV-p23 antibodies had an excellent diagnostic agreement with RT-PCR and would be effective for the detection of CTV in field samples. Furthermore, CTV-p23 gene specific primers designed in the present study were found 1000 times more sensitive than the reported coat protein (CTV-p25) gene specific primers for routine CTV diagnosis. In silico characterizations of CTV-p23 protein revealed the presence of key conserved amino acid residues that involved in the regulation of protein stability, suppressor activity and protein expression levels. This would provide precious ground information towards understanding the viral pathogenecity and protein level accumulation for early diagnosis of virus.
Collapse
Affiliation(s)
- Sunil B Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India; Department of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Amol D Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Pragati Misra
- Department of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashish J Warghane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India; Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Pranav Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Mrugendra G Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kajal Kumar Biswas
- Plant Pathology Division, ICAR- Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|