1
|
Rahdan F, Abedi F, Saberi A, Vaghefi Moghaddam S, Ghotaslou A, Sharifi S, Alizadeh E. Co-delivery of hsa-miR-34a and 3-methyl adenine by a self-assembled cellulose-based nanocarrier for enhanced anti-tumor effects in HCC. Int J Biol Macromol 2025; 307:141501. [PMID: 40054812 DOI: 10.1016/j.ijbiomac.2025.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The simultaneous delivery of oligonucleotides and small molecules has garnered significant interest in cancer therapy. Hepatocellular carcinoma (HCC) treatment is hindered by limited efficacy and significant side effects. Homo sapiens microRNA-34a (hsa-miR-34a) has tumor suppressor properties and like small molecule 3-methyl adenine (3MA) can inhibit autophagy. Besides, 3MA has been shown to enhance anticancer effects in combination therapies. In the present study, a novel modified-cellulose-dialdehyde (MDAC) nanocarrier responsive to lysosomal pH was designed to co-load hsa-miR-34a polyplexes and 3MA and evaluate its antitumor efficacy against HCC. Polyplexes containing hsa-miR-34a and poly L lysine (PLL) with an optimal N/P ratio exhibited a zeta potential of +9.28. These polycations significantly modulated the surface charge of 3MA MDAC for optimal cell-membrane transport and dramatically increased their stability. The PLL-miR34a/3MA MDAC NPs had loading efficiency of around 99.7 % for miR-34a and 35 % for 3MA. Comply with pH dependency, PLL-miR34a polyplex/3MA MDAC NPs worked very efficiently on the inhibiting the expression of autophagy genes (p < 0.05), preventing the formation of autophagosomal vacuoles, reducing rate of cell survival, anti-migratory effects (>100 %), and triggering apoptosis (67.15 %) in HepG2. Our cellulose-based nanocarrier may demonstrate potential for enhancing therapeutic efficacy of combination therapies headed for future clinical translation in HCC.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheyda Sharifi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Chaiwarit T, Duangsonk K, Yuantrakul S, Chanabodeechalermrung B, Khangtragool W, Brachais CH, Chambin O, Jantrawut P. Synthesis of Carboxylate-Dialdehyde Cellulose to Use as a Component in Composite Thin Films for an Antibacterial Material in Wound Dressing. ACS OMEGA 2024; 9:44825-44836. [PMID: 39524684 PMCID: PMC11541528 DOI: 10.1021/acsomega.4c08298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Wound infections can lead to life-threatening infection and death. Antibacterial materials from biopolymers in the form of films are a promising strategy for wound dressings. Carboxylate-dialdehyde cellulose (CDAC) is a proper candidate for use as an antibacterial material due to its biocompatibility, nontoxicity, and antibacterial property. Additionally, CDAC can be synthesized from cellulose through environmentally friendly and nontoxic methods. Thus, this study aims to synthesize CDAC from microcrystalline cellulose (MCC) PH102 and use it in composite films for an antibacterial application. The CDAC was synthesized using Fe2+/H2O2, followed by NaIO4 oxidation. The obtained CDAC was characterized in terms of carboxylate and aldehyde content as well as FTIR and XRD spectra. The CDAC was mixed with HPMC in different ratios to prepare films. To determine the optimal formulation for clindamycin HCl loading, the films were evaluated for morphology, mechanical properties, and swelling ratio. Finally, the films containing clindamycin HCl were evaluated for drug loading content, in vitro drug release, and antibacterial activity. This study found that CDAC contained 2.1 ± 0.2 carboxylate and 4.15 ± 0.2 mmol/g of aldehyde content. The FTIR spectra confirmed the successful synthesis. X-ray diffractograms indicated that CDAC was less crystalline than MCC. The film, consisting of CDAC and HPMC E50 in the ratio of 2:1 (D2H1), was identified as the most suitable for clindamycin HCl loading due to its superior appearance, mechanical strength, and swelling properties compared to other formulations. D2H1 exhibited a high drug loading capacity (91.49 ± 5.48%) and demonstrated faster drug release than the film composed only of HPMC because of the higher swelling ratio and lower mechanical strength. This formulation was effective against Staphylococcus aureus (MSSA), S. aureus (MRSA), and Pseudomonas aeruginosa. Furthermore, the D2H1 film containing clindamycin HCl showed a larger inhibition zone against these bacteria, likely due to a synergistic effect. This study found that CDAC has the potential to be applied as an antibacterial material for wound dressing.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Kwanjit Duangsonk
- Department
of Microbiology, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Sastra Yuantrakul
- Department
of Microbiology, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | | | - Waristha Khangtragool
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Claire-Hélène Brachais
- ICMUB
UMR CNRS 6302, University of Bourgogne Franche-Comté, 9 Avenue Alain Savary, Dijon 21000, France
| | - Odile Chambin
- Department
of Pharmaceutical Technology, UMR PAM, University
of Bourgogne, 7 bd Jeanne
d’Arc, Dijon 21079, France
| | - Pensak Jantrawut
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Gollapudi KK, Dutta SD, Adnan M, Taylor ML, Reddy KVNS, Alle M, Huang X. Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy. Int J Biol Macromol 2024; 280:135971. [PMID: 39322171 DOI: 10.1016/j.ijbiomac.2024.135971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.
Collapse
Affiliation(s)
- Kranthi Kumar Gollapudi
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Sayan Deb Dutta
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis, Sacramento 95817, United States
| | - Md Adnan
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - K V N Suresh Reddy
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India.
| | - Madhusudhan Alle
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
4
|
Saravanakumar I, Thangavel P, Muthuvijayan V. l-Arginine-Loaded Oxidized Isabgol/Chitosan-Based Biomimetic Composite Scaffold Accelerates Collagen Synthesis, Vascularization, and Re-epithelialization during Wound Healing in Diabetic Rats. ACS APPLIED BIO MATERIALS 2024; 7:6162-6174. [PMID: 39152909 DOI: 10.1021/acsabm.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Impaired wound healing in diabetic wounds is common due to infection, inflammation, less collagen synthesis, and vascularization. Diabetic wound healing in patients is still a challenge and needs an ideal wound dressing to treat and manage diabetic wounds. Herein, an efficacious wound dressing biomaterial was fabricated by cross-linking oxidized isabgol (Oisab) and chitosan (Cs) via trisodium trimetaphosphate and Schiff base bonds. l-Arginine (l-Arg) was incorporated as a bioactive substance in the Oisab + Cs scaffold to promote cell adhesion, cell proliferation, collagen synthesis, and vascularization. The fabricated scaffolds showed microporous networks in the scanning electron microscopy analysis. The scaffold also possessed excellent hemocompatibility. In vitro studies using fibroblasts (L929 and human dermal fibroblast cells) confirmed the cytocompatibility of these scaffolds. The results of the in vivo chicken chorioallantoic membrane assay confirmed the proangiogenic activity of the Oisab + Cs + l-Arg scaffolds. The wound-healing potential of these scaffolds was studied in streptozotocin-induced diabetic rats. This in vivo study showed that the period of epithelialization in the Oisab + Cs + l-Arg scaffold-treated wounds was 21.67 ± 1.6 days, which was significantly faster than the control (30.33 ± 2.5 days). Histological and immunohistochemical studies showed that the Oisab + Cs + l-Arg scaffolds significantly accelerated the rate of wound contraction by reducing inflammation, improving collagen synthesis, and promoting neovascularization. These findings suggest that the Oisab + Cs + l-Arg scaffolds could be beneficial in treating diabetic wounds in clinical applications.
Collapse
Affiliation(s)
- Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Denise R M, Usharani N, Saravanan N, Kanth SV. In vitro and in silico approach towards antimicrobial and antioxidant behaviour of water-soluble chitosan dialdehyde biopolymers. Carbohydr Res 2024; 542:109192. [PMID: 38944981 DOI: 10.1016/j.carres.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Chitosan dialdehyde (ChDA) was prepared from a three-step process initiated by thermal organic acid hydrolysis, periodate oxidization, and precipitation from native chitosan (NCh). The developed ChDA resulted in an aldehydic content of about 82 % with increased solubility (89 %) and maximum yield (97 %). The functional alteration of the aldehydic (-CHO) group in ChDA was established using vibrational stretching at 1744 cm-1. The increase in the zone of inhibition of ChDA compared to NCh has confirmed the inherent antimicrobial effect against bacterial and fungal species. ChDA showed better antioxidant activity of about 97.4 % (DPPH) and 31.1 % (ABTS) compared to NCh, measuring 45.3 % (DPPH) and 15.9 % (ABTS), respectively. The novel insilico predictions of the ChDA's biocidal activity were confirmed through molecular docking studies. The amino acid moiety such as ARG 110 (A), ASN 206 (A), SER 208 (A), THR 117 (B), ASN 118 (B), and LYS 198 (B) residues of 7B53 peptide from E. coli represents the binding pockets responsible for interaction with aldehyde group of ChDA. Whereas PHE 115 (E), ALA 127 (H), TYR 119 (C), GLN 125 (H), ASN 175 (E), ARG 116 (E), LYS 101 (H), and LYS 129 (H) of 1IYL A peptide from Candida albicans makes possible for binding with ChDA. Hence, the synergistic effect of ChDA as a biocidal compound is found to be plausible in the drug delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Monica Denise R
- Center for Human & Organizational Resources Development (CHORD), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Swarna V Kanth
- Center for Human & Organizational Resources Development (CHORD), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
6
|
Califano D, Schoevaart R, Barnard KE, Callaghan C, Mattia D, Edler KJ. Diaminated Cellulose Beads as a Sustainable Support for Industrially Relevant Lipases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7703-7712. [PMID: 38783841 PMCID: PMC11110057 DOI: 10.1021/acssuschemeng.3c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Environmentally persistent polystyrene or polyacrylic beads are used as supports in enzyme large-scale bioprocesses, including conversion glucose isomerization for high-fructose corn syrup production, hydrolysis of lactose, and synthesis of active pharmaceutical ingredients. In this paper, we report the development of a novel sustainable and scalable method to produce diaminated cellulose beads (DAB) as highly efficient alternative supports for industrially relevant lipases. Regenerated cellulose beads were grafted with diaminated aliphatic hydrocarbons via periodate oxidation and reductive amination. The oxidation step indicated that aldehyde content can be easily tuned through the reaction time and concentration of reactants. Reductive amination of dialdehyde cellulose was more efficient as the length of the diaminated hydrocarbon compound increased. Morphological analysis of DAB showed that cellulose chemical grafting enabled the preservation of the bead shape and internal structure upon freeze-drying. Enzymatic degradability studies demonstrated that chemical functionalization did not undermine enzyme cellulose hydrolysis. The addition of aminated moieties on cellulose dramatically increased absorption efficiency for all industrially relevant lipases used, reaching 100% for Thermomyces lanuginosus lipase (TLL). Storage and recyclability experiments demonstrated that enzymes were retained and recyclable for at least nine cycles, although the activity gradually declined after each cycle. Medium chain triacylglycerol hydrolysis in a SpinChem reactor using TLL immobilized on 1,6 DAB exhibited higher activity compared to acrylic beads (588 vs 459 U/g) suggesting that biodegradable cellulose-based materials could be a valid and attractive alternative to plastics carriers.
Collapse
Affiliation(s)
| | - Rob Schoevaart
- ChiralVision, 44 Hoog-Harnasch, 2635 DL Den Hoorn, The Netherlands
| | | | - Ciarán Callaghan
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Davide Mattia
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
7
|
Aljohani MS, Alnoman RB, Alharbi HY, Al-Anazia M, Monier M. Designing of a cellulose-based ion-imprinted biosorbent for selective removal of lead (II) from aqueous solutions. Int J Biol Macromol 2024; 259:129145. [PMID: 38176491 DOI: 10.1016/j.ijbiomac.2023.129145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Developing an effective adsorbent for Pb2+ removal from wastewater has huge economic and environmental implications. Adsorbents made from cellulosic materials that have been modified with certain chelators could be used to get rid of metal cations from aqueous solutions. However, their selectivity for specific metals remains very low. Here, we describe the synthesis of 4-(2-pyridyl)thiosemicarbazide (PTC) hydrazidine-functionalized cellulose (Pb-PTC-CE), a polymer imprinted with Pb2+ ions that may be used to remove Pb2+ ions from wastewater. Owing to its potent -NH2 functionalization, PTC hydrazidine not only served as an efficient chelator to effectively supply coordinating sites and construct hierarchical porous structures on Pb-PTC-CE, but it also made it possible for cross-linking to occur through the glyoxal cross-linker. The abundant chelators, along with the hierarchical porous construction of the developed Pb-PTC-CE with PTC functionality, result in a greater sorption capacity of 336 mg/g and a short sorption period of 40 min for Pb2+. Additionally, Pb-PTC-CE exhibits highly selective Pb2+ uptake compared to competing ions. This study proposes a feasible methodology for the development of high-quality materials for Pb2+ remediation by combining the advantages of active ligand functionality with ion-imprinting techniques in a straightforward way.
Collapse
Affiliation(s)
- Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Menier Al-Anazia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
Alnoman RB, Aljohani MS, Alharbi HY, Bukhari AAH, Monier M. Development and assessment of isatin hydrazone-functionalized/ion-imprinted cellulose adsorbent for gadolinium (III) removal. Int J Biol Macromol 2024; 256:128186. [PMID: 37979761 DOI: 10.1016/j.ijbiomac.2023.128186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
It is of tremendous economic and environmental significance to obtain a powerful adsorbent for the extraction of Gd3+ from wastewater. Adsorbents derived from cellulosic materials functionalized with specific chelators show great promise for the removal of heavy metal ions from wastewater. The selectivity of these sorbents for metal ions is, however, still rather poor. Here, we present a technique for trapping Gd3+ ions from wastewater by synthesizing Gd3+ ion-imprinted polymers based on isatinhydrazone-functionalized cellulose (Gd-ISH-CE). Not only did isatinhydrazone work as a tridentate ligand to directly provide ligand vacancies and build hierarchy pores on Gd-ISH-CE, but it also enabled cross-linking through the epichlorohydrine cross-linker thanks to its very effective NH2 functionalization. The as-prepared Gd-ISH-CE with ISH functionality shows a high adsorption capacity of 275 mg/g and a rapid equilibration time of 30 min for Gd3+ due to its plentiful binding sites and hierarchical pore structure. Furthermore, Gd-ISH-CE shows very selective capture of Gd3+ over competing ions. By integrating the benefits of ion-imprinting and chelator functionalization methodologies in an effortless manner, this study presents a practical approach to the development of superior materials for Gd3+ recovery.
Collapse
Affiliation(s)
- Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | | | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Tohamy HAS, Taha G, Sultan M. Dialdehyde cellulose/gelatin hydrogel as a packaging material for manganese oxides adsorbents for wastewater remediation: Characterization and performance evaluation. Int J Biol Macromol 2023; 248:125931. [PMID: 37481186 DOI: 10.1016/j.ijbiomac.2023.125931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The dialdehyde cellulose (DC) was used to synthesize gelatin-cellulose dialdehyde by Schiff base as a packaging material to manganese oxides nanoparticles adsorbents (Mn oxides@DC/Gel) for wastewater remediation and support the antimicrobial behavior of gelatin and DC. The crystallinity index% of microwave-synthesized DC prepared from cellulose II decreased from 43.18% to 34.11% and its oxidation degree was 143.77%. The greenly-produced Mn oxides were studied by XRD and TEM. XRD verified the presence of two different phases of α-MnO2 and α-Mn2O3 in the form of nanorods and nanocubes. Mn oxides@DC/Gel was investigated by FT-IR, XRD, XPS, SEM, swelling absorptivity, and thermal analysis. The optimal swelling ratio% of Mn oxides@DC/Gel nanocomposite was 1494.04±16.65%. The influence of pH on swelling ratios verified the instability of the imine group in acid and basic media. Mn oxides@DC/Gel nanocomposite hydrogel causes approximately two-fold greater inhibitory zones than gentamicin. The optimal adsorption conditions were adsorbent dose (0.05g), pH (9.0), contact time (120 min), and methylene blue dye concentration (30mg/L). The maximum adsorption capacity of Mn oxides@DC/Gel nanocomposite was 51.06±1.0 mg/g. The adsorption by Mn oxides@DC/Gel nanocomposite agrees with Langmuir, Redlich-Peterson, and Freundlich mechanisms.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt.
| | - Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
10
|
Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK, Kareru PG. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci Rep 2023; 13:14030. [PMID: 37640783 PMCID: PMC10462644 DOI: 10.1038/s41598-023-41119-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
In recent ages, green nanotechnology has gained attraction in the synthesis of metallic nanoparticles due to their cost-effectiveness, simple preparation steps, and environmentally-friendly. In the present study, copper oxide nanoparticles (CuO NPs) were prepared using Parthenium hysterophorus whole plant aqueous extract as a reducing, stabilizing, and capping agent. The CuO NPs were characterized via UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS). The UV-Vis spectra of CuO NPs showed a surface plasmonic resonance band to occur at 340 nm. FTIR analysis revealed the presence of secondary metabolites on the surface of CuO NPs, with a characteristic Cu-O stretching band being identified at 522 cm-1. Scanning electron micrographs and transmission electron micrographs showed that CuO NPs were nearly spherical, with an average particle of 59.99 nm obtained from the SEM micrograph. The monoclinic crystalline structure of CuO NPs was confirmed using XRD, and crystallite size calculated using the Scherrer-Debye equation was found to be 31.58 nm. DLS showed the presence of nanoparticle agglomeration, which revealed uniformity of the CuO NPs. Furthermore, the degradation ability of biosynthesized nanoparticles was investigated against rifampicin antibiotic. The results showed that the optimum degradation efficiency of rifampicin at 98.43% was obtained at 65℃ temperature, 50 mg dosage of CuO NPs, 10 mg/L concentration of rifampicin solution, and rifampicin solution at pH 2 in 8 min. From this study, it can be concluded that CuO NPs synthesized from Parthenium hysterophorus aqueous extract are promising in the remediation of environmental pollution from antibiotics. In this light, the study reports that Parthenium hysterophorus-mediated green synthesis of CuO NPs can effectively address environmental pollution in cost-effective, eco-friendly, and sustainable ways.
Collapse
Affiliation(s)
- Dennis Mwanza Nzilu
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya.
| | - Edwin Shigwenya Madivoli
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - David Sujee Makhanu
- Department of Biological and Physical Sciences, Karatina University, P.O. Box 1957-10101, Karatina, Kenya
| | - Sammy Indire Wanakai
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Gideon Kirui Kiprono
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Patrick Gachoki Kareru
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| |
Collapse
|
11
|
Silva Gomes A, Vitória Guimarães Leal M, Roefero Tolosa G, Camargo Cabrera F, Dognani G, Eloízo Job A. Cationic dialdehyde cellulose microfibers for efficient removal of eriochrome black T from aqueous solution. BIORESOURCE TECHNOLOGY 2023; 380:129096. [PMID: 37100301 DOI: 10.1016/j.biortech.2023.129096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Materials based on cellulose have been widely used as a decontaminant agent of wastewater. However, it can not be found in the literature any application of the cationic dialdehyde cellulose (cDAC) in anionic dye removal. Therefore, this study aims a circular economy concept using sugarcane bagasse to obtain a functionalized cellulose by oxidation and cationization. cDAC was characterized by SEM, FT-IR, oxidation degree, and DSC. Adsorption capacity was evaluated by pH, kinetic, concentration effect, strength ionic tests, and recycling. The kinetic followed Elovich model (R2 = 0.92605 for EBT = 100 mg/L) and non-linear Langmuir model (R2 = 0.94542), which resulted in a maximum adsorption capacity of 563.30 mg/g. The cellulose adsorbent reached an efficient recyclability of 4 cycles. Thus, this work presents a potential material to become a new, clean, low-cost, recyclable, and environmentally friendly alternative for effluent decontamination-containing dyes.
Collapse
Affiliation(s)
- Andressa Silva Gomes
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil.
| | - Maria Vitória Guimarães Leal
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| | - Gabrieli Roefero Tolosa
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| | - Flávio Camargo Cabrera
- São Paulo State University (UNESP), School of Engineering and Sciences, Campus Rosana, 19274-000 Rosana, SP, Brazil
| | - Guilherme Dognani
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| | - Aldo Eloízo Job
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| |
Collapse
|
12
|
Akl MA, El-Zeny AS, Hashem MA, El-Gharkawy ESRH, Mostafa AG. Flax fiber based semicarbazide biosorbent for removal of Cr(VI) and Alizarin Red S dye from wastewater. Sci Rep 2023; 13:8267. [PMID: 37217542 PMCID: PMC10203277 DOI: 10.1038/s41598-023-34523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
In the present study, flax fiber based semicarbazide biosorbent was prepared in two successive steps. In the first step, flax fibers were oxidized using potassium periodate (KIO4) to yield diadehyde cellulose (DAC). Dialdehyde cellulose was, then, refluxed with semicarbazide.HCl to produce the semicarbazide functionalized dialdehyde cellulose (DAC@SC). The prepared DAC@SC biosorbent was characterized using Brunauer, Emmett and Teller (BET) and N2 adsorption isotherm, point of zero charge (pHPZC), elemental analysis (C:H:N), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The DAC@SC biosorbent was applied for the removal of the hexavalent chromium (Cr(VI)) ions and the alizarin red S (ARS) anionic dye (individually and in mixture). Experimental variables such as temperature, pH, and concentrations were optimized in detail. The monolayer adsorption capacities from the Langmuir isotherm model were 97.4 mg/g and 18.84 for Cr(VI) and ARS, respectively. The adsorption kinetics of DAC@SC indicated that the adsorption process fit PSO kinetic model. The obtained negative values of ΔG and ΔH indicated that the adsorption of Cr(VI) and ARS onto DAC@SC is a spontaneous and exothermic process. The DAC@SC biocomposite was successfully applied for the removal of Cr(VI) and ARS from synthetic effluents and real wastewater samples with a recovery (R, %) more than 90%. The prepared DAC@SC was regenerated using 0.1 M K2CO3 eluent. The plausible adsorption mechanism of Cr(VI) and ARS onto the surface of DAC@SC biocomposite was elucidated.
Collapse
Affiliation(s)
- Magda A Akl
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Abdelrahman S El-Zeny
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed A Hashem
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Aya G Mostafa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
13
|
Li L, Guo J, Kang C, Song H. Reinforcement of Nanocomposite Hydrogel with Dialdehyde Cellulose Nanofibrils via Physical and Double Network Crosslinking Synergies. Polymers (Basel) 2023; 15:1765. [PMID: 37050379 PMCID: PMC10096909 DOI: 10.3390/polym15071765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Preparation of tough and high-strength hydrogels for water plugging in oil fields with an easy-scalable method is still considered to be a challenge. In this study, dialdehyde cellulose nanofibril (DA-CNF) prepared by sodium periodate oxidation, polyamine, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with sulfonate groups and Acrylamide (AM) as raw materials, CNF reinforced nanocomposite hydrogels were prepared in one step by in-situ polymerization. The tensile strength, and texture stability of the obtained nanocomposite hydrogel were determined. The results showed that the tensile strength and toughness of the obtained nanocomposite hydrogel increased four times compared with control sample due to physical and chemical double crosslinking synergies. Moreover, the texture intensity of DA-CNFs reinforced hydrogel still maintains high stability and strength performance under high salinity conditions. Therefore, DA-CNF reinforced hydrogel has potential application value in both normal and high-salinity environments in oil recovery.
Collapse
Affiliation(s)
| | - Jixiang Guo
- Unconventional Oil and Gas Institute, China University of Petroleum, Beijing 102249, China; (L.L.); (C.K.); (H.S.)
| | | | | |
Collapse
|
14
|
Girelli AM, Chiappini V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. J Biotechnol 2023; 365:29-47. [PMID: 36796453 DOI: 10.1016/j.jbiotec.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Stimuli-Responsive and Antibacterial Cellulose-Chitosan Hydrogels Containing Polydiacetylene Nanosheets. Polymers (Basel) 2023; 15:polym15051062. [PMID: 36904304 PMCID: PMC10005511 DOI: 10.3390/polym15051062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Herein, we report a stimuli-responsive hydrogel with inhibitory activity against Escherichia coli prepared by chemical crosslinking of carboxymethyl chitosan (CMCs) and hydroxyethyl cellulose (HEC). The hydrogels were prepared by esterification of chitosan (Cs) with monochloroacetic acid to produce CMCs which were then chemically crosslinked to HEC using citric acid as the crosslinking agent. To impart a stimuli responsiveness property to the hydrogels, polydiacetylene-zinc oxide (PDA-ZnO) nanosheets were synthesized in situ during the crosslinking reaction followed by photopolymerization of the resultant composite. To achieve this, ZnO was anchored on carboxylic groups in 10,12-pentacosadiynoic acid (PCDA) layers to restrict the movement of the alkyl portion of PCDA during crosslinking CMCs and HEC hydrogels. This was followed by irradiating the composite with UV radiation to photopolymerize the PCDA to PDA within the hydrogel matrix so as to impart thermal and pH responsiveness to the hydrogel. From the results obtained, the prepared hydrogel had a pH-dependent swelling capacity as it absorbed more water in acidic media as compared to basic media. The incorporation of PDA-ZnO resulted in a thermochromic composite responsive to pH evidenced by a visible colour transition from pale purple to pale pink. Upon swelling, PDA-ZnO-CMCs-HEC hydrogels had significant inhibitory activity against E. coli attributed to the slow release of the ZnO nanoparticles as compared to CMCs-HEC hydrogels. In conclusion, the developed hydrogel was found to have stimuli-responsive properties and inhibitory activity against E. coli attributed to zinc nanoparticles.
Collapse
|
16
|
Cellulose nanofibrils and silver nanoparticles enhances the mechanical and antimicrobial properties of polyvinyl alcohol nanocomposite film. Sci Rep 2022; 12:19005. [PMID: 36347953 PMCID: PMC9643461 DOI: 10.1038/s41598-022-23305-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Recent findings of microplastics in marine food such as fish, crabs and shrimps necessitate the need to develop biodegradable packaging materials. This study reports on the development of a biodegradable packing material from cellulose nanofibril-polyvinyl alcohol nanocomposite embedded with silver nanoparticles. Microcrystalline cellulose was isolated from sugarcane bagasse via the kraft process followed by conversion of cellulose I to cellulose II using NaOH/urea/water solution. The nanofibrils were then isolated using (2,2,6,6-Tetramethylpiperidin-1-yl) oxyl (TEMPO) and used as a reinforcing element in polyvinyl alcohol composite prepared through solvent casting. The tensile strength, water solubility, optical properties, water vapor permeability and wettability of the prepared films were then evaluated. The antimicrobial potency of the films was evaluated using the disc diffusion antimicrobial assay against selected microorganisms.
Collapse
|
17
|
Chemisorption of basic fuchsine in packed beds of dialdehyde cellulose fibres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Sathiyaraj G, Vinosha M, Sangeetha D, Manikandakrishnan M, Palanisamy S, Sonaimuthu M, Manikandan R, You S, Prabhu NM. Bio-directed synthesis of Pt-nanoparticles from aqueous extract of red algae Halymenia dilatata and their biomedical applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Nypelö T, Berke B, Spirk S, Sirviö JA. Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies. Carbohydr Polym 2020; 252:117105. [PMID: 33183584 DOI: 10.1016/j.carbpol.2020.117105] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
Periodate oxidation of polysaccharides has transitioned from structural analysis into a modification method for engineered materials. This review summarizes the research on this topic. Fibers, fibrils, crystals, and molecules originating from forests that have been subjected to periodate oxidation can be crosslinked with other entities via the generated aldehyde functionality, that can also be oxidized or reduced to carboxyl or alcohol functionality or used as a starting point for further modification. Periodate-oxidized materials can be subjected to thermal transitions that differ from the native cellulose. Oxidation of polysaccharides originating from forests often features oxidation of structures rather than liberated molecules. This leads to changes in macro, micro, and supramolecular assemblies and consequently to alterations in physical properties. This review focuses on these aspects of the modulation of structural hierarchies due to periodate oxidation.
Collapse
Affiliation(s)
- Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| | - Barbara Berke
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Graz, Austria
| | - Juho Antti Sirviö
- Fibre and Particle Engineering Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|