1
|
Girão M, Lequint Z, Rego A, Costa I, Proença DN, Morais PV, Carvalho MF. Nocardiopsis codii sp. nov., and Rhodococcus chondri sp. nov., two novel actinomycetal species isolated from macroalgae collected in the northern Portuguese coast. Int J Syst Evol Microbiol 2024; 74:006483. [PMID: 39255017 PMCID: PMC11475406 DOI: 10.1099/ijsem.0.006483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Two novel actinomycetal strains, designated CC-R113T and CC-R104T, were isolated from the tissues of two macroalgae collected on the northern Portuguese coast. Phylogenetic analyses based on the 16S rRNA gene showed that strain CT-R113T belongs to the genus Nocardiopsis, being closely related to Nocardiopsis umidischolae 66/93T and Nocardiopsis tropica VKM Ac-1457T, with 98.65 and 98.39 % sequence similarity, respectively. The clade formed between the three type strains was confirmed by phylogenomic analysis. The genome of strain CT-R113T was 7.27 Mb in size with a G+C content of 71.3 mol %, with average nucleotide identity (ANI) values of 89.59 and 90.14 % with strains 66/93T and VKM Ac-1457T, respectively. The major cellular fatty acids were identified as C18 : 1 ω9c, iso-C16 : 0 and anteiso-C17 : 0. Menaquinone 10 (MK-10) was the major respiratory quinone. Comparative analysis of 16S rRNA gene sequences showed that strain CC-R104T belongs to the genus Rhodococcus and is most closely related to Rhodococcus pyridinivorans DSM 44555T, with 98.24 % sequence similarity. However, phylogenomic analysis revealed that strain CC-R104T establishes a clade with Rhodococcus artemisae DSM 45380T, being more distant from Rhodococcus pyridinivorans DSM 44555T. The genome of strain CC-R104T was 5.34 Mb in size with a G+C content of 67.01 mol%. The ANI value between strains CC-R104T and DSM 45380T was 81.2 % and between strains CC-R104T and DSM 44555T was 81.5 %. The major cellular fatty acids were identified as C18 : 1 ω9c, C16 : 0 and summed feature 3. Menaquinone 8 (MK-8) was the only respiratory quinone. For both CC-R113T and CC-R104T, optimum growth was observed at pH 7.0, 28 °C and 0-5 % NaCl and whole-cell hydrolysates contained meso-diaminopimelic acid as the cell-wall diamino acid. On the basis of phenotypic, molecular and chemotaxonomic characteristics, strains CT-R113T and CC-R104T are considered to represent novel species, for which the names Nocardiopsis codii sp. nov. (type strain CT-R113T=LMG33234T=UCCCB172T) and Rhodococcus chondri sp. nov. (type strain CC-R104T=LMG33233T=UCCCB171T) are proposed.
Collapse
Affiliation(s)
- Mariana Girão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Zoé Lequint
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Polytech Clermont, University Clermont Auvergne, Clermont-Ferrand, France
| | - Adriana Rego
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Isabel Costa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Diogo Neves Proença
- Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Paula V. Morais
- Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Maria F. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
El-Sayed MH, Gomaa AERF, Atta OM, Hassane AMA. Characteristics and kinetics of thermophilic actinomycetes' amylase production on agro-wastes and its application for ethanol fermentation. World J Microbiol Biotechnol 2024; 40:255. [PMID: 38926189 DOI: 10.1007/s11274-024-04009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024]
Abstract
Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.
Collapse
Affiliation(s)
- Mohamed H El-Sayed
- Department of Biology, College of Science and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abd El-Rahman F Gomaa
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
3
|
Zada S, Khan M, Su Z, Sajjad W, Rafiq M. Cryosphere: a frozen home of microbes and a potential source for drug discovery. Arch Microbiol 2024; 206:196. [PMID: 38546887 DOI: 10.1007/s00203-024-03899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
The world is concerned about the emergence of pathogens and the occurrence and spread of antibiotic resistance among pathogens. Drug development requires time to combat these issues. Consequently, drug development from natural sources is unavoidable. Cryosphere represents a gigantic source of microbes that could be the bioprospecting source of natural products with unique scaffolds as molecules or drug templates. This review focuses on the novel source of drug discovery and cryospheric environments as a potential source for microbial metabolites having potential medicinal applications. Furthermore, the problems encountered in discovering metabolites from cold-adapted microbes and their resolutions are discussed. By adopting modern practical approaches, the discovery of bioactive compounds might fulfill the demand for new drug development.
Collapse
Affiliation(s)
- Sahib Zada
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Mohsin Khan
- Department of Biological Sciences, Ohio University Athens, Athens, OH, USA
| | - Zheng Su
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, 87650, Pakistan.
| |
Collapse
|
4
|
Charousová I, Hlebová M, Hleba L, Medo J, Wink J. Streptomyces iakyrus TA 36 as First-Reported Source of Quinone Antibiotic γ-Rubromycin. Molecules 2023; 28:5977. [PMID: 37630229 PMCID: PMC10458949 DOI: 10.3390/molecules28165977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
A wide range of bioactive compounds with potential medical applications are produced by members of the genus Streptomyces. A new actinomycete producer of the antibiotic γ-rubromycin, designated TA 36, was isolated from an alpine soil sample collected in Peru (Machu Picchu). Morphological, physiological and biochemical characteristics of the strain, together with data obtained via phylogenetic analysis and MALDI-TOF MS, were used for the correct identification of the isolate. The isolate TA 36 showed morphological characteristics that were consistent with its classification within the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences showed that the TA 36 strain was most similar to S. iakyrus and S. violaceochromogenes with 99% similarity. Phylogenetic analysis together with the profile of whole cell proteins indicated that the strain tested could be identified as S. iakyrus TA 36. The crude extract Ext.5333.TA 36 showed various effects against the tested organisms with strong antimicrobial activity in the growth of Staphylococcus aureus (Newman) (MIC value of 0.00195 µg/µL). HPLC fractionation and LC/MS analysis of the crude extract led to the identification of the quinone antibiotic γ-rubromycin, a promising antitumour and antibacterial antibiotic. To the best of our knowledge, there is currently no report on the production of γ-rubromycin by S. iakyrus. Therefore, this study suggests S. iakyrus TA 36 as the first-reported source of this unique bioactive secondary metabolite.
Collapse
Affiliation(s)
- Ivana Charousová
- Clinical Microbiology Laboratory, Unilabs Slovensko, s.r.o., J. Bellu 66, SK-03495 Likavka, Slovakia;
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Miroslava Hlebová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Joachim Wink
- Microbial Strain Collection Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Karthik Y, Kalyani MI. Occurrence of Streptomyces tauricus in mangrove soil of Mangalore region in Dakshina Kannada as a source for antimicrobial peptide. J Basic Microbiol 2023; 63:389-403. [PMID: 35876342 DOI: 10.1002/jobm.202200108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/09/2022]
Abstract
Microbial resistance and deprivation of the effective drugs have become the foremost problem that propels to seek out for advanced approach. This concept initiated a need to search for more effective antimicrobial compounds from reliable sources. The Streptomyces is grouped under phylum Actinobacteria and are considered prolific producers of antibiotics, around 70% of presently available antibiotics are contributed by Streptomyces alone. In this study, Mangroves of the Mangalore Coast offered a unique source for screening Actinomyces group of microorganisms. We investigated on the four soil samples collected from Mangrove swamps of Mangalore, Karnataka, India. Based on their culture traits, the 18 distinct Actinomyces isolates were analyzed through a series of morphological and biochemical tests on starch casein nitrate (SCN) media. Culture biomasses were subjected for intracellular protein extraction through acetone precipitation method; the extracted proteins from each Actinomyces isolate were examined for antimicrobial activity against test organisms. The isolate ANTB-YKMU4 showed potential antimicrobial activity against significant number of test organisms; Bacillus cereus, Proteus vulgaris, Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas aeruginosa. The isolate ANTB-YKMU4 through 16 s rRNA gene sequence analysis was identified as Streptomyces tauricus strain with GenBank accession no. MW785875.1. The S. tauricus further cultivated for efficient biomass growth on SCN media for subsequent protein extraction and purification by a series of Electrophoretic and chromatographic techniques. Thus, by intracellular extractions from S. tauricus resulted in the identification of peptide with a molecular weight of 266 Da that was characterized by LC-MS.
Collapse
Affiliation(s)
- Yalpi Karthik
- Department of Studies and Research in Microbiology, Mangalore University, Jnana Kaveri Campus, Chikka Aluvara, Kodagu, Karnataka, India
| | - Manjula Ishwara Kalyani
- Department of Studies and Research in Microbiology, Mangalore University, Jnana Kaveri Campus, Chikka Aluvara, Kodagu, Karnataka, India
| |
Collapse
|
7
|
Genus Nocardiopsis: A Prolific Producer of Natural Products. Mar Drugs 2022; 20:md20060374. [PMID: 35736177 PMCID: PMC9231205 DOI: 10.3390/md20060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.
Collapse
|
8
|
Parihar K, Gehlot P, Mathur M, Tak A, Pathak R, Singh SK. Species Composition and Diversity Dynamics of Actinomycetes in Arid and Semi-arid Salt Basins of Rajasthan. Curr Microbiol 2022; 79:168. [PMID: 35460380 DOI: 10.1007/s00284-022-02851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Species composition and diversity dynamics of the actinomycetes was studied in five salt basins of arid and semi-arid areas of Rajasthan, India. A novel approach integrating molecular (16S rRNA gene) and diversity indices was applied to reveal species composition and diversity dynamics. Fifty-three actinomycetes isolates were isolated from five arid and semi-arid salt basins. Molecular characterization resulted in the identification of actinomycetes species belonging to three genera namely, Streptomyces, Nocardiopsis, and Actinoalloteichus. The diversity study among actinomycetes species validates their universal occurrence in arid and semi-arid regions of Rajasthan. The species N. dassonvillei subsp. albirubida was omnipresent in all the five salt basins but its relative manifestation was not static across habitats. The study revealed that three species N. chromatogenes, S. durbertensis, and S. mangrovicola are being reported for the first time from India. The maximum species of actinomycetes were recorded from Pachpadra (14) and the minimum from Didwana area (6). This study not only documents the hitherto wealth of actinomycetes species in arid and semi-arid salt basins of Rajasthan but also reveals the composition and diversity dynamics of actinomycetes.
Collapse
Affiliation(s)
- Khushbu Parihar
- Mycology and Microbiology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Praveen Gehlot
- Mycology and Microbiology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India.
| | - Manish Mathur
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342 003, India
| | - Alkesh Tak
- Mycology and Microbiology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Rakesh Pathak
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342 003, India
| | - Sunil K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342 003, India
| |
Collapse
|
9
|
Zhang X, Song C, Bai Y, Hu J, Pan H. Cytotoxic and antimicrobial activities of secondary metabolites isolated from the deep-sea-derived Actinoalloteichus cyanogriseus 12A22. 3 Biotech 2021; 11:283. [PMID: 34094802 PMCID: PMC8140039 DOI: 10.1007/s13205-021-02846-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
A new deep-sea-derived actinomycete 12A22 was isolated from the sediment of the South China Sea which showed potential cytotoxic and antimicrobial activities. The actinomycete was identified as Actinoalloteichus cyanogriseus by investigating morphological characteristics and phylogenetic analyses based on its 16S rRNA gene sequence. Two compounds, cyclo-(L-Pro-D-Pro-L-Tyr-L-Tyr) (1) and 2-hydroxyethyl-3-methyl-1,4-naphthoquinone (2), were isolated and characterized from the fermentation broth of the strain 12A22. Compound 2 exhibited significant inhibitory activities against a variety of phytopathogenic fungi (Fusarium oxysporum f. sp. cucumerinum, Setosphaeria turcica, and Botrytis cinerea) and Gram-positive bacterium (Bacillus subtilis). In particular, this compound showed better antifungal activity against Botrytis cinerea than positive control amphotericin B. Besides, compound 2 showed moderate cytotoxic activity against human breast cancer MDA-MB-435 cells with IC50 10.59 µM, weaker than the positive control diaminedichloroplatinum with 5.91 μM. Our results suggested that this naphthoquinone could be used as a potential antimicrobial and antitumor agent. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02846-0.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, South Building Rm 308, 72 Wenhua Road, Shenhe District, Shenyang, 110016 China
| | - Chunfeng Song
- Institute of Applied Ecology, Chinese Academy of Sciences, South Building Rm 308, 72 Wenhua Road, Shenhe District, Shenyang, 110016 China
| | - Yan Bai
- Institute of Applied Ecology, Chinese Academy of Sciences, South Building Rm 308, 72 Wenhua Road, Shenhe District, Shenyang, 110016 China
| | - Jiangchun Hu
- Institute of Applied Ecology, Chinese Academy of Sciences, South Building Rm 308, 72 Wenhua Road, Shenhe District, Shenyang, 110016 China
| | - Huaqi Pan
- Institute of Applied Ecology, Chinese Academy of Sciences, South Building Rm 308, 72 Wenhua Road, Shenhe District, Shenyang, 110016 China
| |
Collapse
|
10
|
Sarika K, Sampath G, Kaveriyappan Govindarajan R, Ameen F, Alwakeel S, Al Gwaiz HI, Raja Komuraiah T, Ravi G. Antimicrobial and antifungal activity of soil actinomycetes isolated from coal mine sites. Saudi J Biol Sci 2021; 28:3553-3558. [PMID: 34121898 PMCID: PMC8176045 DOI: 10.1016/j.sjbs.2021.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
In the current study, twenty-eight soil samples were collected from coalmine sites of Telangana, India. The isolates were purified and identified based on their culture characterization on oatmeal agar, glycerol asparagine agar, yeast extract-malt extract agar, inorganic salt starch agar, and starch casein agar medium. Further, the supernatant of all the isolates were tested for antimicrobial and antifungal activities. The biochemical and microscopic studies of isolated strains results indicates the potential isolate strains belongs to Streptomyces genus. Among all the strains the biological activity of BHPL-KSKU5 showed higher anti-bacterial and anti-funagal activity. The molecular characterization of BHPL-KSKU5 16s rDNA gene sequence and phylogenetic tree showed that is mostly related to the Streptomysis felleus (S. felleus) strain. This isolate was submitted to gene bank NCBI with accession number MH553077. In addition, physiological studies such as utilization of carbon, nitrogen, amino acid sources of potential isolated were studied. Further, optimization, purification and characterization of the novel compound producing strain may be helpful for discovering the new therapeutic microbial agent.
Collapse
Affiliation(s)
- Kasarla Sarika
- Department of Microbiology, Kakatiya University, Warangal 506009, Telangana, India
| | - Gattu Sampath
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Hussah I. Al Gwaiz
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | | | - Gangalla Ravi
- Department of Microbiology, Kakatiya University, Warangal 506009, Telangana, India
| |
Collapse
|