1
|
Akhter N, Batool M, Yaqoob A, Shahid M, Muhammad F, Khan J, Mudassir MA, Rasheed M, Javed S, Al Farraj DA, Alzaidi I, Iqbal R, Malaga-Toboła U, Gancarz M. Potential biological application of silver nanoparticles synthesized from Citrus paradisi leaves. Sci Rep 2024; 14:29028. [PMID: 39578494 PMCID: PMC11584760 DOI: 10.1038/s41598-024-79514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Developing sustainable and eco-friendly methods for nanoparticle (NP) production in an era of environmental consciousness is crucial. This study introduces a novel approach to synthesizing silver (Ag) NPs using Citrus paradisi leaves extract (CPLE) as a green precursor at optimum conditions of the AgNO3 (2 mM) with CPLE in 1:3 ratio, at pH 14 and 80 °C temperature for reaction time of 4 h. The CP@AgNPs were formed and stabilized by Naringen, a major Citrus paradisi component. CP@AgNPs were thoroughly characterized through ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and field emission scanning electron microscopy (FE-SEM) imaging techniques. CP@AgNPs demonstrated SPR peak at 450 nm, face cubic crystal structure, the average size of 8 nm, rod-shaped particle adsorbed on quasi-spherical shaped agglomerated NPs, significantly impacting both environmental and biomedical fields. In the catalytic degradation experiment, an application for environment pollutant reducer, CP@AgNPs, achieved an impressive 85% degradation efficiency of the methyl orange (MO) dye, showcasing their potential as a sustainable solution for wastewater treatment. Additionally, CP@AgNPs exhibited potent anti-biofilm properties, with half maximal inhibitory concentration (IC50) values of 0.13 and 0.12 mg/ml against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, indicating their promise in addressing biofilm-related issues in healthcare and industrial settings. CP@AgNPs also displayed exceptional antioxidant potential with IC50 values of 2.02, 0.07, and 0.035 mg/ml for CPLE, CP@AgNPs, and ascorbic acid, respectively, in scavenging DPPH radical, suggesting their utility in biomedical applications for mitigating oxidative stress. Notably, the bio-activity results of CP@AgNPs surpassed those of CP leaf extract, highlighting the enhanced properties achieved through this green synthesis approach. This study provides a sustainable and environmental remediation to biomedical science.
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Chemistry, Govt. Sadiq College Women University Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Musarat Batool
- Department of Chemistry, Govt. Sadiq College Women University Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Asma Yaqoob
- Institute of Biochemistry Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Faqeer Muhammad
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jallat Khan
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Ahmad Mudassir
- Chemistry Department, University of Management and Technology (UMT), Sialkot Campus, Siakot, 51310, Pakistan
| | - Majeeda Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Sana Javed
- Department of Chemistry, Govt. Sadiq College Women University Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Inshad Alzaidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Urszula Malaga-Toboła
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149, Krakow, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149, Krakow, Poland.
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
- Center for Innovation and Research on Pro-Healthy and Safe Food, University of Agriculture in Kraków, Balicka 104, 30-149, Kraków, Poland.
| |
Collapse
|
2
|
Alex AM, Subburaman S, Chauhan S, Ahuja V, Abdi G, Tarighat MA. Green synthesis of silver nanoparticle prepared with Ocimum species and assessment of anticancer potential. Sci Rep 2024; 14:11707. [PMID: 38777818 PMCID: PMC11111742 DOI: 10.1038/s41598-024-61946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Silver nanoparticles (AgNPs) have gained much attention due to their unique physical, and chemical properties. Integration of phytochemicals in nanoformulation might have higher applicability in healthcare. Current work demonstrates the synthesis of green AgNPs with O. gratissimum (gr-AgNPs) O. tenuiflorum (te-AgNPs) and O. americanum (am-AgNPs) followed by an evaluation of their antimicrobial and anticancer properties. SEM analysis revealed spherical-shaped particles with average particle sizes of 69.0 ± 5 nm for te-AgNPs, 46.9 ± 9 nm for gr-AgNPs, and 58.5 ± 18.7 nm for am-AgNPs with a polydispersity index below 0.4. The synthesized am-AgNPs effectively inhibited Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans with 23 ± 1.58 mm, 20 ± 1.68 mm, 22 ± 1.80 mm, 26 ± 1.85 mm, and 22 ± 1.40 nm of zone of inhibition respectively. Synthesized AgNPs also induced apoptotic cell death in MCF-7 in concentration-dependent manner. IC50 values for am-AgNPs, te-AgNPs, and gr-AgNPs were 14.78 ± 0.89 µg, 18.04 ± 0.63 and 15.41 ± 0.37 µg respectively which suggested that am-AgNPs were the most effective against cancer. At higher dose size (20 µg) AgNPs were equally effective to commercial standard Doxorubicin (DOX). In comparison to te-AgNPs and gr-AgNPs, am-AgNPs have higher in vitro anticancer and antimicrobial effects. The work reported Ocimum americanum for its anticancer properties with chemical profile (GCMS) and compared it with earlier reported species. The activity against microbial pathogens and selected cancer cells clearly depicted that these species have distinct variations in activity. The results have also emphasized on higher potential of biogenic silver nanoparticles in healthcare but before formulation of commercial products, detailed analysis is required with human and animal models.
Collapse
Affiliation(s)
- Asha Monica Alex
- Department of Biotechnology, St Joseph's College, (Autonomous) affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
| | | | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University Mohali (Punjab), Gharuan, India
| | - Vishal Ahuja
- University Institute of Biotechnology and University Centre for Research and Development Chandigarh University Mohali (Punjab), Gharuan, India.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
3
|
Abbas RH, Haleem AM, Kadhim A. The antimicrobial effect of simultaneously applying different diode lasers and silver nanoparticles synthesized by laser ablation on bacterial dental caries. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Ifijen IH, Atoe B, Ekun RO, Ighodaro A, Odiachi IJ. Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with Selenium Nanoparticles. BIONANOSCIENCE 2023; 13:249-277. [PMID: 36687337 PMCID: PMC9838309 DOI: 10.1007/s12668-023-01059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Toxoplasma gondii and Mycobacterium tuberculosis are pathogens that are harmful to humans. When these diseases interact in humans, the result is typically fatal to the public health. Several investigations on the relationship between M. tuberculosis and T. gondii infections have found that there is a strong correlation between them with each infection having a reciprocal effect on the other. TB may contribute to the reactivation of innate toxoplasmosis or enhance susceptibility to a new infection, and toxoplasma co-infection may worsen the severity of pulmonary tuberculosis. As a consequence, there is an earnest and urgent necessity to generate novel therapeutics that can subdue these challenges. Selenium nanostructures' compelling properties have been shown to be a successful treatment for Mycobacterium TB and Toxoplasma gondii. Despite the fact that selenium (Se) offers many health advantages for people, it also has a narrow therapeutic window; therefore, consuming too much of either inorganic or organic compounds based on selenium can be hazardous. Compared to both inorganic and organic Se, Se nanoparticles (SeNPs) are less hazardous. They are biocompatible and excellent in selectively targeting specific cells. As a consequence, this review conducted a summary of the efficacy of biogenic Se NPs in the treatment of tuberculosis (TB) and toxoplasmosis. Mycobacterium tuberculosis, Toxoplasma gondii, and their co-infection were all briefly described.
Collapse
Affiliation(s)
- Ikhazuagbe H. Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria, Iyanomo, P.M.B, 1049, Benin City, Nigeria
| | - Best Atoe
- Department of Daily Need, Worldwide Healthcare, 100, Textile Mill Road, Benin City, Edo State Nigeria
| | - Raphael O. Ekun
- grid.440833.80000 0004 0642 9705Department of Electrical Electronics, Cyprus International University, Haspolat, Lefkosa, North Cyprus Mersin 10 Turkey
| | - Augustine Ighodaro
- Depatment of Aseptic Quality, Quantum Pharmaceuticals, Quantum House, Durham, UK
| | - Ifeanyi J. Odiachi
- grid.461933.a0000 0004 0446 5040Department of Science Laboratory Technology, Delta State Polytechnic Ogwashi-Uku, Ogwashi-Uku, Nigeria
| |
Collapse
|
5
|
Das I, Gogoi B, Sharma B, Borah D. Role of metal-nanoparticles in farming practices: an insight. 3 Biotech 2022; 12:294. [PMID: 36276472 PMCID: PMC9519825 DOI: 10.1007/s13205-022-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022] Open
Abstract
Nanotechnology introduces revolutionary approaches for agriculture in the form of nano-based pesticides, fertilizers, sensors, weed-controlling agents, enhanced seed germination materials, etc. Even though metal-nanoparticles (NPs) have shown their potential to improve crop yield, the mode of action at the cellular level and fate in the human body and the environment are not well understood yet. Several metal-nanoparticles have been studied extensively by researchers for their active role in enhancing the rate of seed germination and crop quality augmentation which may happen due to several mechanisms such as increased porosity in nano-primed seeds inducing up-regulation of the expression of aquaporin and Reactive Oxygen Species (ROS) genes involved in water uptake, improving the root dehydrogenase activity to enhance the water absorption capability, etc. However, researchers have also demonstrated and reported the possible toxicity of NPs in the environment due to their agricultural practices. But the fate of NPs and their environmental impact are still unclear and largely vary based on several factors such as the size of NPs, coating material, mode of discharge and locations, etc. This review thoroughly focuses on the mode of action of various NPs in seed germination and accumulation, translocation through cells, and potential environmental and health risks.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| | - Bidisha Sharma
- Department of Botany, Cotton University, Guwahati, 781001 India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| |
Collapse
|
6
|
Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules 2022; 27:molecules27134226. [PMID: 35807470 PMCID: PMC9268287 DOI: 10.3390/molecules27134226] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs’ antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichiacoli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.
Collapse
|
7
|
Parada J, Díaz M, Hermosilla E, Vera J, Tortella G, Seabra AB, Quiroz A, Hormazábal E, Rubilar O. Synthesis and Antibacterial Activity of Manganese-Ferrite/Silver Nanocomposite Combined with Two Essential Oils. NANOMATERIALS 2022; 12:nano12132137. [PMID: 35807973 PMCID: PMC9268028 DOI: 10.3390/nano12132137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
The antimicrobial activity of metal nanoparticles obtained by biogenic routes has been extensively reported. However, their combined use with other antimicrobial formulations, such as essential oils, remains scarcely explored. In this work, a manganese-ferrite/silver nanocomposite (MnFe2O4/Ag-NC) was synthesized in a two-step procedure: first, MnFe2O4 nanoparticles were produced by a coprecipitation method, followed by in situ biogenic reduction of silver ions using Galega officinalis. MnFe2O4/Ag-NC was characterized using transmission electron microscopy (TEM), scanning electron microscopy equipped with an energy dispersive X-ray analyzer (SEM-EDX), and a vibrating sample magnetometer (VSM-SQUID). The antibacterial activity if MnFe2O4/Ag-NC was evaluated against Pseudomonas syringae by determining its minimum inhibitory concentration (MIC) in the presence of two essential oils: eucalyptus oil (EO) and garlic oil (GO). The fractional inhibitory concentration (FIC) was also calculated to determine the interaction between MnFe2O4/Ag-NC and each oil. The MIC of MnFe2O4/Ag-NC was eightfold reduced with the two essential oils (from 20 to 2.5 µg mL−1). However, the interaction with EO was synergistic (FIC: 0.5), whereas the interaction with GO was additive (FIC: 0.75). Additionally, a time-kill curve analysis was performed, wherein the MIC of the combination of MnFe2O4/Ag-NC and EO provoked a rapid bactericidal effect, corroborating a strong synergism. These findings suggest that by combining MnFe2O4/Ag-NC with essential oils, the necessary ratio of the nanocomposite to control phytopathogens can be reduced, thus minimizing the environmental release of silver.
Collapse
Affiliation(s)
- Javiera Parada
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Marcela Díaz
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Edward Hermosilla
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Joelis Vera
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
- Programa de Doctorado en Ciencias de la Ingeniería, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Gonzalo Tortella
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, Brazil;
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (A.Q.); (E.H.)
| | - Emilio Hormazábal
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (A.Q.); (E.H.)
| | - Olga Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
- Correspondence:
| |
Collapse
|
8
|
Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenço IM, Seabra AB. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics (Basel) 2021; 10:783. [PMID: 34203129 PMCID: PMC8300690 DOI: 10.3390/antibiotics10070783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Much progress has been achieved in the preparation and application of engineered nanoparticles (NPs) in the field of medicine, mainly for antibacterial and antiviral applications. In the war against bacteria and viruses, besides traditional antibiotics and antiviral drugs, metal-based nanoparticles, such as silver (AgNPs), copper (CuNPs), copper oxides (CuO-NPs), iron oxide (FeO-NPs), zinc oxide (ZnO-NPs), and titanium oxide (TiO2-NPs) have been used as potent antimicrobial agents. These nanoparticles can be synthesized by traditional methods, such as chemical and physical routes, or more recently by biogenic processes. A great variety of macro and microorganisms can be successfully used as reducing agents of metal salt precursors in the biogenic synthesis of metal-based NPs for antimicrobial activity. Depending on the nature of the biological agent, NPs with different sizes, aggregation states, morphology, surface coatings and charges can be obtained, leading to different antimicrobial effects. Considering the drug resistance to traditional therapies, the development of versatile nanomaterials with potent antimicrobial effects is under intensive investigation. In this sense, this review presents and discusses the recent progress in the preparation and application of metal-based nanoparticles biogenically synthesized for antibacterial and antivirus applications. The strength and limitations are critically discussed.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| | - Paola Duran
- Biocontrol Research Laboratory, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Isabella M. Lourenço
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| |
Collapse
|