1
|
Odoj K, Garlasco J, Pezzani MD, Magnabosco C, Ortiz D, Manco F, Galia L, Foster SK, Arieti F, Tacconelli E. Tracking Candidemia Trends and Antifungal Resistance Patterns across Europe: An In-Depth Analysis of Surveillance Systems and Surveillance Studies. J Fungi (Basel) 2024; 10:685. [PMID: 39452637 PMCID: PMC11514733 DOI: 10.3390/jof10100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The WHO fungal priority list classifies Candida species as critical and high-priority pathogens, and the WHO GLASS fungi initiative seeks to establish a standardised global framework for antifungal resistance monitoring. We aimed to review resistance rates and antifungal resistance patterns across European surveillance systems and studies in response to these recent calls for action. METHODS A systematic review of national and international surveillance systems and peer-reviewed surveillance studies available up to June 2024 was conducted. Descriptive and trend analyses were performed on surveillance data reporting resistance to different antifungals in Candida spp. RESULTS In total, 6 national surveillance systems and 28 studies from 13 countries provided candidemia resistance data, mostly about the C. albicans, C. glabrata and C. parapsilosis complex. Azole resistance was most frequently reported (6/6 surveillance systems and 27/28 studies) with the highest resistance rate, especially for C. glabrata, in Croatia (100%, 28/28 isolates) and Slovenia (85.7%, 82/96) and C. parapsilosis in Croatia (80.6%, 54/67) and Italy (72.6%, 106/146). Echinocandin and polyene resistance rates were nearly zero. The number of isolates included in the surveillance systems increased over the years, particularly for C. albicans (+40-60 isolates/year), C. glabrata, and C. parapsilosis (+15-30 isolates/year). No surveillance system or study reported resistance data for C. auris. Pooled data from national surveillance revealed a decreasing trend in azole resistance in C. albicans and C. glabrata. The increasing azole-resistance trend in C. parapsilosis disappeared after adjusting for between-country heterogeneity. Overall, echinocandin and polyene resistance trends appeared relatively stable. CONCLUSIONS Awareness of antifungal resistance is growing, but further actions are needed to strengthen surveillance capacity and knowledge-sharing networks across Europe.
Collapse
Affiliation(s)
- Karin Odoj
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Jacopo Garlasco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Maria Diletta Pezzani
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Cristina Magnabosco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Diego Ortiz
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Federica Manco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Liliana Galia
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Sarah K. Foster
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Fabiana Arieti
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Evelina Tacconelli
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| |
Collapse
|
2
|
Štefánek M, Wenner S, Borges V, Pinto M, Gomes JP, Rodrigues J, Faria I, Pessanha MA, Martins F, Sabino R, Veríssimo C, Nogueira ID, Carvalho PA, Bujdáková H, Jordao L. Antimicrobial Resistance and Biofilms Underlying Catheter-Related Bloodstream Coinfection by Enterobacter cloacae Complex and Candida parapsilosis. Antibiotics (Basel) 2022; 11:antibiotics11091245. [PMID: 36140024 PMCID: PMC9495738 DOI: 10.3390/antibiotics11091245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Biofilm-associated infections are a public health concern especially in the context of healthcare-associated infections such as catheter-related bloodstream infections (CRBSIs). We evaluated the biofilm formation and antimicrobials resistance (AMR) of Enterobacter cloacae complex and Candida parapsilosis co-isolated from a CRBSI patient. Antimicrobial susceptibility of central venous catheters (CVCs) and hemoculture (HC) isolates was evaluated, including whole genome sequencing (WGS) resistome analysis and evaluation of gene expression to obtain insight into their AMR determinants. Crystal violet assay was used to assess dual biofilm biomass and microscopy was used to elucidate a microorganism’s distribution within biofilms assembled on different materials. Bacteria were multidrug-resistant including resistance to colistin and beta-lactams, likely linked to the mcr-9-like phosphoethanolamine transferase and to an ACT family cephalosporin-hydrolyzing class C beta-lactamase, respectively. The R398I and Y132F mutations in the ERG11 gene and its differential expression might account for C. parapsilosis resistance to fluconazole. The phenotype of dual biofilms assembled on glass, polystyrene and polyurethane depends on the material and how biofilms were initiated by one or both pathogens. Biofilms assembled on polyurethane were denser and richer in the extracellular polymeric matrix, and microorganisms were differently distributed on the inner/outer surface of the CVC.
Collapse
Affiliation(s)
- Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | | | - Vítor Borges
- Genomics and Bioinformatic Unit, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatic Unit, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatic Unit, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - João Rodrigues
- Unidade Laboratorial Integrada de Microbiologia, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
| | - Isabel Faria
- Laboratório de Microbiologia e Biologia Molecular do Serviço de Patologia Clínica, Centro Hospitalar de lisboa Ocidental (CHLO), 1349-019 Lisboa, Portugal
| | - Maria Ana Pessanha
- Laboratório de Microbiologia e Biologia Molecular do Serviço de Patologia Clínica, Centro Hospitalar de lisboa Ocidental (CHLO), 1349-019 Lisboa, Portugal
| | - Filomena Martins
- Direção do Programa de Prevenção e Controlo de Infeção e Resistência aos Antimicrobianos, Centro Hospitalar de lisboa Ocidental (CHLO), 1349-019 Lisboa, Portugal
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
| | | | | | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Unidade de Investigação & Desenvolvimento, Departamento de Saúde Ambiental, Instituto Nacional de Saude Dr. Ricardo Jorge (INSA),1649-016 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
3
|
Bagirova NS, Goremykina EA, Slukin PV, Khokhlova OE, Fursova NK, Petukhova IN, Grigorievskaya ZV. Candidemia in cancer patients: phenotypical and molecular-genetic characteristics of antifungal drug resistance, pathogenic factor genes of Candida spp. SIBERIAN JOURNAL OF ONCOLOGY 2022; 21:70-80. [DOI: 10.21294/1814-4861-2022-21-3-70-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Relevance. The global trend of rapid increase in resistance to antifungal drugs due to multiple factors, dictates the need for continuous monitoring of taxonomic structure and susceptibility of nosocomial pathogens, causing invasive fungal infections, for permanent correction of the optimal prevention and treatment strategies. Purpose: to determine antifungal susceptibility of the main yeast pathogens in candidemia in cancer patients, as well as to determine resistance genes and pathogenic factor genes. Material and Methods. Eighty-two strains of Candida spp. isolated from blood of cancer patients from 2015 to 2021 were analyzed. Minimum inhibitory concentrations of fuconazole, voriconazole, posaconazole, anidulafungin and micafungin were determined by a gradient method (E-test, BioMerieux, France). The EUCAST and CLSI criteria were used for MIC value assessment. The genes, associated with pathogenicity factors, and resistance to antifungal drugs were identifed. Results. Our study results based on EUCAST 2020, v.10.0 criteria showed that triazoles, especially fuconazole, were the least effective drugs in empirical therapy for invasive candidiasis (including candidemia). Resistance of Candida spp. fuconazole was superior to that of voriconazole (47.2 % vs 23.2 %, respectively, p<0.01) and posaconazole (47.2 % vs 30.4 %, respectively, p><0.05). The highest in vitro activity was observed in echinocandins, and anidulafungin was 2 times more active than micafungin (4.1 % of resistant strains vs 11.4 %, respectively), with no statistically signifcant difference (p>0.05). The ERG11 and FKS1 genes associated with resistance to antifungal drugs were detected in 28.6 % of Candida spp. strains. The ERG11 gene was detected in 8.6 % of cases, exclusively in Candida albicans strains. The FKS1 gene was identifed in 20.0 % of strains (85.7 % of them were C. parapsilosis, 7.1 % each were C. tropicalis and C. glabrata). Pathogenic factor genes were identifed in 78.6 % of C. albicans and in 79.1 % of C. parapsilosis strains. Conclusion. Molecular genetic methods for the detection of Candida spp strains carrying resistance genes to antifungal drugs, and the determination of pathogenicity factors are promising trends in searching for biomarkers. They facilitate interpretation of results of microbiological study to assess the ability of Candida spp. strains to develop invasive mycoses.
Collapse
Affiliation(s)
- N. S. Bagirova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
| | - E. A. Goremykina
- Pushchino State Institute of Natural Sciences; State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - P. V. Slukin
- State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - O. E. Khokhlova
- Pushchino State Institute of Natural Sciences; State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - N. K. Fursova
- Pushchino State Institute of Natural Sciences; State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - I. N. Petukhova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
| | - Z. V. Grigorievskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
| |
Collapse
|
4
|
Thomaz DY, de Almeida JN, Sejas ONE, Del Negro GMB, Carvalho GOMH, Gimenes VMF, de Souza MEB, Arastehfar A, Camargo CH, Motta AL, Rossi F, Perlin DS, Freire MP, Abdala E, Benard G. Environmental Clonal Spread of Azole-Resistant Candida parapsilosis with Erg11-Y132F Mutation Causing a Large Candidemia Outbreak in a Brazilian Cancer Referral Center. J Fungi (Basel) 2021; 7:259. [PMID: 33808442 PMCID: PMC8066986 DOI: 10.3390/jof7040259] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Clonal outbreaks due to azole-resistant Candida parapsilosis (ARCP) isolates have been reported in numerous studies, but the environmental niche of such isolates has yet to be defined. Herein, we aimed to identify the environmental niche of ARCP isolates causing unremitting clonal outbreaks in an adult ICU from a Brazilian cancer referral center. C. parapsilosis sensu stricto isolates recovered from blood cultures, pericatheter skins, healthcare workers (HCW), and nosocomial surfaces were genotyped by multilocus microsatellite typing (MLMT). Antifungal susceptibility testing was performed by the EUCAST (European Committee for Antimicrobial Susceptibility Testing) broth microdilution reference method and ERG11 was sequenced to determine the azole resistance mechanism. Approximately 68% of isolates were fluconazole-resistant (76/112), including pericatheter skins (3/3, 100%), blood cultures (63/70, 90%), nosocomial surfaces (6/11, 54.5%), and HCW's hands (4/28, 14.2%). MLMT revealed five clusters: the major cluster contained 88.2% of ARCP isolates (67/76) collected from blood (57/70), bed (2/2), pericatheter skin (2/3), from carts (3/7), and HCW's hands (3/27). ARCP isolates were associated with a higher 30 day crude mortality rate (63.8%) than non-ARCP ones (20%, p = 0.008), and resisted two environmental decontamination attempts using quaternary ammonium. This study for the first time identified ARCP isolates harboring the Erg11-Y132F mutation from nosocomial surfaces and HCW's hands, which were genetically identical to ARCP blood isolates. Therefore, it is likely that persisting clonal outbreak due to ARCP isolates was fueled by environmental sources. The resistance of Y132F ARCP isolates to disinfectants, and their potential association with a high mortality rate, warrant vigilant source control using effective environmental decontamination.
Collapse
Affiliation(s)
- Danilo Y. Thomaz
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (G.O.M.H.C.); (V.M.F.G.)
| | - João N. de Almeida
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (G.O.M.H.C.); (V.M.F.G.)
- Central Laboratory Division (LIM-03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil; (A.L.M.); (F.R.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Odeli N. E. Sejas
- Cancer Institute of São Paulo State, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (O.N.E.S.); (M.E.B.d.S.); (M.P.F.); (E.A.)
| | - Gilda M. B. Del Negro
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (G.O.M.H.C.); (V.M.F.G.)
| | - Gabrielle O. M. H. Carvalho
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (G.O.M.H.C.); (V.M.F.G.)
| | - Viviane M. F. Gimenes
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (G.O.M.H.C.); (V.M.F.G.)
| | - Maria Emilia B. de Souza
- Cancer Institute of São Paulo State, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (O.N.E.S.); (M.E.B.d.S.); (M.P.F.); (E.A.)
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Carlos H. Camargo
- Bacteriology Center, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil;
| | - Adriana L. Motta
- Central Laboratory Division (LIM-03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil; (A.L.M.); (F.R.)
| | - Flávia Rossi
- Central Laboratory Division (LIM-03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil; (A.L.M.); (F.R.)
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Maristela P. Freire
- Cancer Institute of São Paulo State, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (O.N.E.S.); (M.E.B.d.S.); (M.P.F.); (E.A.)
| | - Edson Abdala
- Cancer Institute of São Paulo State, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (O.N.E.S.); (M.E.B.d.S.); (M.P.F.); (E.A.)
| | - Gil Benard
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (G.O.M.H.C.); (V.M.F.G.)
| |
Collapse
|
5
|
Oliveira LT, Medina-Alarcón KP, Singulani JDL, Fregonezi NF, Pires RH, Arthur RA, Fusco-Almeida AM, Mendes Giannini MJS. Dynamics of Mono- and Dual-Species Biofilm Formation and Interactions Between Paracoccidioides brasiliensis and Candida albicans. Front Microbiol 2020; 11:551256. [PMID: 33178146 PMCID: PMC7591818 DOI: 10.3389/fmicb.2020.551256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
The oral cavity is a highly diverse microbial environment in which microorganisms interact with each other, growing as biofilms on biotic and abiotic surfaces. Understanding the interaction among oral microbiota counterparts is pivotal for clarifying the pathogenesis of oral diseases. Candida spp. is one of the most abundant fungi in the oral mycobiome with the ability to cause severe soft tissue lesions under certain conditions. Paracoccidioides spp., the causative agent of paracoccidioidomycosis, may also colonize the oral cavity leading to soft tissue damage. It was hypothesized that both fungi can interact with each other, increasing the growth of the biofilm and its virulence, which in turn can lead to a more aggressive infectivity. Therefore, this study aimed to evaluate the dynamics of mono- and dual-species biofilm growth of Paracoccidioides brasiliensis and Candida albicans and their infectivity using the Galleria mellonella model. Biomass and fungi metabolic activity were determined by the crystal violet and the tetrazolium salt reduction tests (XTT), respectively, and the colony-forming unit (CFU) was obtained by plating. Biofilm structure was characterized by both scanning electronic- and confocal laser scanning- microscopy techniques. Survival analysis of G. mellonella was evaluated to assess infectivity. Our results showed that dual-species biofilm with P. brasiliensis plus C. albicans presented a higher biomass, higher metabolic activity and CFU than their mono-species biofilms. Furthermore, G. mellonella larvae infected with P. brasiliensis plus C. albicans presented a decrease in the survival rate compared to those infected with P. brasiliensis or C. albicans, mainly in the form of biofilms. Our data indicate that P. brasiliensis and C. albicans co-existence is likely to occur on oral mucosal biofilms, as per in vitro and in vivo analysis. These data further widen the knowledge associated with the dynamics of fungal biofilm growth that can potentially lead to the discovery of new therapeutic strategies for these infections.
Collapse
Affiliation(s)
- Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Kaila Petronila Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Nathália Ferreira Fregonezi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, University of Franca, Franca, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | | |
Collapse
|
6
|
SCORZONI LILIANA, MENEZES RAQUELTDE, PEREIRA THAISC, OLIVEIRA PRISCILAS, RIBEIRO FELIPEDECAMARGO, SANTOS EVELYNLUZIADESOUZA, FUGISAKI LUCIANAR, OLIVEIRA LUCIANEDDE, AMORIM JOSÉBENEDITOO. Antifungal and anti-biofilm effect of the calcium channel blocker verapamil on non-albicans Candida species. ACTA ACUST UNITED AC 2020; 92:e20200703. [DOI: 10.1590/0001-3765202020200703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
|