1
|
Hernandez-Valencia JC, Gómez GF, Correa MM. Metagenomic analysis evidences a core virome in Anopheles darlingi from three contrasting Colombian ecoregions. PLoS One 2025; 20:e0320593. [PMID: 40305569 PMCID: PMC12043238 DOI: 10.1371/journal.pone.0320593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
Anopheles darlingi is a main malaria vector in the neotropical region, but its viral component is not well studied, especially in the neotropics. This work aimed to analyze the virome in Anopheles darlingi from malaria endemic regions of Colombia. Specimens were collected from the Bajo Cauca, Chocoan Pacific and northwestern Amazonas regions and analyzed using an RNA-Seq approach. Results revealed a variety of RNA viral sequences with homology to those of Insect-Specific Viruses belonging to Rhabdoviridae, Partitiviridae, Metaviridae, Tymoviridae, Phasmaviridae, Totiviridae, Ortervirales and Riboviria. Despite geographical and ecological differences among regions, the An. darlingi viral composition remains consistent in different areas, with a core group of viral operational taxonomic units-vOTUs shared by the populations. Furthermore, diversity analysis uncovered greater dissimilarities in viral sequence among mosquitoes from geographically distant regions, particularly evident between populations located at both sides of the Andes Mountain range. This study provides the first characterization of the metavirome in An. darlingi from Colombia and lays the foundation for future research on the complex interactions among viruses, hosts, and microbiota; it also opens a new line of investigation on the viruses in Anopheles populations of Colombia.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Giovan F. Gómez
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Braga CM, da Silva SP, Neto JPN, Medeiros DBDA, Cruz ACR, Nascimento BLSD, Pinheiro LRS, Martins LC. Viral metagenomics of hematophagous insects collected in the Carajas mining complex, Pará State, Brazil. Acta Trop 2025; 263:107551. [PMID: 39938727 DOI: 10.1016/j.actatropica.2025.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Hematophagous insects are vectors of viruses that cause diseases in humans and animals worldwide. Mosquitoes (Culicidae), biting midges (Ceratopogonidae), and sandflies (Psychodidae) were collected in three municipalities (Marabá, Canaã dos Carajás, and Curionópolis) in the state of Pará, Brazil, in 2019. Morphological keys were used for the taxonomic identification of insect species. High-throughput sequencing and metagenomic analysis were employed to characterize the viromes of the hematophagous insects. We characterized the virome of 839 insects grouped into 14 pools. A total of 729 million paired reads were generated, with 12 million viral sequences (3 % of the reads). The families Reoviridae, Myoviridae, Retroviridae, and Poxviridae were found in all samples of this study. Phylogenies of RNA-dependent RNA polymerase (RdRp) from viruses of the families Chuviridae, Dicistroviridae, Flaviviridae, Iflaviridae, Mesoniviridae, Phenuiviridae, and Rhabdoviridae were performed. In this study, the first isolation of the Guaico Culex Virus (GCXV) in the northern region of Brazil was obtained from a pool of Culex (Melanoconion) spp. mosquitoes collected in Curionópolis. The data obtained in this study demonstrate that the Carajás region has an ecosystem rich in viruses. Additional studies are needed to understand the dynamics of viruses in vectors, vertebrates, and the human population in the region.
Collapse
Affiliation(s)
- Camila Margalho Braga
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil; Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, Brazil.
| | - Sandro Patroca da Silva
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | - Joaquim Pinto Nunes Neto
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | | | | | - Lívia Carício Martins
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| |
Collapse
|
3
|
Ripoll L, Iserte J, Cerrudo CS, Presti D, Serrat JH, Poma R, Mangione FAJ, Micheloud GA, Gioria VV, Berrón CI, Zago MP, Borio C, Bilen M. Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology. PLoS Negl Trop Dis 2025; 19:e0012792. [PMID: 39792957 PMCID: PMC11756794 DOI: 10.1371/journal.pntd.0012792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/23/2025] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks. In this study, we address the implementation of a sequencing and analysis pipeline based on the Oxford Nanopore Technologies MinION Mk1b system, for arboviral detection in field-caught mosquitoes from Argentina. Full genome of Humaita Tubiacanga Virus (HTV), Phasi Charoen-like Phasivirus (PCLV), Aedes aegypti totivirus (AaeTV) has been sequenced in three distinct regions of Argentina comprising Buenos Aires province, Santa Fe province and the northern province of Salta. Viral sequences enriched by SISPA and coupled with Nanopore sequencing can be a useful tool for viral surveillance, not only for detecting viruses that have a high impact on human and animal health, but also for detecting insect-specific viruses that could promote the transmission of arboviruses.
Collapse
Affiliation(s)
- Lucas Ripoll
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Javier Iserte
- Laboratorio de Bioinformática Estructural, Fundación Instituto Leloir, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Damian Presti
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - José Humberto Serrat
- Programa de Zoonosis, Dirección General de Coordinación Epidemiológica-Ministerio de Salud Pública de Salta, Salta, Salta, Argentina
| | - Ramiro Poma
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | | | - Gabriela Analía Micheloud
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Verónica Viviana Gioria
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Clara Inés Berrón
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - M. Paola Zago
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | - Cristina Borio
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Marcos Bilen
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| |
Collapse
|
4
|
Pavon JAR, da Silva Neves NA, Pinho JB, de Souza VJ, Patroca da Silva S, Ribeiro Cruz AC, de Almeida Medeiros DB, Teixeira Nunes MR, Slhessarenko RD. Disclosing the virome of Aedes, Anopheles and Culex female mosquitoes, Alto Pantanal of Mato Grosso, Brazil, 2019. Virology 2024; 598:110182. [PMID: 39033587 DOI: 10.1016/j.virol.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.
Collapse
Affiliation(s)
- Janeth Aracely Ramirez Pavon
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Nilvanei Aparecido da Silva Neves
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - João Batista Pinho
- Instituto de Biociências, Laboratório de Ecologia de Aves e Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, CEP 78060-900, Mato Grosso, Brazil
| | - Vilma Juscineide de Souza
- Coordenadoria de Vigilância Ambiental, Secretaria Estadual de Saúde, Centro Político Administrativo de Mato Grosso, Palácio Paiaguás, CEP 78049-902, Cuiabá, Mato Grosso, Brazil
| | | | | | | | - Márcio Roberto Teixeira Nunes
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal Do Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
5
|
Chen S, Fang Y, Fujita R, Khater EIM, Li Y, Wang W, Qian P, Huang L, Guo Z, Zhang Y, Li S. An Exploration of the Viral Coverage of Mosquito Viromes Using Meta-Viromic Sequencing: A Systematic Review and Meta-Analysis. Microorganisms 2024; 12:1899. [PMID: 39338573 PMCID: PMC11434593 DOI: 10.3390/microorganisms12091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this review was to delve into the extent of mosquito virome coverage (proportion of viral reads) via meta-viromic sequencing and uncover potential factors of heterogeneity that could impact this coverage. Data sources were PubMed, Web of Science, Embase, Scopus, Science-Direct, Google Scholar, and the China National Knowledge Infrastructure. Pooled coverage was estimated using random-effects modeling, and subgroup analyses further reveal potential heterogeneous factors. Within the three mosquito genera studied, Culex exhibited the highest pooled viral coverage of mosquito viromes at 7.09% (95% CI: 3.44-11.91%), followed by Anopheles at 5.28% (95% CI: 0.45-14.93%), and Aedes at 2.11% (95% CI: 0.58-7.66%). Subgroup analyses showed that multiple processing methods significantly affected the viral coverage of mosquito viromes, especially pre-treatment of mosquito samples with saline buffer/medium and antibiotics prior to DNase/RNase treatment and removal of the host genome prior to RNA library construction. In conclusion, the results of this study demonstrate that the viral coverage of mosquito viromes varies between mosquito genera and that pre-treatment of mosquito samples with saline buffer/medium and antibiotics before DNase/RNase treatment and removing host genomes prior to RNA library construction are critical for the detection of RNA viruses in mosquito vectors using meta-viromic sequencing.
Collapse
Affiliation(s)
- Shenglin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emad I M Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenya Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peijun Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Lulu Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Zhaoyu Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
da Silva AF, Machado LC, da Silva LMI, Dezordi FZ, Wallau GL. Highly divergent and diverse viral community infecting sylvatic mosquitoes from Northeast Brazil. J Virol 2024; 98:e0008324. [PMID: 38995042 PMCID: PMC11334435 DOI: 10.1128/jvi.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Mosquitoes can transmit several pathogenic viruses to humans, but their natural viral community is also composed of a myriad of other viruses such as insect-specific viruses (ISVs) and those that infect symbiotic microorganisms. Besides a growing number of studies investigating the mosquito virome, the majority are focused on few urban species, and relatively little is known about the virome of sylvatic mosquitoes, particularly in high biodiverse biomes such as the Brazilian biomes. Here, we characterized the RNA virome of 10 sylvatic mosquito species from Atlantic forest remains at a sylvatic-urban interface in Northeast Brazil employing a metatranscriptomic approach. A total of 16 viral families were detected. The phylogenetic reconstructions of 14 viral families revealed that the majority of the sequences are putative ISVs. The phylogenetic positioning and, in most cases, the association with a high RNA-dependent RNA polymerase amino acid divergence from other known viruses suggests that the viruses characterized here represent at least 34 new viral species. Therefore, the sylvatic mosquito viral community is predominantly composed of highly divergent viruses highlighting the limited knowledge we still have about the natural virome of mosquitoes in general. Moreover, we found that none of the viruses recovered were shared between the species investigated, and only one showed high identity to a virus detected in a mosquito sampled in Peru, South America. These findings add further in-depth understanding about the interactions and coevolution between mosquitoes and viruses in natural environments. IMPORTANCE Mosquitoes are medically important insects as they transmit pathogenic viruses to humans and animals during blood feeding. However, their natural microbiota is also composed of a diverse set of viruses that cause no harm to the insect and other hosts, such as insect-specific viruses. In this study, we characterized the RNA virome of sylvatic mosquitoes from Northeast Brazil using unbiased metatranscriptomic sequencing and in-depth bioinformatic approaches. Our analysis revealed that these mosquitoes species harbor a diverse set of highly divergent viruses, and the majority comprises new viral species. Our findings revealed many new virus lineages characterized for the first time broadening our understanding about the natural interaction between mosquitoes and viruses. Finally, it also provided several complete genomes that warrant further assessment for mosquito and vertebrate host pathogenicity and their potential interference with pathogenic arboviruses.
Collapse
Affiliation(s)
- Alexandre Freitas da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Laís Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | | | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| |
Collapse
|
7
|
Da Silva AG, Bach E, Ellwanger JH, Chies JAB. Tips and tools to obtain and assess mosquito viromes. Arch Microbiol 2024; 206:132. [PMID: 38436750 DOI: 10.1007/s00203-023-03813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.
Collapse
Affiliation(s)
- Amanda Gonzalez Da Silva
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evelise Bach
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
8
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
10
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
11
|
Aragão CF, da Silva SP, do Nascimento BLS, da Silva FS, Nunes Neto JP, Pinheiro VCS, Cruz ACR. Shotgun Metagenomic Sequencing Reveals Virome Composition of Mosquitoes from a Transition Ecosystem of North-Northeast Brazil. Genes (Basel) 2023; 14:1443. [PMID: 37510347 PMCID: PMC10379392 DOI: 10.3390/genes14071443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
A wide diversity of pathogenic mosquito-borne viruses circulate in the Brazilian Amazon, and the intense deforestation can contribute to the spread of these viruses. In this context, this study aimed to investigate the viral diversity in mosquitoes of the genera Aedes, Culex, Haemagogus, and Sabethes from a transition area between the Amazon, Cerrado, and Caatinga biomes in Brazil. Metagenomic high-throughput sequencing was used to characterize the virome of 20 mosquito pools. A total of 15 virus-like genomes were identified, comprising species genomically close to insect-specific viruses of the families Iflaviridae, Metaviridae, Lispiviridae, Rhabdoviridae, Xinmoviridae, and Parvoviridae and species of plant viruses of the families Solemoviridae, Virgaviridae, and Partitiviridae. However, sequences of viruses associated with human and animal diseases were not detected. Most of the recovered genomes were divergent from those previously described. These findings reveal that there are a large number of unknown viruses to be explored in the middle-north of Brazil.
Collapse
Affiliation(s)
- Carine Fortes Aragão
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Bruna Laís Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Fábio Silva da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|