1
|
Rezaei M, Mehdinia A. A Review on the Applications of Quantum Dots in Sample Preparation. J Sep Sci 2025; 48:e70061. [PMID: 39823177 DOI: 10.1002/jssc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions. One of the most basic issues in the development of adsorbents is to increase the effective surface and, as a result, their extraction efficiency. QDs, having an effective surface much higher than conventional nanomaterials, are a suitable option for extracting target compounds in different environments. This work comprehensively reviews QD-based extraction methods and surface modification strategies of QDs based on functional groups, ligands, and materials from 2013 to 2024. In addition, the applications of QD-based composites for the extraction of organic and inorganic analytes (residues of drugs in human blood and plasma, toxins, pesticides, pollutants from chemical industries, heavy metals, etc.) in different matrices are investigated.
Collapse
Affiliation(s)
- Mahdie Rezaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mehdinia
- Department of Ocean Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
2
|
Gazizadeh M, Foroutan Koudehi M, Fasihi H, Soleymani J, Zibaseresht R. Blue light emitting graphene quantum dots/ Rhodamine B doped gold nanostars for ratiometric detection of methotrexate. Heliyon 2024; 10:e37914. [PMID: 39323834 PMCID: PMC11422580 DOI: 10.1016/j.heliyon.2024.e37914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
In this work, an innovative ratiometric sensing platform was developed for the determination of methotrexate (MTX), an antifolate drug, a chemotherapy agent, and an immune system suppressant based on blue emission graphene quantum dots/Rhodamine B doped gold nanostars (B-GQDs/Au NSt-RB). The developed sensor was a dual-emission fluorescent probe with two major emission peaks at 440 nm (B-GQDs) and 580 nm (Au NSt-RB) by exciting at 330 nm. Based on the inhibiting effect of MTX on the system's fluorescence density, the stable ratiometric fluorescent probe was used for the rapid determination of MTX in aquatic solutions and spiked human serum samples. The results indicated good linear correlations over the logarithmic concentration range of 0.3 nM-50.0 μM. In addition, B-GQDs/Au NSt-RB can further realize highly sensitive detection of MTX with a low LOD value of 2.28 × 10-10 M. The RSD% values obtained for the intra-day and inter-day precision were 0.63-3.86 %. With recoveries of 98.2-100.1 % and 98.7-100.5 %, respectively. The short-term temperature and freeze-thaw tests confirmed the higher stability of the developed sensor. In addition, the calculated recoveries for MTX recognition in real samples were in the range of 98-102 %. These findings suggested the excellent potential of the ratiometric fluorescence B-GQDs/Au NSt-RB sensor for detecting MTX in real plasma samples.
Collapse
Affiliation(s)
- Masoud Gazizadeh
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Biomaterials and Medicinal Chemistry Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Foroutan Koudehi
- Biomaterials and Medicinal Chemistry Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hossein Fasihi
- Biomaterials and Medicinal Chemistry Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Iran
| | - Ramin Zibaseresht
- Biomaterials and Medicinal Chemistry Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Noshahr, Iran
| |
Collapse
|
3
|
Waseem Basha Z, Muniraj S, Senthil Kumar A. Neem biomass derived carbon quantum dots synthesized via one step ultrasonification method for ecofriendly methylene blue dye removal. Sci Rep 2024; 14:9706. [PMID: 38678104 PMCID: PMC11055862 DOI: 10.1038/s41598-024-59483-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
This article presents a one-step ultrasonication technique for generating biomass carbon dots (BCDs) from neem bark (Azadirachta indica) powder. The BCDs were characterized using modern techniques such as UV-Vis, FTIR, Raman, XRD, HRTEM, FESEM, EDAX, and Zeta potential analyses. Unlike traditional nanocomposite bed systems, this study utilized BCDs as a liquid-phase adsorbent for the regenerative adsorption of the environmentally harmful dye, methylene blue (MB), through an in-situ precipitation reaction. This involved the formation of BCDs-MB adduct via an electrostatic mechanism. The adsorption capacity and percentage of removal were remarkable at 605 mg g-1 and 64.7% respectively, exceeding various solid-based adsorption methods in the literature. The Langmuir isotherm and pseudo-second-order kinetics model provided an excellent fit for this system. The calculated thermodynamic parameter, Gibbs free energy change (ΔG) was negative, indicating a spontaneous, exothermic, and physisorption-based mechanism. The regenerative capacity of our system was further demonstrated by successfully extracting and recovering the MB dye (64%) using ethyl alcohol as the solvent. This method provides an efficient means of recovering valuable cationic organic dye compounds from contaminated environments.
Collapse
Affiliation(s)
- Zakriya Waseem Basha
- P.G. & Research Department of Chemistry, RKM Vivekananda College (Autonomous), Mylapore, Chennai, 600004, India
| | - Sarangapani Muniraj
- P.G. & Research Department of Chemistry, RKM Vivekananda College (Autonomous), Mylapore, Chennai, 600004, India.
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide and Green Technologies Research Centre and Department of Chemistry, School of Advance Science, Vellore Institute of Technology University, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
4
|
Basha ZW, Kumar AS, Muniraj S. Green synthesis of carbon quantum dots from teak leaves biomass for in situ precipitation and regenerative-removal of methylene blue-dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32816-x. [PMID: 38468008 DOI: 10.1007/s11356-024-32816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The objective of this study was to completely eliminate environmentally harmful cationic organic dye from aqueous solutions using the one-step ultrasonication method, renowned for its energy efficiency, user-friendliness, and minimal requirement for chemical resources, making it particularly suitable for large-scale applications. To achieve effective environmental remediation, we employed carbon dots derived from teak leaf biomass (TBCDs) layered with graphene oxide. We conducted a thorough characterization of the TBCDs using UV-vis spectroscopy (with absorption peaks at λmax = 208 and 276 nm), FTIR spectroscopy (confirming the presence of various functional groups including -OH, -CH, C = O, COO-, C-O-C, and = C-H), Raman spectroscopy (with bands at 1369 cm-1 (D-Band) and 1550 cm-1 (G-Band), and an intensity ratio (ID/IG) = 0.88, indicating structural defects correlated with the sp3 hybridization sites on the TBCDs), XRD analysis (indicating an amorphous nature of particles), HRTEM imaging (showing homogeneous dispersal of TBCDs with typical sizes ranging from 2 to 10 nm), FESEM analysis (showing a flat surface and minuscule particles), and Zeta potential analysis (revealing a surface charge peak at -51.0 mV). Our adsorption experiments yielded significant results, with a substantial 50.1 % removal rate and an impressive adsorption capacity of 735.2 mg g-1. Theoretical adsorption parameters were rigorously analyzed to understand the adsorption behavior, surface interactions, and mechanisms. Among these models, the Langmuir isotherm in conjunction with pseudo-second-order kinetics provided an exceptional fit (with R2 values closer to 1) for our system. The Gibbs free energy (ΔG) was found to be negative at all temperatures, indicating the spontaneity of the reaction. Regarding mechanism, electrostatic attraction ((+ve) MB dye + (- ve) TBCDs), π-π stacking adsorption facilitated by the graphitic structure, formation of multiple hydrogen bonds due to polar functional groups, and a pore-filling mechanism wherein the cationic MB dye fills the pores of TBCDs with graphene oxide layers, forming an adduct were identified. Furthermore, we demonstrated the regenerative capacity of our system by effectively extracting and recovering the MB dye (with a regeneration rate of 77.1%), utilizing ethyl alcohol as the solvent. These findings not only provide valuable insights into the adsorption capabilities of TBCDs but also highlight the potential of our approach in the recovery of expensive cationic organic dye compounds from polluted environments.
Collapse
Affiliation(s)
- Zakriya Waseem Basha
- P. G. & Research Department of Chemistry, RKM Vivekananda College (Autonomous), Mylapore, Chennai, 600004, Tamil Nadu, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide and Green Technology Research Centre and Department of Chemistry, School of Advance Science, Institute of Technology University, Vellore, 632 014, Tamil Nadu, India
| | - Sarangapani Muniraj
- P. G. & Research Department of Chemistry, RKM Vivekananda College (Autonomous), Mylapore, Chennai, 600004, Tamil Nadu, India.
| |
Collapse
|
5
|
Das S, Paul S, Sen B, Rudra P, Mondal S, Ali SI. Development of the Sb 4O 5Cl 2@NbSe 2 Composite: The Impact of 2H-NbSe 2 Nanoparticles on Sb 4O 5Cl 2 and Their Application for the Removal of Cr(VI)/Fe(III) and Methyl Orange from Wastewater. Inorg Chem 2024; 63:2709-2724. [PMID: 38253000 DOI: 10.1021/acs.inorgchem.3c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A potential adsorbent, Sb4O5Cl2@NbSe2 composite, was generated from the Sb4O5Cl2 photocatalyst and 5 wt % layered 2H-NbSe2 nanoparticles for the highly effective removal of Cr(VI) and Fe(III) ions and methyl orange (MO) from aqueous solution, and a comparison was drawn against the precursors. Sb4O5Cl2 crystallites and NbSe2 nanoparticles were synthesized hydrothermally, and the composite was prepared by the incipient wetness impregnation technique. The crystal structure of Sb4O5Cl2 was determined by single-crystal X-ray diffraction (SCXRD) data. Powder X-ray diffraction (PXRD) study revealed the 2H phase of NbSe2 nanoparticles. Field emission scanning electron microscopy (FESEM) analysis confirmed the formation of the spherical-shaped NbSe2 nanoparticles from rod-shaped bulk 2H-NbSe2. Morphological changes from the hexagonal to irregular prismatic shape were found upon the formation of the Sb4O5Cl2@NbSe2 composite compared to pure Sb4O5Cl2. Negative ζ-potential values indicated that electrostatic interactions were the predominant factor for the adsorption process. Sb4O5Cl2@NbSe2 provided removal efficiencies of 99% for MO in 6 h, 96.52% for Cr(VI) within 2.5 h, and 92.43% for Fe(III) within 4 h of 10 mg/L initial concentration. The maximum adsorption capacities of the composite for MO, Fe(III), and Cr(VI) were found to be 66.56, 131.48, and 122.30 mg/g, respectively, as calculated using the Langmuir isotherm equation.
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| |
Collapse
|
6
|
Tafese BN, Ganesh T, Solomon A, Sundararaju B, Garg N, Alebachew B. Efficient Adsorptive Removal of Methylene Blue Dye from Aqueous Solution Using Eragrostis Teff Biomass-Derived Nitrogen and Phosphorus-Codoped Carbon Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:72-83. [PMID: 38147594 DOI: 10.1021/acs.langmuir.3c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Carbon quantum dots have a great application potential in environmental protection via adsorption technology due to their large specific surface area and negative zeta potential. In this work, nitrogen and phosphorus-codoped carbon quantum dots (NP-CQDs) with a large specific surface area and negative zeta potential were successfully synthesized by a single-step hydrothermal synthesis. Batch adsorption studies were utilized to assess the adsorbent's capacity to remove common methylene blue (MB) dye contaminants from an aqueous solution. The experiment showed that MB dye could be removed in 30 min under optimum experimental conditions, with a removal efficiency of 93.73%. The adsorbent's large surface area of 526.063 m2/g and negative zeta potential of -12.3 mV contribute to the high removal efficiency. The Freundlich isotherm model fits the adsorption process well at 298 K, with R2 and n values of 0.99678 and 4.564, respectively, indicating its applicability. A kinetic study demonstrated that the pseudo-second-order model, rather than the pseudo-first-order model, is more suited to represent the process of MB dye adsorption onto NP-CQDs. This research established a simple and cost-effective method for developing a highly efficient NP-CQD adsorbent for organic dye degradation by adsorption.
Collapse
Affiliation(s)
- Bisrat Nigusie Tafese
- Department of Materials Science and Engineering, School of Mechanical, Chemical, and Materials Engineering (SoMCME), Adama Science and Technology University (ASTU), P.O. Box 1888, Adama 1888, Ethiopia
| | - Thothadri Ganesh
- Department of Materials Science and Engineering, School of Mechanical, Chemical, and Materials Engineering (SoMCME), Adama Science and Technology University (ASTU), P.O. Box 1888, Adama 1888, Ethiopia
| | - Abraham Solomon
- Department of Materials Science and Engineering, School of Mechanical, Chemical, and Materials Engineering (SoMCME), Adama Science and Technology University (ASTU), P.O. Box 1888, Adama 1888, Ethiopia
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Nidhi Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Biruk Alebachew
- Department of Soft Matter Physics, University of Potsdam, Am Neuen Palais 10, Potsdam 14469, Germany
| |
Collapse
|
7
|
Nizam NUM, Hanafiah MM, Mahmoudi E, Mohammad AW. Synthesis of highly fluorescent carbon quantum dots from rubber seed shells for the adsorption and photocatalytic degradation of dyes. Sci Rep 2023; 13:12777. [PMID: 37550339 PMCID: PMC10406919 DOI: 10.1038/s41598-023-40069-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
The potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered. The presence of hydroxyl, carboxyl and carbonyl functional groups indicated the significance of the oxygenated functional groups. Spectral analysis of photoluminescence for CQDs confirmed their photoluminescent quality by exhibiting high excitation intensity and possessing greenish-blue fluorescence under UV radiation. The removal percentage of the dyes adsorbed for both CR and MB dyes was 77% and 75%. Langmuir isotherm and pseudo-second-order models closely fitted the adsorption results. Thermodynamics analysis indicated that the adsorption process was exothermic and spontaneous, with excellent reusability and stability. The degradation efficiency of CQDs on both dyes was more than 90% under sunlight irradiation and obeyed the first-order kinetic model. These results demonstrated CQDs to be an excellent adsorbent and outstanding photocatalyst for organic dye degradation.
Collapse
Affiliation(s)
- Nurul Umairah M Nizam
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Gazizadeh M, Dehghan G, Soleymani J. A dual-emission ratiometric fluorescent biosensor for ultrasensitive detection of glibenclamide using S-CDs/CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122714. [PMID: 37080048 DOI: 10.1016/j.saa.2023.122714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
In the present work, sulfide-doped carbon dots (S-CDs)/cadmium sulfide quantum dots (CdS QDs) ratiometric fluorescent nanosensor has been developed for sensitive and selective determination of glibenclamide (GLC) in biological fluids. The method was based on the quenching effect of GLC on the dual-emission intensity of the S-CDs/CdS QDs system at 420 nm and 650 nm, which are related to S-CDs and CdS QDs, respectively. The fluorimetric data analysis indicated that the fluorescence signals of the system were quenched by adding GLC in a concentration-dependent manner. A good linear relationship was observed between GLC concentration and the quenched fluorescence intensity of the S-CDs/CdS QDs in the range of 0.3 nM-10.0 μM. The limit of detection (LOD) value was estimated to be 0.12 nM. Furthermore, under optimum conditions, GLC was detected in spiked human serum sample (as real media) using the developed ratiometric nanosensor with an accuracy of 99.6%. According to the results, the developed dual-emission system can be used as a reliable method for the quantitative detection of GLC in biological samples.
Collapse
Affiliation(s)
- Masoud Gazizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Wang C, Zhu D, Bi H, Zhang Z, Zhu J. Synthesis of Nitrogen and Phosphorus/Sulfur Co-Doped Carbon Xerogels for the Efficient Electrocatalytic Reduction of p-Nitrophenol. Int J Mol Sci 2023; 24:ijms24032432. [PMID: 36768750 PMCID: PMC9916709 DOI: 10.3390/ijms24032432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Carbon xerogels co-doped with nitrogen (N) and phosphorus (P) or sulfur (S) were synthesized and employed as catalysts for the electrocatalytic reduction of p-nitrophenol (p-NP). The materials were prepared by first synthesizing N-doped carbon xerogels (NDCX) via the pyrolysis of organic gels, and then introducing P or S atoms to the NDCX by a vapor deposition method. The materials were characterized by various measurements including X-ray diffraction, N2 physisorption, Transmission electron microscopy, Fourier Infrared spectrometer, and X-ray photoelectron spectra, which showed that N atoms were successfully doped to the carbon xerogels, and the co-doping of P or S atoms affected the existing status of N atoms. Cyclic voltammetry (CV) scanning manifested that the N and P co-doped materials, i.e., P-NDCX-1.0, was the most suitable catalyst for the reaction, showing an overpotential of -0.569 V (vs. Ag/AgCl) and a peak slop of 695.90 μA/V. The material was also stable in the reaction and only a 14 mV shift in the reduction peak overpotential was observed after running for 100 cycles.
Collapse
|
10
|
Azizi M, Teymourian T, Teymoorian T, Gheibi M, Kowsari E, Hajiaghaei–Keshteli M, Ramakrishna S. A smart and sustainable adsorption-based system for decontamination of amoxicillin from water resources by the application of cellular lightweight concrete: experimental and modeling approaches. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Puri C, Arora M, Rajesh, Sumana G. Optical Absorption Investigations for efficient Crystal Violet Dye removal from wastewater via Carbon nanotubes: Montmorillonite based Nanocomposite. LUMINESCENCE 2022. [PMID: 36073109 DOI: 10.1002/bio.4374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
The current study reports a facile method to fabricate functionalized multi-walled carbon nanotubes and montmorillonite clay mineral-based nano-composite matrix and its detailed characterization using spectroscopic and morphological techniques. The nanocomposites have been studied for their potential applications in the treatment of contaminated water using batch adsorption studies. The investigations conducted using optical absorption spectroscopic measurements for the adsorption process indicate that the nanocomposite matrix can effectively remove almost 98% of the dye from aqueous solution. The nanocomposites have showed fast and strong adsorption behaviour for the dye with the maximum adsorption capacity (qm ) of ~ 467.3 mg g-1 in 25 min. The experimental data at equilibrium were also correlated with the theoretical adsorption isotherm and kinetic models. The results demonstrate that the experimental data fits well to the Freundlich adsorption isotherm model and conforms to second order kinetics. Furthermore, the nanocomposite exhibits good recyclability without any marked decrease in the adsorption performance even after five adsorption cycles of usage which indicates its potential application as reusable adsorbent for the efficient removal of hazardous dyes from contaminated water.
Collapse
Affiliation(s)
- Chandni Puri
- CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manju Arora
- CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, India
| | - Rajesh
- CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
13
|
Kumarage S, Munaweera I, Kottegoda N. Contemporary, Multidisciplinary Roles of Mesoporous Silica Nanohybrids/Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
- Centre for Advanced Materials Research (CAMR) Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| |
Collapse
|
14
|
Graphene oxide-assisted synthesis of N, S Co-doped carbon quantum dots for fluorescence detection of multiple heavy metal ions. Talanta 2022; 241:123224. [DOI: 10.1016/j.talanta.2022.123224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
|
15
|
Hui KC, Ang WL, Yahya WZN, Sambudi NS. Effects of nitrogen/bismuth-doping on the photocatalyst composite of carbon dots/titanium dioxide nanoparticles (CDs/TNP) for enhanced visible light-driven removal of diclofenac. CHEMOSPHERE 2022; 290:133377. [PMID: 34952025 DOI: 10.1016/j.chemosphere.2021.133377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The present work demonstrates the coupling of titanium dioxide, TiO2 nanoparticles (TNP) with N-doped, Bi-doped, and N-Bi co-doped rice husk-derived carbon dots (CDs) via a facile dispersion method, forming respective photocatalyst composites of CDs/TNP, N-CDs/TNP, Bi-CDs/TNP and N-Bi-CDs/TNP. Characterization analyzes verified the successful incorporation of respective CDs samples into TNP, forming photocatalyst composite with narrowed band gap and quenched photoluminescence intensity. Photocatalytic activity of TNP and the respective composites was investigated for photodegradation of diclofenac (DCF) under both simulated sunlight and natural sunlight irradiation. The as-prepared N-Bi-CDs/TNP composite showed the best photocatalytic performance among all composites, able to completely degrade 5 ppm of DCF within 60 min and 180 min under both types of visible light irradiation, respectively. The N-Bi-CDs/TNP composite also showed a TOC removal efficiency up to 87.63%. N-Bi-CDs, worked as photosensitizer and electron reservoir, contributed to the outstanding photocatalytic activity of N-Bi-CDs/TNP, whereby the recombination was prolonged and light absorption was shifted towards the visible light region. Furthermore, the composite of N-Bi-CDs/TNP also demonstrated good stability and reusability over repeated degradation cycles. The photodegradation of DCF resulted into several intermediates, which were identified from LC-MS analysis. The present work could provide an insight on the application of heteroatoms doped and co-doped carbon dots in semiconductor oxide as high performance photocatalysts.
Collapse
Affiliation(s)
- Khee Chung Hui
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Wei Lun Ang
- Chemical Engineering Programme, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Wan Zaireen Nisa Yahya
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Nonni Soraya Sambudi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Urban Resource Sustainability (CUReS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
| |
Collapse
|
16
|
Hashemi N, Mousazadeh MH. Green synthesis of photoluminescent carbon dots derived from red beetroot as a selective probe for Pd2+ detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Verification of pore size effect on aqueous-phase adsorption kinetics: A case study of methylene blue. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|