1
|
Li G, Liu T, Whalen JK, Wei Z. Nematodes: an overlooked tiny engineer of plant health. TRENDS IN PLANT SCIENCE 2024; 29:52-63. [PMID: 37468419 DOI: 10.1016/j.tplants.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Nematodes are a crucial component of rhizosphere biodiversity, affecting plant health as the most abundant and functionally diverse soil animals. Plant-parasitic nematodes are generally considered harmful, which may overlook their potential benefits to plants when coexisting with free-living nematodes in soil. We provide new insights into nematodes as vital plant partners. Plant root damage by plant-parasitic nematodes creates opportunities for pathogens and beneficial microbiota to colonize the rhizosphere. Free-living nematodes coordinate microbiota to suppress plant diseases, but they are susceptible to mortality from plant pathogens, potentially favoring pathogen release in the root zone. We conclude that the nematode's role in regulating plant pathogens represents a missing link, constraining our ability to predict and control soil-borne diseases in healthy plants.
Collapse
Affiliation(s)
- Gen Li
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Liu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada; Chair of Soil Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zhong Wei
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Goyal V, Rani D, Ritika, Mehrotra S, Deng C, Wang Y. Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. PLANTS (BASEL, SWITZERLAND) 2023; 12:3744. [PMID: 37960100 PMCID: PMC10649170 DOI: 10.3390/plants12213744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Nanotechnology has attracted remarkable attention due to its unique features and potential uses in multiple domains. Nanotechnology is a novel strategy to boost production from agriculture along with superior efficiency, ecological security, biological safety, and monetary security. Modern farming processes increasingly rely on environmentally sustainable techniques, providing substitutes for conventional fertilizers and pesticides. The drawbacks inherent in traditional agriculture can be addressed with the implementation of nanotechnology. Nanotechnology can uplift the global economy, so it becomes essential to explore the application of nanoparticles in agriculture. In-depth descriptions of the microbial synthesis of nanoparticles, the site and mode of action of nanoparticles in living cells and plants, the synthesis of nano-fertilizers and their effects on nutrient enhancement, the alleviation of abiotic stresses and plant diseases, and the interplay of nanoparticles with the metabolic processes of both plants and microbes are featured in this review. The antimicrobial activity, ROS-induced toxicity to cells, genetic damage, and growth promotion of plants are among the most often described mechanisms of operation of nanoparticles. The size, shape, and dosage of nanoparticles determine their ability to respond. Nevertheless, the mode of action of nano-enabled agri-chemicals has not been fully elucidated. The information provided in our review paper serves as an essential viewpoint when assessing the constraints and potential applications of employing nanomaterials in place of traditional fertilizers.
Collapse
Affiliation(s)
- Vinod Goyal
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Dolly Rani
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ritika
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Shweta Mehrotra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Chaoyi Deng
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| | - Yi Wang
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| |
Collapse
|
3
|
Mouniga R, Anita B, Lakshmanan A, Shanthi A, Karthikeyan G. Nematicidal Properties of Chitosan Nanoformulation. J Nematol 2023; 55:20230033. [PMID: 37622051 PMCID: PMC10446853 DOI: 10.2478/jofnem-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan is the second most abundant bio-polymer available in the world, second only to cellulose. It is found in crustaceous shells, e.g., those of crabs, shrimps, prawns, and fungi, as well as insect exoskeletons. The use of nanoformulations for the management of pests and diseases is receiving increased interest with the advancement of nanotechnology. Here, chitosan nanospheres were obtained from chitosan using the ionic gelation technique. The nanoformulations obtained were characterized using a particle size analyzer, Fourier transform infrared spectroscopy, and a transmission electron microscope. The efficacy of chitosan nanospheres in suppressing the root-knot nematode Meloidogyne incognita was studied. The particle size of nanospheres formulated for this study was 380.2 nm, with a polydispersity index (PI) of 0.4 and Zeta potential of 45.7 or 50.9 mV at pH 5.2. The chitosan nanospheres were spherical and the particles did not agglomerate. FTIR spectra of the chitosan nanospheres peaked at 3334 cm-1, thereby indicating the stretching of the OH and NH group. In In-vitro studies, chitosan nanospheres showed significant nematicidal activity against M. incognita. Under pot culture conditions, chitosan nanospheres (1%- active compound chitosan) at 2ml/plant decreased the nematode population in roots or soil. Compared to the control, the number of galls was reduced by 83.68%, the number of egg masses by 83.85%, the number of adult females by 66.56%, and the number of second-stage juveniles by 73.20%. In a field experiment, application of chitosan nanospheres (1%) was followed by a 18.75% increase in fruit yield compared to the non-treated control.
Collapse
Affiliation(s)
- R. Mouniga
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - B. Anita
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - A. Lakshmanan
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - A. Shanthi
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - G. Karthikeyan
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| |
Collapse
|
4
|
Mansotra R, Ali T, Bhagat N, Vakhlu J. Injury and not the pathogen is the primary cause of corm rot in Crocus sativus (saffron). FRONTIERS IN PLANT SCIENCE 2023; 14:1074185. [PMID: 36760646 PMCID: PMC9902776 DOI: 10.3389/fpls.2023.1074185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum has been reported to be the most devastating pathogen of Crocus sativus L., a commercially significant crop that yields the saffron spice. However, most of the pathogen isolations have been done from the diseased tissue, mostly from rotten corms, but no study has been conducted on diseased saffron fields. To fill the knowledge gap, the current study was carried out with the intention of recording the diversity of cultivable fungus species from saffron fields and screening them for pathogenicity towards saffron. The three study locations in Jammu and Kashmir, Srinagar (Pampore), Kishtwar, and Ramban, yielded a total of 45 fungal isolates. The internal transcribed spacer (ITS) of rDNA was used for the molecular identification. ITS rDNA-based sequence analysis classified all the operational taxonomic units (OTUs) into two phyla-Ascomycota (88.88%) and Mucoromycota (11.11%). Moreover, Fusarium (57.77%), Geotrichum (17.77%), Mucor (11.11%), Aspergillus (4.44%), Trichoderma (4.44%), Galactomyces (2.22%), and Colletotrichum (2.22%) all had different total abundances at the genus level. It was discovered that the saffron fields in Srinagar have fewer varied fungal species than the other two selected sites. All of the fungal isolates isolated including Fusarium solani, Aspergillus flavus, Trichoderma harzianum, Fusarium neocosmosporiellum, and Mucor circinelloides were pathogenic according to the pathogenicity test; however, injury to the saffron plant was found to be a must. These fungi were pathogenic in addition to F. oxysporum, which is well documented as a major cause of saffron corm rot diseases in Srinagar, but in the present study, injury was a must for F. oxysporum as well. The percentage disease severity index for both saffron roots and corms varied for each fungal isolate.
Collapse
|
5
|
Ochieno DMW. Soil Microbes Determine Outcomes of Pathogenic Interactions Between Radopholus similis and Fusarium oxysporum V5w2 in Tissue Culture Banana Rhizospheres Starved of Nitrogen, Phosphorus, and Potassium. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.706072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The contributions of soil biota toward outcomes of pathogenic interactions between Radopholus similis and Fusarium oxysporum V5w2 in tissue culture banana plants starved of nitrogen (N), phosphorus (P), and potassium (K) were investigated. The study was based on three screenhouse factorial experiments (2 × 2 × 2) comprising of potted banana plants with or without R. similis, with or without F. oxysporum V5w2, and either grown in sterile or non-sterile soil. All plants in each of the three experiments received nutrient solutions that were deficient in N, P, or K, respectively. In all the three nutritional regimes, plants inoculated with R. similis were heavily colonized by the nematode with high percentage dead roots and necrosis, while their root biomasses were low. N-starved plants co-inoculated with R. similis and F. oxysporum V5w2 had lower percentage dead roots and tended to have numerically lower nematode density compared to those treated with R. similis only, especially in non-sterile soil. N-starved plants inoculated with R. similis had higher shoot dry weight, were taller with more leaves that were larger, compared to those not inoculated with the nematode. Plants grown in non-sterile soil had lower percentage dead roots, necrosis and R. similis density than those from sterile soil, regardless of the nutrient regime. N-starved plants from non-sterile soil were shorter with smaller leaves having decreased chlorophyll content and lower biomass, compared to those from sterile soil. By contrast, P and K starved plants from non-sterile soil were taller with larger leaves and more biomass, compared to those from sterile soil. Roots inoculated with R. similis had higher endophytic colonization by Fusarium spp., especially when co-inoculated with F. oxysporum V5w2 and grown in sterile soil among the N and K-starved plants. In conclusion, pathogenic interactions between R. similis and F. oxysporum V5w2 are predominantly suppressed by a complex of soil microbes that exert plant growth promoting effects in tissue culture banana plants through N, P, and K dependent processes. Nitrogen is the most important limiting factor in rhizosphere interactions between banana roots, beneficial microbes and the pathogens. Soil sterilization and the stringent aseptic tissue culture techniques still require the development of alternative innovative ways of conserving microbial services for sustainable agriculture.
Collapse
|
6
|
Hoang NH, Le Thanh T, Sangpueak R, Treekoon J, Saengchan C, Thepbandit W, Papathoti NK, Kamkaew A, Buensanteai N. Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management. Polymers (Basel) 2022; 14:662. [PMID: 35215574 PMCID: PMC8876194 DOI: 10.3390/polym14040662] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
By 2050, population growth and climate change will lead to increased demand for food and water. Nanoparticles (NPs), an advanced technology, can be applied to many areas of agriculture, including crop protection and growth enhancement, to build sustainable agricultural production. Ionic gelation method is a synthesis of microparticles or NPs, based on an electrostatic interaction between opposite charge types that contains at least one polymer under mechanical stirring conditions. NPs, which are commonly based on chitosan (CS), have been applied to many agricultural fields, including nanopesticides, nanofertilizers, and nanoherbicides. The CS-NP or CS-NPs-loaded active ingredients (Cu, saponin, harpin, Zn, hexaconazole, salicylic acid (SA), NPK, thiamine, silicon, and silver (Ag)) are effective in controlling plant diseases and enhancing plant growth, depending on the concentration and application method by direct and indirect mechanisms, and have attracted much attention in the last five years. Many crops have been evaluated in in vivo or in greenhouse conditions but only maize (CS-NP-loaded Cu, Zn, SA, and silicon) and soybean (CS-NP-loaded Cu) were tested for manage post flowering stalk rot, Curvularia leaf spot, and bacterial pustule disease in field condition. Since 2019, five of eight studies have been performed in field conditions that have shown interest in CS-NPs synthesized by the ionic gelation method. In this review, we summarized the current state of research and provided a forward-looking view of the use of CS-NPs in plant disease management.
Collapse
Affiliation(s)
- Nguyen Huy Hoang
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.H.H.); (R.S.); (C.S.); (W.T.); (N.K.P.)
| | - Toan Le Thanh
- Department of Plant Protection, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam;
| | - Rungthip Sangpueak
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.H.H.); (R.S.); (C.S.); (W.T.); (N.K.P.)
| | - Jongjit Treekoon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.T.); (A.K.)
| | - Chanon Saengchan
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.H.H.); (R.S.); (C.S.); (W.T.); (N.K.P.)
| | - Wannaporn Thepbandit
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.H.H.); (R.S.); (C.S.); (W.T.); (N.K.P.)
| | - Narendra Kumar Papathoti
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.H.H.); (R.S.); (C.S.); (W.T.); (N.K.P.)
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.T.); (A.K.)
| | - Natthiya Buensanteai
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.H.H.); (R.S.); (C.S.); (W.T.); (N.K.P.)
| |
Collapse
|
7
|
Azeem S, Agha SI, Jamil N, Tabassum B, Ahmed S, Raheem A, Jahan N, Ali N, Khan A. Characterization and survival of broad-spectrum biocontrol agents against phytopathogenic fungi. Rev Argent Microbiol 2022; 54:233-242. [PMID: 35039210 DOI: 10.1016/j.ram.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/12/2021] [Accepted: 10/03/2021] [Indexed: 10/19/2022] Open
Abstract
The current study intended to isolate, characterize and identify biocontrol bacteria possessing broad-spectrum antifungal activity from the phyllosphere of different crops including maize, wheat and potato and to assess their growth-promoting activity. In this study 14/113 biocontrol bacteria showed antifungal activity. Bacterial isolates M11 and M33 from maize out of 113 were re-selected on the basis of their strong (more than 50%) broad spectrum antifungal activity after their assessment against four economically important phytopathogenic fungi including Alternaria alternata, Rhizoctonia solani, Fusarium oxysporum and Fusarium verticillioides. The isolates were further assessed for plant growth promoting traits, i.e., indole-3-acetic acid production, phosphate solubilization, production of cellulase, microbial volatile compounds, hydrogen cyanide and siderophores. All fourteen isolates showed positive results for the production of indole-3-acetic acid hormone and cellulase enzyme, 10 isolates were positive for hydrogen cyanide production; siderophores production was observed in 7 isolates while 5 isolates showed ability to solubilize inorganic phosphate. Microbial volatile compounds were only synthesized by M11 and M33, which were identified as Bacillus amyloliquefaciens and Bacillus subtilis respectively by 16S rRNA gene sequencing. The survival study revealed that biocontrol bacteria B. amyloliquefaciens and B. subtilis have the ability to survive in cost effective molasses containing carrier material up to a three-month period.
Collapse
Affiliation(s)
- Saba Azeem
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | | | - Neelam Jamil
- Department of Microbiology, BUITEMS, Quetta, Pakistan
| | - Bushra Tabassum
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan; School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Shan Ahmed
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Asif Raheem
- Department of Microbiology, BUITEMS, Quetta, Pakistan
| | - Nusrat Jahan
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Niaz Ali
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Anwar Khan
- Department of Microbiology, BUITEMS, Quetta, Pakistan.
| |
Collapse
|
8
|
Interaction Effect of Soilless Media and Organic Amendments for Eco-Friendly Root-Knot Nematode Management in Brinjal and Tomato Nursery. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brinjal and tomato are the most important transplanted vegetable crops of the Solanaceae family. The successful cultivation of these crops is vital for meeting the nutritional dietary requirement of India’s population and earning foreign exchange for the country by exporting vegetables to foreign countries. However, there are several abiotic and biotic impediments in the cultivation of these crops. Among biotic impediments , plant-parasitic nematodes have become one of the critical factor adversely affecting the cultivation of these vegetables. In general, Meloidogyne spp. (root-knot nematode) is the most common, widespread and economically damaging plant parasitic nematode species in tomato and brinjal crop. In addition to the damage caused by root – knot nematode, it stimulates the entry of soil-borne pathogens leading to development of the disease complex. The present study was undertaken to study the interaction effect of soil & soilless growing media viz. cocopeat and vermicompost along with organic amendments i.e., Trichoderma, AM fungus, and Cabbage residue incorporated individually as well as in different combinations for eco-friendly root-knot nematode management in brinjal and tomato nursery. The results indicated that treatment C-8 (Cocopeat + Trichoderma + AM fungus + Cabbage residues) recorded the superior germination count, germination percentage, days to 50% germination, root length, shoot length, fresh weight, root weight, shoot weight and root: shoot ratio. It is pertinent to mention that the soilless media, along with various organic amendments, were found to be superior for all the root and shoot attributes as compared to the conventional soil media for growing healthy nursery of tomato and brinjal in root knot nematode infested geographies. Our findings provide an effective and sustainable method of growing healthy plant nursery in nematode infested regions.
Collapse
|
9
|
Abstract
Saffron, comprising of dried stigmas of the plant known as Crocus sativus, is one of the most important and scantly cultivated agricultural products. It has been used as a precious spice for the last at least 3500 years. Due to its numerous medicinal qualities and pharmacological applications, it is considered as a “golden condiment”, and its demand and consumptions has risen over a period of time. Although efforts are continuously being made to enhance the productivity in the traditional areas and promote the cultivation of saffron in the newer areas, there are several constraints hindering these efforts. Prevalence of corm rot is one such limiting factor which results in the reduction in saffron production and decline in the area under its cultivation. The disease not only reduces the yield substantially, but also adversely affects the production of daughter corms. Complete understanding and knowledge about the disease is still lacking due to the inadequate information about its etiology and epidemiology. Moreover, due to the non-availability of resistant genotypes and lack of improved cultural practices, presently no effective and sustainable management strategies are available. This review article gives an overall account of the history and impact of saffron corm rot, its present status, yield losses caused by it, dynamics of the pathogens associated with the disease, their survival and dispersal, factors influencing disease intensity, epidemiology and sustainable management strategies. As comprehensive information on the disease is presently not available, an attempt has been made to review the current knowledge regarding corm rot of saffron. The information about the disease discussed here can eventually be beneficial for the growers, students, researchers, plant protection organizations, development departments, extension workers, policy makers, government agencies and public organizations.
Collapse
|
10
|
Dutta A, Mandal A, Kundu A, Malik M, Chaudhary A, Khan MR, Shanmugam V, Rao U, Saha S, Patanjali N, Kumar R, Kumar A, Dash S, Singh PK, Singh A. Deciphering the Behavioral Response of Meloidogyne incognita and Fusarium oxysporum Toward Mustard Essential Oil. FRONTIERS IN PLANT SCIENCE 2021; 12:714730. [PMID: 34512695 PMCID: PMC8427441 DOI: 10.3389/fpls.2021.714730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 05/17/2023]
Abstract
Environmental concerns related to synthetic pesticides and the emphasis on the adoption of an integrated pest management concept as a cardinal principle have strengthened the focus of global research and development on botanical pesticides. A scientific understanding of the mode of action of biomolecules over a range of pests is key to the successful development of biopesticides. The present investigation focuses on the in silico protein-ligand interactions of allyl isothiocyanate (AITC), a major constituent of black mustard (Brassica nigra) essential oil (MEO) against two pests, namely, Meloidogyne incognita (Mi) and Fusarium oxysporum f. sp. lycopersici (Fol), that cause severe yield losses in agricultural crops, especially in vegetables. The in vitro bioassay results of MEO against Mi exhibited an exposure time dependent on the lethal concentration causing 50% mortality (LC50) values of 47.7, 30.3, and 20.4 μg ml-1 at 24, 48, and 72 h of exposure, respectively. The study revealed short-term nematostatic activity at lower concentrations, with nematicidal activity at higher concentrations upon prolonged exposure. Black mustard essential oil displayed excellent in vitro Fol mycelial growth inhibition, with an effective concentration to cause 50% inhibition (EC50) value of 6.42 μg ml-1. In order to decipher the mechanism of action of MEO, its major component, AITC (87.6%), which was identified by gas chromatography-mass spectrometry (GC-MS), was subjected to in silico docking and simulation studies against seven and eight putative target proteins of Mi and Fol, respectively. Allyl isothiocyanate exhibited the highest binding affinity with the binding sites of acetyl cholinesterase (AChE), followed by odorant response gene-1 (ODR1) and neuropeptide G-protein coupled receptor (nGPCR) in Mi, suggesting the possible suppression of neurotransmission and chemosensing functions. Among the target proteins of Fol, AITC was the most effective protein in blocking chitin synthase (CS), followed by 2,3-dihydroxy benzoic acid decarboxylase (6m53) and trypsinase (1try), thus inferring these as the principal molecular targets of fungal growth. Taken together, the study establishes the potential of MEO as a novel biopesticide lead, which will be utilized further to manage the Mi-Fol disease complex.
Collapse
Affiliation(s)
- Anirban Dutta
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Monika Malik
- Division of Nematology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Amrendra Chaudhary
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Matiyar Rahaman Khan
- Division of Nematology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Veerubommu Shanmugam
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Uma Rao
- Division of Nematology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Division of Design of Experiments, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Sukanta Dash
- Division of Design of Experiments, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Pradeep Kumar Singh
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Anupama Singh ;
| |
Collapse
|