1
|
Webster CE, Barker D, Deed RC, Pilkington LI. Mead production and quality: A review of chemical and sensory mead quality evaluation with a focus on analytical methods. Food Res Int 2025; 202:115655. [PMID: 39967139 DOI: 10.1016/j.foodres.2024.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 02/20/2025]
Abstract
Mead, an alcoholic beverage made from the fermentation of honey in water by yeast, has an expanding global market and popularity, and a concurrently broadening library of related scientific literature. Quality of mead can be evaluated using both sensory and physicochemical characteristics, with volatile aroma and phenolic profiles being of particular importance. Different mead-making techniques can have significant impact on these parameters and thus the overall mead quality. With the increasing prevalence of mead-quality related research, optimised analytical methodologies are of great relevance to research in this field. This review provides an overview and discussion of the relevant published literature regarding mead quality analysis, with a focus on the analytical methodologies used to evaluate the volatile and phenolic profiles of mead. In addition, the mead production process is outlined, and studies related to the sensory evaluation of mead are summarised. The state of the literature regarding mead quality has seen significant growth in recent years, including the development of improved and increasingly tailored analytical methodology, particularly GC and HPLC methods, although these have great scope to be further optimised for the mead matrix, particularly GC methods. Additionally, there is great scope for studies which integrate multiple aspects of mead quality such as sensory characteristics, volatile aroma components, and potentially bioactive compounds. This review will aid researchers looking to design and develop their own mead-related experimental and analytical methodologies, furthering high-quality research in the field, and contribute towards the advancement of the mead industry.
Collapse
Affiliation(s)
- Claire E Webster
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand.
| | - David Barker
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand; School of Biological Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand; Te Pūnaha Matatini, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Cicha-Wojciechowicz D, Drabińska N, Majcher MA. Influence of Honey Varieties, Fermentation Techniques, and Production Process on Sensory Properties and Odor-Active Compounds in Meads. Molecules 2024; 29:5913. [PMID: 39770000 PMCID: PMC11677002 DOI: 10.3390/molecules29245913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the impact of key factors on the formation of odorants and sensory properties in mead. The effects of the honey type (acacia, buckwheat, linden), wort heating, and the fermentation method (commercial Saccharomyces cerevisiae yeasts, spontaneous fermentation, Galactomyces geotrichum molds) were examined. Twelve model mead batches were produced, matured for 12 months, and analyzed using gas chromatography-olfactometry (GC-O) and headspace SPME-GC/MS to identify odor-active compounds. Results confirmed that the honey type plays a significant role in sensory profiles, with distinct aroma clusters for buckwheat, acacia, and linden honey. Compounds like phenylacetic acid, 2- and 3-methylbutanal, and butanoic acid were identified as the most important odorants, correlating with sensory attributes such as honey-like, malty, and fermented aromas. Univariate and multivariate analyses, followed by correlation analysis, highlighted how production parameters affect mead aroma, providing insights to optimize sensory quality.
Collapse
Affiliation(s)
| | | | - Małgorzata Anna Majcher
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (D.C.-W.); (N.D.)
| |
Collapse
|
3
|
Fenner ED, Bressan SK, Santos AAD, Giehl A, Minussi GDA, Teixeira EAA, Diniz MDC, Werlang L, Fogolari O, Rosa CA, Treichel H, Cabrera LDC, Alves Junior SL. Ethanol and 2-phenylethanol production by bee-isolated Meyerozyma caribbica strains. Prep Biochem Biotechnol 2024; 55:359-369. [PMID: 39387275 DOI: 10.1080/10826068.2024.2414094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Investigating the biotechnological potential of wild microorganisms is paramount for optimizing bioprocesses. Given this premise, we looked for yeasts in Brazilian native stingless bees, considering the recognized potential of pollinating insect-associated microorganisms for the production of volatile organic compounds (VOCs). Two yeast strains of the species Meyerozyma caribbica were isolated from bees Scaptotrigona postica and evaluated for their fermentative capacity. Both yeasts were capable of fermenting sucrose (the main sugar used in the Brazilian ethanol industry) with over 90% efficiency and yields of up to 0.504 g/g. Through an experimental design analysis (CCD), it was verified that the ethanol productivity of these yeasts can also benefit from high concentrations of sucrose and low pH values, desirable traits for microorganisms in this biofuel production. At the same time, CCD analyses also showed the great capacity of these M. caribbica strains to produce another alcohol of broad biotechnological interest, 2-phenylethanol. Interestingly, the statistical analyses demonstrated that greater production of this compound can occur at high sugar concentrations and low availability of nitrogen sources, which can be easily achieved using residual low-cost feedstocks. Thus, our results suggest that these M. caribbica strains may be efficiently used in both ethanol and 2-phenylethanol production.
Collapse
Affiliation(s)
- Eduardo Dias Fenner
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
- Postgraduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| | - Stéfany Kell Bressan
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Angela Alves Dos Santos
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
- Postgraduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| | - Anderson Giehl
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Gabriel do Amaral Minussi
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
- Postgraduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| | | | - Mariana da Costa Diniz
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Larissa Werlang
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Odinei Fogolari
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Carlos Augusto Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Liziara da Costa Cabrera
- Postgraduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| | - Sergio Luiz Alves Junior
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
- Postgraduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Jose-Salazar JA, Ballinas-Cesatti CB, Hernández-Martínez DM, Cristiani-Urbina E, Melgar-Lalanne G, Morales-Barrera L. Kinetic Evaluation of the Production of Mead from a Non- Saccharomyces Strain. Foods 2024; 13:1948. [PMID: 38928890 PMCID: PMC11203307 DOI: 10.3390/foods13121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
There is a growing market for craft beverages with unique flavors. This study aimed to obtain a palate-pleasing mead derived from Pichia kudriavzevii 4A as a monoculture. Different culture media were evaluated to compare the fermentation kinetics and final products. The crucial factors in the medium were ~200 mg L-1 of yeast assimilable nitrogen and a pH of 3.5-5.0. A panel of judges favored the mead derived from Pichia kudriavzevii 4A (fermented in a medium with honey initially at 23 °Bx) over a commercial sample produced from Saccharomyces cerevisiae, considering its appearance, fruity and floral flavors (provided by esters, aldehydes, and higher alcohols), and balance between sweetness (given by the 82.91 g L-1 of residual sugars) and alcohol. The present mead had an 8.57% v/v ethanol concentration, was elaborated in 28 days, and reached a maximum biomass growth (2.40 g L-1) on the same fermentation day (6) that the minimum level of pH was reached. The biomass growth yield peaked at 24 and 48 h (~0.049 g g-1), while the ethanol yield peaked at 24 h (1.525 ± 0.332 g g-1), in both cases declining thereafter. The Gompertz model adequately describes the kinetics of sugar consumption and the generation of yeast biomass and ethanol. Pathogenic microorganisms, methanol, lead, and arsenic were absent in the mead. Thus, Pichia kudriavzevii 4A produced a safe and quality mead with probable consumer acceptance.
Collapse
Affiliation(s)
- Jorge Alberto Jose-Salazar
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| | - Christian Bryan Ballinas-Cesatti
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| | - Diana Maylet Hernández-Martínez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| | - Guiomar Melgar-Lalanne
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Castelazo Anaya s/n, Industrial Ánimas, Xalapa 91190, Veracruz, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| |
Collapse
|
5
|
Chen L, Li K, Chen H, Li Z. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023; 12:3501. [PMID: 37761210 PMCID: PMC10529235 DOI: 10.3390/foods12183501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.
Collapse
Affiliation(s)
- Li Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Huitai Chen
- Hunan Guoyuan Liquor Industry Co., Ltd., Yueyang 414000, China;
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| |
Collapse
|
6
|
Liu L, Zhao PT, Hu CY, Tian D, Deng H, Meng YH. Screening low-methanol and high-aroma produced yeasts for cider fermentation by transcriptive characterization. Front Microbiol 2022; 13:1042613. [PMID: 36439849 PMCID: PMC9691974 DOI: 10.3389/fmicb.2022.1042613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The commercial active dry yeast strains used for cider production in China are far behind the requirements of the cider industry development in recent decades. In this study, eight yeasts, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia bruneiensis, and Pichia kudriavzevii, were screened and assessed by growth performance, methanol production, aroma analysis, and their transcriptive characterization. Saccharomyces cerevisiae strains WFC-SC-071 and WFC-SC-072 were identified as promising alternatives for cider production. Strains WFC-SC-071 and WFC-SC-072 showed an excellent growth capacity characterized by 91.6 and 88.8% sugar utilization, respectively. Methanol production by both strains was below 200 mg/L. Key aroma compounds imparting cider appreciably characteristic aroma increased in cider fermented by strains WFC-SC-071 and WFC-SC-072. RT-qPCR analysis suggested that most genes associated with growth capacity, carbohydrate uptake, and aroma production were upregulated in WFC-SC-071 and WFC-SC-072. Overall, two Saccharomyces cerevisiae strains are the optimal starters for cider production to enable the diversification of cider, satisfy the differences in consumer demand, and promote cider industry development.
Collapse
Affiliation(s)
- Liang Liu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Peng Tao Zhao
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, Honolulu, HI, United States
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Hong Deng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- *Correspondence: Hong Deng,
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Yong Hong Meng,
| |
Collapse
|