1
|
Vit P, Araque M, Chuttong B, Moreno E, Contreras RR, Wang Q, Wang Z, Betta E, Bankova V. Pot-Pollen Volatiles, Bioactivity, Synergism with Antibiotics, and Bibliometrics Overview, Including Direct Injection in Food Flavor. Foods 2024; 13:3879. [PMID: 39682953 DOI: 10.3390/foods13233879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Stingless bees (Hymenoptera; Apidae; Meliponini), with a biodiversity of 605 species, harvest and transport corbicula pollen to the nest, like Apis mellifera, but process and store the pollen in cerumen pots instead of beeswax combs. Therefore, the meliponine pollen processed in the nest was named pot-pollen instead of bee bread. Pot-pollen has nutraceutical properties for bees and humans; it is a natural medicinal food supplement with applications in health, food science, and technology, and pharmaceutical developments are promising. Demonstrated synergism between Tetragonisca angustula pot-pollen ethanolic extracts, and antibiotics against extensively drug-resistant (XDR) bacteria revealed potential to combat antimicrobial resistance (AMR). Reviewed pot-pollen VOC richness was compared between Australian Austroplebeia australis (27), Tetragonula carbonaria (31), and Tetragonula hogkingsi (28), as well as the Venezuelan Tetragonisca angustula (95). Bioactivity and olfactory attributes of the most abundant VOCs were revisited. Bibliometric analyses with the Scopus database were planned for two unrelated topics in the literature for potential scientific advances. The top ten most prolific authors, institutions, countries, funding sponsors, and sources engaged to disseminate original research and reviews on pot-pollen (2014-2023) and direct injection food flavor (1976-2023) were ranked. Selected metrics and plots were visualized using the Bibliometrix-R package. A scholarly approach gained scientific insight into the interaction between an ancient fermented medicinal pot-pollen and a powerful bioanalytical technique for fermented products, which should attract interest from research teams for joint projects on direct injection in pot-pollen flavor, and proposals on stingless bee nest materials. Novel anti-antimicrobial-resistant agents and synergism with conventional antibiotics can fill the gap in the emerging potential to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Maria Araque
- Laboratory of Molecular Microbiology, Department of Microbiology and Parasitology, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Enrique Moreno
- Smithsonian Tropical Research Institute, Calle Portobelo, Balboa, Ancon 0843-03092, Panama
| | - Ricardo R Contreras
- Department of Chemistry, Faculty of Science, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Qibi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650033, China
| | - Emanuela Betta
- Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
de Almeida ELM, da Silveira WB, Fietto LG, Silva MS, Santana WC, Eller MR. Genome assembly and variant analysis of two Saccharomyces cerevisiae strains isolated from stingless bee pollen. Gene 2024; 927:148722. [PMID: 38914244 DOI: 10.1016/j.gene.2024.148722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Products from stingless bees are rich reservoirs of microbial diversity, including yeasts with fermentative potential. Previously, two Saccharomyces cerevisiae strains, JP14 and IP9, were isolated from Jataí (Tetragonisca angustula) and Iraí (Nannotrigona testaceicornis) bees, respectively, aiming at mead production. Both strains presented great osmotic and sulfite tolerance, and ethanol production, although they have a high free amino nitrogen demand. Herein, their genomes were sequenced, assembled, and annotated, and the variants were compared to the S. cerevisiae S288c reference strain. The final assembly of IP9 and JP14 presented high N50 and BUSCO scores, and more than 6430 protein-coding genes. Additionally, nQuire predicted the ploidy of IP9 as diploid, but the results were not enough to determine the ploidy of JP14. The mitochondrial genomes of IP9 and JP14 presented the same gene content as S288c but the genes were rearranged and fragmented in different patterns. Meanwhile, the genes with mutations of high impact (e.g., indels, gain of stop codon) for both yeasts were enriched for transmembrane transport, electron transfer, oxidoreductase, heme binding, fructose, mannose, and glucose transport, activities related to the respiratory chain and sugar metabolism. The IP9 strain presented copy number gains in genes related to sugar transport and cell morphogenesis; in JP14, genes were enriched for disaccharide metabolism and transport, response to reactive oxygen species, and polyamine transport. On the other hand, IP9 presented copy number losses related to disaccharide, thiamine, and aldehyde metabolism, while JP14 presented depletions related to disaccharide, oligosaccharide, asparagine, and aspartate metabolism. Notably, both strains presented a killer toxin gene, annotated from the assembling of unmapped reads, representing a potential mechanism for the control of other microorganisms population in the environment. Therefore, the annotated genomes of JP14 and IP9 presented a high selective pressure for sugar and nitrogen metabolism and stress response, consistent with their isolation source and fermentative properties.
Collapse
Affiliation(s)
- Eduardo Luís Menezes de Almeida
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Luciano Gomes Fietto
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mayara Salgado Silva
- Department of Food Technology, Federal Institute of Education, Science and Technology of Ceará, Limoeiro Do Norte, Brazil
| | | | - Monique Renon Eller
- Department of Food Technology - Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
3
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
4
|
Schinca C, González MN, Carrau F, Medina K. Biodiversity and brewing attitude of non-Saccharomyces strains isolated from Uruguayan vineyards and other ecosystems. Int J Food Microbiol 2024; 412:110529. [PMID: 38181520 DOI: 10.1016/j.ijfoodmicro.2023.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
In recent years, interest in non-Saccharomyces yeasts for the innovation and development of different and alternative beer styles has been increasing, especially for the microbrewing industry. This work studied the biodiversity of non-Saccharomyces yeasts based on isolates from grapes of different Uruguayan vineyards, craft breweries and raw materials, with the aim of selecting autochthonous non-Saccharomyces yeasts with a brewing attitude. Brewing tests were performed on synthetic wort developed for this purpose, and the evolution of alcoholic fermentation was monitored by measuring glucose, maltose, maltotriose consumption, ethanol and glycerol production and final sensory analysis. A total of two hundred seventy-one yeast strains belonging to different genera were evaluated according to these parameters. After evaluating alcoholic fermentation performance, a native yeast strain belonging to the species Starmerella meliponinorum was selected due to its high maltotriose consumption and glycerol production, making it a very promising brewing yeast, especially for production of low carbohydrate beers.
Collapse
Affiliation(s)
- C Schinca
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - M N González
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - F Carrau
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay
| | - K Medina
- Universidad de la República, Oenology and Fermentation Biotechnology Laboratory, Food Science and Technology Department, Facultad de Química, 11800 Montevideo, Uruguay.
| |
Collapse
|
5
|
Liu Y, Jiang B, Wang K. A review of fermented bee products: Sources, nutritional values, and health benefits. Food Res Int 2023; 174:113506. [PMID: 37986501 DOI: 10.1016/j.foodres.2023.113506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Bee products have garnered considerable interest due to their abundant nutritional content and versatile biological activities. The utilization of bee products as fermentation materials has shown favorable potential for increasing nutrients, altering texture, and endorsing unique tastes. This review critically examines the existing literature on fermented bee products, with a specific emphasis on the impact of fermentation on their nutritional composition and potential health benefits. The raw materials, strains, conditions, and methodologies employed in the fermentation of bee products, as well as the utilization of bee products as fermentation raw materials/excipients, are reviewed. We also present a special focus on the nutritional composition and content of bioactive substances, such as polyphenols and volatile organic compounds, in fermented bee products. Additionally, the influence of fermentation on bee product ingredients and their health benefits is summarized. Fermented bee products substantially benefit human health, with superior antioxidant, anti-inflammatory, and anti-allergic properties compared to non-fermented bee products. Finally, this article discusses the types, strains, health benefits, production processes, and market prospects of fermented bee products, which are expected to become an important part of human food culture as functional food or nutritional supplements. The aforementioned findings highlight the remarkable nutritional value and bioactive properties exhibited by fermented bee products.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bokai Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
6
|
Rutkowski D, Weston M, Vannette RL. Bees just wanna have fungi: a review of bee associations with nonpathogenic fungi. FEMS Microbiol Ecol 2023; 99:fiad077. [PMID: 37422442 PMCID: PMC10370288 DOI: 10.1093/femsec/fiad077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Bee-fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter fungal communities associated with bees, potentially disrupting bee-fungi associations. We recommend that future study focus on fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and mechanistic effects on bees.
Collapse
Affiliation(s)
- Danielle Rutkowski
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Makena Weston
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Rachel L Vannette
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
7
|
Santos ACC, Borges LDF, Rocha NDC, de Carvalho Azevedo VA, Bonetti AM, Dos Santos AR, da Rocha Fernandes G, Dantas RCC, Ueira-Vieira C. Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Sci Rep 2023; 13:5147. [PMID: 36991089 PMCID: PMC10060228 DOI: 10.1038/s41598-023-32298-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Stingless bees are a diverse group with a relevant role in pollinating native species. Its diet is rich in carbohydrates and proteins, by collecting pollen and nectar supplies the development of its offspring. Fermentation of these products is associated with microorganisms in the colony. However, the composition of microorganisms that comprise this microbiome and its fundamental role in colony development is still unclear. To characterize the colonizing microorganisms of larval food in the brood cells of stingless bees Frieseomelitta varia, Melipona quadrifasciata, Melipona scutellaris, and Tetragonisca angustula, we have utilized molecular and culture-based techniques. Bacteria of the phyla Firmicutes, Proteobacteria, Actinobacteria, and fungi of the phyla Ascomycota, Basidiomycota, Mucoromycota, and Mortierellomycota were found. Diversity analysis showed that F. varia had a greater diversity of bacteria in its microbiota, and T. angustula had a greater diversity of fungi. The isolation technique allowed the identification of 189 bacteria and 75 fungi. In summary, this research showed bacteria and fungi associated with the species F. varia, M. quadrifasciata, M. scutellaris, and T. angustula, which may play an essential role in the survival of these organisms. Besides that, a biobank with bacteria and fungus isolates from LF of Brazilian stingless bees was created, which can be used for different studies and the prospection of biotechnology compounds.
Collapse
Affiliation(s)
- Ana Carolina Costa Santos
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | | | - Nina Dias Coelho Rocha
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Bonetti
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | | | - Carlos Ueira-Vieira
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
8
|
Synergic Involvements of Microorganisms in the Biomedical Increase of Polyphenols and Flavonoids during the Fermentation of Ginger Juice. Int J Microbiol 2020; 2020:8417693. [PMID: 33110428 PMCID: PMC7579675 DOI: 10.1155/2020/8417693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Steered fermentation by microorganisms gives great added value in the nutritional quality of local food. Ginger rhizome naturally contains a myriad of bioactive compounds including polyphenol and flavonoids. The aim of this work was to ferment the ginger juice, to evaluate the biochemical parameters of ginger wine, and to understand the involvement of microorganisms in the bioincrease of polyphenol compounds. Titratable acidity and pH values were determined and showed that pH is around 1.6 at the end of the fermentation when the acidity is around 6.431 g/L. Using colorimetric assay, the total polyphenolic and flavonoid compounds were evaluated throughout the fermentation. The variation of the polyphenol and flavonoid concentrations of the unsweetened sample was around 10.18 to 14.64 mg Eq AG/g and 1.394 to 2.224 mg Eq Cat/g Ms, but those from the sweet sample were around 10.82 to 18.34 mg Eq AG/g Ms and 1.311 to 2.290 mg Eq Cat/g. Using one-step PCR, multiplex techniques with specific primers, with yeast-like phenotype 27.27% (6), have been assigned among 22 isolates to Saccharomyces cerevisiae. By using PCR multiplex techniques, Bacillus licheniformis, Bacillus pumilus, Bacillus safensis, and Saccharomyces cerevisiae have been identified. Together with Saccharomyces cerevisiae, we showed that Bacillus sp. are able to secrete enzymatic landscape with some activities up to 50% including cellulase, amylase, pectinase, and protease.
Collapse
|