1
|
梁 洪, 孙 继, 范 勇, 曹 德, 何 昆, 张 政, 毛 智. [Research and application implementation of the Internet of Things scheme for intensive care unit medical equipment]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2025; 42:65-72. [PMID: 40000177 PMCID: PMC11955343 DOI: 10.7507/1001-5515.202411025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Indexed: 02/27/2025]
Abstract
The intensive care unit (ICU) is a highly equipment-intensive area with a wide variety of medical devices, and the accuracy and timeliness of medical equipment data collection are highly demanded. The integration of the Internet of Things (IoT) into ICU medical devices is of great significance for enhancing the quality of medical care and nursing, as well as for the advancement of digital and intelligent ICUs. This study focuses on the construction of the IOT for ICU medical devices and proposes innovative solutions, including the overall architecture design, devices connection, data collection, data standardization, platform construction and application implementation. The overall architecture was designed according to the perception layer, network layer, platform layer and application layer; three modes of device connection and data acquisition were proposed; data standardization based on Integrating the Healthcare Enterprise-Patient Care Device (IHE-PCD) was proposed. This study was practically verified in the Chinese People's Liberation Army General Hospital, a total of 122 devices in four ICU wards were connected to the IoT, storing 21.76 billion data items, with a data volume of 12.5 TB, which solved the problem of difficult systematic medical equipment data collection and data integration in ICUs. The remarkable results achieved proved the feasibility and reliability of this study. The research results of this paper provide a solution reference for the construction of hospital ICU IoT, offer more abundant data for medical big data analysis research, which can support the improvement of ICU medical services and promote the development of ICU to digitalization and intelligence.
Collapse
Affiliation(s)
- 洪 梁
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - 继鹏 孙
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - 勇 范
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - 德森 曹
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - 昆仑 何
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - 政波 张
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - 智 毛
- 中国人民解放军总医院 医学创新研究部(北京 100853)Department of Medical Innovation and Research, Chinese PLA General Hospital, Beijing 100853, P. R. China
| |
Collapse
|
2
|
Karim A, Alromema N, Malebary SJ, Binzagr F, Ahmed A, Khan YD. eNSMBL-PASD: Spearheading early autism spectrum disorder detection through advanced genomic computational frameworks utilizing ensemble learning models. Digit Health 2025; 11:20552076241313407. [PMID: 39872002 PMCID: PMC11770729 DOI: 10.1177/20552076241313407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by various genetic and environmental factors. Currently, there is no definitive clinical test, such as a blood analysis or brain scan, for early diagnosis. The objective of this study is to develop a computational model that predicts ASD driver genes in the early stages using genomic data, aiming to enhance early diagnosis and intervention. Methods This study utilized a benchmark genomic dataset, which was processed using feature extraction techniques to identify relevant genetic patterns. Several ensemble classification methods, including Extreme Gradient Boosting, Random Forest, Light Gradient Boosting Machine, ExtraTrees, and a stacked ensemble of classifiers, were applied to assess the predictive power of the genomic features. TheEnsemble Model Predictor for Autism Spectrum Disorder (eNSMBL-PASD) model was rigorously validated using multiple performance metrics such as accuracy, sensitivity, specificity, and Mathew's correlation coefficient. Results The proposed model demonstrated superior performance across various validation techniques. The self-consistency test achieved 100% accuracy, while the independent set and cross-validation tests yielded 91% and 87% accuracy, respectively. These results highlight the model's robustness and reliability in predicting ASD-related genes. Conclusion The eNSMBL-PASD model provides a promising tool for the early detection of ASD by identifying genetic markers associated with the disorder. In the future, this model has the potential to assist healthcare professionals, particularly doctors and psychologists, in diagnosing and formulating treatment plans for ASD at its earliest stages.
Collapse
Affiliation(s)
- Ayesha Karim
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology, King AbdulAziz University, Rabigh, Saudi Arabia
| | - Faisal Binzagr
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Amir Ahmed
- College of Information Technology, Information Systems and Security, United Arab Emirates University, Alain, United Arab Emirates
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
3
|
Ding T, Qu T, Zou Z, Ding C. A novel multi-model feature generation technique for suicide detection. PeerJ Comput Sci 2024; 10:e2301. [PMID: 39650449 PMCID: PMC11623287 DOI: 10.7717/peerj-cs.2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/12/2024] [Indexed: 12/11/2024]
Abstract
Automated expert systems (AES) analyzing depression-related content on social media have piqued the interest of researchers. Depression, often linked to suicide, requires early prediction for potential life-saving interventions. In the conventional approach, psychologists conduct patient interviews or administer questionnaires to assess depression levels. However, this traditional method is plagued by limitations. Patients might not feel comfortable disclosing their true feelings to psychologists, and counselors may struggle to accurately predict situations due to limited data. In this context, social media emerges as a potentially valuable resource. Given the widespread use of social media in daily life, individuals often express their nature and mental state through their online posts. AES can efficiently analyze vast amounts of social media content to predict depression levels in individuals at an early stage. This study contributes to this endeavor by proposing an innovative approach for predicting suicide risks using social media content and machine learning techniques. A novel multi-model feature generation technique is employed to enhance the performance of machine learning models. This technique involves the use of a feature extraction method known as term frequency-inverse document frequency (TF-IDF), combined with two machine learning models: logistic regression (LR) and support vector machine (SVM). The proposed technique calculates probabilities for each sample in the dataset, resulting in a new feature set referred to as the probability-based feature set (ProBFS). This ProBFS is compact yet highly correlated with the target classes in the dataset. The utilization of concise and correlated features yields significant outcomes. The SVM model achieves an impressive accuracy score of 0.96 using ProBFS while maintaining a low computational time of 5.63 seconds even when dealing with extensive datasets. Furthermore, a comparison with state-of-the-art approaches is conducted to demonstrate the significance of the proposed method.
Collapse
Affiliation(s)
- Ting Ding
- School of Earth Science, East China University of Technology, Nanchang, Jiangxi, China
- Urumqi Comprehensive Survey Center on Natural Resources, China Geological Survey, Urumqi, Xinjiang, China
| | - Tonghui Qu
- Hangzhou Hikvision Digital Technology, Hangzhou, China
| | - Zongliang Zou
- School of Earth Science, East China University of Technology, Nanchang, Jiangxi, China
| | - Cheng Ding
- Department of Biomedical Engineering, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Murphy E, Holmes E, Friston K. Natural language syntax complies with the free-energy principle. SYNTHESE 2024; 203:154. [PMID: 38706520 PMCID: PMC11068586 DOI: 10.1007/s11229-024-04566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
Natural language syntax yields an unbounded array of hierarchically structured expressions. We claim that these are used in the service of active inference in accord with the free-energy principle (FEP). While conceptual advances alongside modelling and simulation work have attempted to connect speech segmentation and linguistic communication with the FEP, we extend this program to the underlying computations responsible for generating syntactic objects. We argue that recently proposed principles of economy in language design-such as "minimal search" criteria from theoretical syntax-adhere to the FEP. This affords a greater degree of explanatory power to the FEP-with respect to higher language functions-and offers linguistics a grounding in first principles with respect to computability. While we mostly focus on building new principled conceptual relations between syntax and the FEP, we also show through a sample of preliminary examples how both tree-geometric depth and a Kolmogorov complexity estimate (recruiting a Lempel-Ziv compression algorithm) can be used to accurately predict legal operations on syntactic workspaces, directly in line with formulations of variational free energy minimization. This is used to motivate a general principle of language design that we term Turing-Chomsky Compression (TCC). We use TCC to align concerns of linguists with the normative account of self-organization furnished by the FEP, by marshalling evidence from theoretical linguistics and psycholinguistics to ground core principles of efficient syntactic computation within active inference.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030 USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Emma Holmes
- Department of Speech Hearing and Phonetic Sciences, University College London, London, WC1N 1PF UK
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR UK
| |
Collapse
|
5
|
Shaikh UQ, Shahzaib M, Shakil S, Bhatti FA, Aamir Saeed M. Robust and adaptive terrain classification and gait event detection system. Heliyon 2023; 9:e21720. [PMID: 38027844 PMCID: PMC10663835 DOI: 10.1016/j.heliyon.2023.e21720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Real-time gait event detection (GED) system can be utilized for gait analysis and tracking fitness activities. GED for various types of terrains (e.g., stair-walk, uneven surfaces, etc.) is still an open research problem. This study presents an inertial sensor-based approach for real-time GED system that works for diverse terrains in an uncontrolled environment. The GED system classifies three types of terrains, i.e., flat-walk, stair-ascend and stair-descend, with an average classification accuracy of 99%. It also accurately detects various gait events, including, toe-strike, heel-rise, toe-off, and heel-strike. It is computationally efficient, implemented on a low-cost microcontroller, works in real-time and can be used in portable rehabilitation devices for use in dynamic environments.
Collapse
Affiliation(s)
- Usman Qamar Shaikh
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
- Biosignal Processing and Computational NeuroScience (BiCoNeS) Lab, Institute of Space Technology, Pakistan
| | - Muhammad Shahzaib
- Biosignal Processing and Computational NeuroScience (BiCoNeS) Lab, Institute of Space Technology, Pakistan
| | - Sadia Shakil
- Biosignal Processing and Computational NeuroScience (BiCoNeS) Lab, Institute of Space Technology, Pakistan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | | | - Malik Aamir Saeed
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
6
|
Verma P, Gupta A, Kumar M, Gill SS. FCMCPS-COVID: AI propelled fog-cloud inspired scalable medical cyber-physical system, specific to coronavirus disease. INTERNET OF THINGS (AMSTERDAM, NETHERLANDS) 2023; 23:100828. [PMID: 37274449 PMCID: PMC10214767 DOI: 10.1016/j.iot.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Medical cyber-physical systems (MCPS) firmly integrate a network of medical objects. These systems are highly efficacious and have been progressively used in the Healthcare 4.0 to achieve continuous high-quality services. Healthcare 4.0 encompasses numerous emerging technologies and their applications have been realized in the monitoring of a variety of virus outbreaks. As a growing healthcare trend, coronavirus disease (COVID-19) can be cured and its spread can be prevented using MCPS. This virus spreads from human to human and can have devastating consequences. Moreover, with the alarmingly rising death rate and new cases across the world, there is an urgent need for continuous identification and screening of infected patients to mitigate their spread. Motivated by the facts, we propose a framework for early detection, prevention, and control of the COVID-19 outbreak by using novel Industry 5.0 technologies. The proposed framework uses a dimensionality reduction technique in the fog layer, allowing high-quality data to be used for classification purposes. The fog layer also uses the ensemble learning-based data classification technique for the detection of COVID-19 patients based on the symptomatic dataset. In addition, in the cloud layer, social network analysis (SNA) has been performed to control the spread of COVID-19. The experimental results reveal that compared with state-of-the-art methods, the proposed framework achieves better results in terms of accuracy (82.28 %), specificity (91.42 %), sensitivity (90 %) and stability with effective response time. Furthermore, the utilization of CVI-based alert generation at the fog layer improves the novelty aspects of the proposed system.
Collapse
Affiliation(s)
- Prabal Verma
- Department of Information Technology, National Institute of Technology, Srinagar, India
| | - Aditya Gupta
- Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, India
| | - Mohit Kumar
- Department of Information Technology, National Institute of Technology, Jalandhar, India
| | - Sukhpal Singh Gill
- School of Electronic Engineering and Computer Science, Queen Mary University Of London, UK
| |
Collapse
|
7
|
Voges LF, Jarren LC, Seifert S. Exploitation of surrogate variables in random forests for unbiased analysis of mutual impact and importance of features. Bioinformatics 2023; 39:btad471. [PMID: 37522865 PMCID: PMC10403431 DOI: 10.1093/bioinformatics/btad471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023] Open
Abstract
MOTIVATION Random forest is a popular machine learning approach for the analysis of high-dimensional data because it is flexible and provides variable importance measures for the selection of relevant features. However, the complex relationships between the features are usually not considered for the selection and thus also neglected for the characterization of the analysed samples. RESULTS Here we propose two novel approaches that focus on the mutual impact of features in random forests. Mutual forest impact (MFI) is a relation parameter that evaluates the mutual association of the features to the outcome and, hence, goes beyond the analysis of correlation coefficients. Mutual impurity reduction (MIR) is an importance measure that combines this relation parameter with the importance of the individual features. MIR and MFI are implemented together with testing procedures that generate P-values for the selection of related and important features. Applications to one experimental and various simulated datasets and the comparison to other methods for feature selection and relation analysis show that MFI and MIR are very promising to shed light on the complex relationships between features and outcome. In addition, they are not affected by common biases, e.g. that features with many possible splits or high minor allele frequencies are preferred. AVAILABILITY AND IMPLEMENTATION The approaches are implemented in Version 0.3.3 of the R package RFSurrogates that is available at github.com/AGSeifert/RFSurrogates and the data are available at doi.org/10.25592/uhhfdm.12620.
Collapse
Affiliation(s)
- Lucas F Voges
- Centre for the Study of Manuscript Cultures (CSMC), Universität Hamburg, Hamburg 20354, Germany
| | - Lukas C Jarren
- Centre for the Study of Manuscript Cultures (CSMC), Universität Hamburg, Hamburg 20354, Germany
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Stephan Seifert
- Centre for the Study of Manuscript Cultures (CSMC), Universität Hamburg, Hamburg 20354, Germany
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
8
|
de Andrade Rodrigues RS, Heise EFJ, Hartmann LF, Rocha GE, Olandoski M, de Araújo Stefani MM, Latini ACP, Soares CT, Belone A, Rosa PS, de Andrade Pontes MA, de Sá Gonçalves H, Cruz R, Penna MLF, Carvalho DR, Fava VM, Bührer-Sékula S, Penna GO, Moro CMC, Nievola JC, Mira MT. Prediction of the occurrence of leprosy reactions based on Bayesian networks. Front Med (Lausanne) 2023; 10:1233220. [PMID: 37564037 PMCID: PMC10411956 DOI: 10.3389/fmed.2023.1233220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using clinical, demographic, and genetic data. Methods The study includes four datasets from different regions of Brazil, totalizing 1,450 leprosy patients followed prospectively for at least 2 years to assess the occurrence of LR. Data mining using WEKA software was performed following a two-step protocol to select the variables included in the AI system, based on Bayesian Networks, and developed using the NETICA software. Results Analysis of the complete database resulted in a system able to estimate LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using only databases for which host genetic information associated with LR was included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 89.4% specificity. Conclusion We produced an easy-to-use, online, free-access system that identifies leprosy patients at risk of developing LR. Risk assessment of LR for individual patients may detect candidates for close monitoring, with a potentially positive impact on the prevention of permanent disabilities, the quality of life of the patients, and upon leprosy control programs.
Collapse
Affiliation(s)
- Rafael Saraiva de Andrade Rodrigues
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
| | - Eduardo Ferreira José Heise
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
| | | | | | - Marcia Olandoski
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
| | | | | | | | - Andrea Belone
- Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | | | | | | | - Rossilene Cruz
- Tropical Dermatology and Venerology Alfredo da Matta Foundation, Amazonas, Brazil
| | | | | | - Vinicius Medeiros Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, and The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, QC, Canada
| | - Samira Bührer-Sékula
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiania, Brazil
| | - Gerson Oliveira Penna
- Tropical Medicine Centre, University of Brasília, and Fiocruz School of Government – Brasilia, Brasília, Brazil
| | | | | | - Marcelo Távora Mira
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
- Pharmacy Program, School of Health and Biosciences, PUCPR, Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Aslam H, Biswas S. Analysis of COVID-19 Death Cases Using Machine Learning. SN COMPUTER SCIENCE 2023; 4:403. [PMID: 37220559 PMCID: PMC10191086 DOI: 10.1007/s42979-023-01835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/21/2022] [Indexed: 05/25/2023]
Abstract
COVID-19 has threatened the existence of human life for more than the last 2 years. More than 460 million confirmed cases and 6 million deaths have been reported worldwide due to COVID-19. To measure the severity of the COVID-19, the mortality rate plays an important role. Understanding the nature of COVID-19 and forecasting the death cases of COVID-19 require more investigation of the real effect for different risk factors. In this work, various regression machine learning models are proposed to extract the relationship between different factors and the death rate of COVID-19. The optimal regression tree algorithm employed in this work estimates the impact of essential causal variables that significantly affect the mortality rates. We have generated a real-time forecast for the death case of COVID-19 using machine learning techniques. The analysis is evaluated with the well-known regression models XGBoost, Random Forest, and SVM on the data sets of the US, India, Italy, and three continents Asia, Europe, and North America. The results show that the models can be used to forecast the death cases for the near future in case of an epidemic like Novel Coronavirus.
Collapse
Affiliation(s)
- Humaira Aslam
- Department of Mathematics, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126 India
| | - Santanu Biswas
- Department of Mathematics, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126 India
- Department Of Mathematics, Jadavpur University, Raja Subodh Chandra Mallick Road, Kolkata, West Bengal 700032 India
| |
Collapse
|
10
|
Chauhan J, Bedi J. EffViT-COVID: A dual-path network for COVID-19 percentage estimation. EXPERT SYSTEMS WITH APPLICATIONS 2023; 213:118939. [PMID: 36210962 PMCID: PMC9527203 DOI: 10.1016/j.eswa.2022.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The first case of novel Coronavirus (COVID-19) was reported in December 2019 in Wuhan City, China and led to an international outbreak. This virus causes serious respiratory illness and affects several other organs of the body differently for different patient. Worldwide, several waves of this infection have been reported, and researchers/doctors are working hard to develop novel solutions for the COVID diagnosis. Imaging and vision-based techniques are widely explored for the prediction of COVID-19; however, COVID infection percentage estimation is under explored. In this work, we propose a novel framework for the estimation of COVID-19 infection percentage based on deep learning techniques. The proposed network utilizes the features from vision transformers and CNN (Convolutional Neural Networks), specifically EfficientNet-B7. The features of both are fused together for preparing an information-rich feature vector that contributes to a more precise estimation of infection percentage. We evaluate our model on the Per-COVID-19 dataset (Bougourzi et al., 2021b) which comprises labeled CT data of COVID-19 patients. For the evaluation of the model on this dataset, we employ the most widely-used slice-level metrics, i.e., Pearson correlation coefficient (PC), Mean absolute error (MAE), and Root mean square error (RMSE). The network outperforms the other state-of-the-art methods and achieves 0 . 9886 ± 0 . 009 , 1 . 23 ± 0 . 378 , and 3 . 12 ± 1 . 56 , PC, MAE, and RMSE, respectively, using a 5-fold cross-validation technique. In addition, the overall average difference in the actual and predicted infection percentage is observed to be < 2 % . In conclusion, the detailed experimental results reveal the robustness and efficiency of the proposed network.
Collapse
Affiliation(s)
- Joohi Chauhan
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Jatin Bedi
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
11
|
Balogun NA, Adeleke FA, Abdulrahaman MD, Shehu YI, Adedoyin A. Undergraduate students' perception on e-learning systems during COVID-19 pandemic in Nigeria. Heliyon 2023; 9:e14549. [PMID: 36945348 PMCID: PMC10010051 DOI: 10.1016/j.heliyon.2023.e14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Covid-19 has forced many educational institutions to adopt e-learning as an alternative to physical classroom learning. However, the concern of critical stakeholders in higher educational institutions on the adoption and usage of e-learning system, especially in the developing countries continue to increase recently, due to various challenges facing the sector. This study investigates perception of undergraduate students in University of Ilorin, Nigeria on use of e-learning systems during Covid-19 pandemic. Specifically, this study sought to identify factors that influence the use of e-learning systems, investigates the perception of students on the quality of e-learning systems used, assesses the attitude of their lecturers towards the use of the e-learning system during the pandemic. A three stage sampling techniques including purposive, random and proportionate were employed with a total number of 333 students as respondents using a quantitative research approach. The analysis of the data collected was done using descriptive statistics including mean. The results of the study revealed that e-learning system use among University of Ilorin students is high, but highly influenced by the decision of the school management to employ e-learning system as only approach for teaching during the pandemic. It further revealed that the perception of students on the quality of system used is high, while their lecturers' attitude towards the use of e-learning facilities is positive. The study concluded that adoption of e-learning system for continue education during Covid-19 pandemic was a success at the University of Ilorin. It however suggested a blended learning approach (virtual and face-to-face) and recommended more investment from educational stakeholders to sustain e-learning beyond Covid-19 period.
Collapse
Affiliation(s)
| | | | | | - Yahaya Isah Shehu
- Department of Computer, Shehu Shagari University of Education, Sokoto, Nigeria
| | - Adeyinka Adedoyin
- Department of Information Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
12
|
Eyiokur FI, Kantarcı A, Erakın ME, Damer N, Ofli F, Imran M, Križaj J, Salah AA, Waibel A, Štruc V, Ekenel HK. A survey on computer vision based human analysis in the COVID-19 era. IMAGE AND VISION COMPUTING 2023; 130:104610. [PMID: 36540857 PMCID: PMC9755265 DOI: 10.1016/j.imavis.2022.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals. Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications. These developments also triggered the need for novel and improved computer vision techniques capable of ( i ) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and ( ii ) facilitating normal operation of existing vision-based services, such as biometric authentication schemes, on the other. Especially important here, are computer vision techniques that focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions introduced by the mandates for facial masks. Such computer vision based human analysis techniques include face and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression estimation procedures, models for detecting face-hand interactions and many others, and have seen considerable attention over recent years. The goal of this survey is to provide an introduction to the problems induced by COVID-19 into such research and to present a comprehensive review of the work done in the computer vision based human analysis field. Particular attention is paid to the impact of facial masks on the performance of various methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets useful for the development and evaluation of methods for COVID-19 related applications is also provided. Finally, to help advance the field further, a discussion on the main open challenges and future research direction is given at the end of the survey. This work is intended to have a broad appeal and be useful not only for computer vision researchers but also the general public.
Collapse
Affiliation(s)
- Fevziye Irem Eyiokur
- Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alperen Kantarcı
- Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mustafa Ekrem Erakın
- Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Naser Damer
- Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
- Department of Computer Science, TU Darmstadt, Darmstadt, Germany
| | - Ferda Ofli
- Qatar Computing Research Institute, HBKU, Doha, Qatar
| | | | - Janez Križaj
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Albert Ali Salah
- Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Computer Engineering, Bogˇaziçi University, Istanbul, Turkey
| | - Alexander Waibel
- Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Carnegie Mellon University, Pittsburgh, United States
| | - Vitomir Štruc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Hazım Kemal Ekenel
- Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
13
|
Rane R, Dubey A, Rasool A, Wadhvani R. Data Mining Based Techniques for Covid-19 Predictions. PROCEDIA COMPUTER SCIENCE 2023; 218:210-219. [PMID: 36743794 PMCID: PMC9886325 DOI: 10.1016/j.procs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COVID-19 is a pandemic that has resulted in numerous fatalities and infections in recent years, with a rising tendency in both the number of infections and deaths and the pace of recovery. Accurate forecasting models are important for making accurate forecasts and taking relevant actions. As a result, accurate short-term forecasting of the number of new cases that are contaminated and recovered is essential for making the best use of the resources at hand and stopping or delaying the spread of such illnesses. This paper shows the various techniques for forecasting the covid-19 cases. This paper classifies the various models according to their category and shows the merits and demerits of various fore-casting techniques. The research provides insight into potential issues that may arise during the forecasting of covid-19 instances for predicting the positive, negative, and death cases in this pandemic. In this paper, numerous forecasting techniques and their categories have been studied. The goal of this work is to aggregate the findings of several forecasting techniques to aid in the fight against the pandemic.
Collapse
Affiliation(s)
- Rahul Rane
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Aditya Dubey
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Akhtar Rasool
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Rajesh Wadhvani
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| |
Collapse
|
14
|
Patro KK, Allam JP, Hammad M, Tadeusiewicz R, Pławiak P. SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19. Biocybern Biomed Eng 2023; 43:352-368. [PMID: 36819118 PMCID: PMC9928742 DOI: 10.1016/j.bbe.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND OBJECTIVE The global population has been heavily impacted by the COVID-19 pandemic of coronavirus. Infections are spreading quickly around the world, and new spikes (Delta, Delta Plus, and Omicron) are still being made. The real-time reverse transcription-polymerase chain reaction (RT-PCR) is the method most often used to find viral RNA in a nasopharyngeal swab. However, these diagnostic approaches require human involvement and consume more time per prediction. Moreover, the existing conventional test mainly suffers from false negatives, so there is a chance for the virus to spread quickly. Therefore, a rapid and early diagnosis of COVID-19 patients is needed to overcome these problems. METHODS Existing approaches based on deep learning for COVID detection are suffering from unbalanced datasets, poor performance, and gradient vanishing problems. A customized skip connection-based network with a feature union approach has been developed in this work to overcome some of the issues mentioned above. Gradient information from chest X-ray (CXR) images to subsequent layers is bypassed through skip connections. In the script's title, "SCovNet" refers to a skip-connection-based feature union network for detecting COVID-19 in a short notation. The performance of the proposed model was tested with two publicly available CXR image databases, including balanced and unbalanced datasets. RESULTS A modified skip connection-based CNN model was suggested for a small unbalanced dataset (Kaggle) and achieved remarkable performance. In addition, the proposed model was also tested with a large GitHub database of CXR images and obtained an overall best accuracy of 98.67% with an impressive low false-negative rate of 0.0074. CONCLUSIONS The results of the experiments show that the proposed method works better than current methods at finding early signs of COVID-19. As an additional point of interest, we must mention the innovative hierarchical classification strategy provided for this work, which considered both balanced and unbalanced datasets to get the best COVID-19 identification rate.
Collapse
Affiliation(s)
- Kiran Kumar Patro
- Department of ECE, Aditya Institute of Technology and Management, Tekkali AP-532201, India
| | - Jaya Prakash Allam
- Department of EC, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Mohamed Hammad
- Information Technology Dept., Faculty of Computers and Information, Menoufia University, Menoufia, Egypt
| | - Ryszard Tadeusiewicz
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, Krakow, Poland
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| |
Collapse
|
15
|
Taheriyan M, Ayyoubzadeh SM, Ebrahimi M, R. Niakan Kalhori S, Abooei AH, Gholamzadeh M, Ayyoubzadeh SM. Prediction of COVID-19 Patients' Survival by Deep Learning Approaches. Med J Islam Repub Iran 2022; 36:144. [PMID: 36569399 PMCID: PMC9774992 DOI: 10.47176/mjiri.36.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Despite many studies done to predict severe coronavirus 2019 (COVID-19) patients, there is no applicable clinical prediction model to predict and distinguish severe patients early. Based on laboratory and demographic data, we have developed and validated a deep learning model to predict survival and assist in the triage of COVID-19 patients in the early stages. Methods: This retrospective study developed a survival prediction model based on the deep learning method using demographic and laboratory data. The database consisted of data from 487 patients with COVID-19 diagnosed by the reverse transcription-polymerase chain reaction test and admitted to Imam Khomeini hospital affiliated to Tehran University of Medical Sciences from February 21, 2020, to June 24, 2020. Results: The developed model achieved an area under the curve (AUC) of 0.96 for survival prediction. The results demonstrated the developed model provided high precision (0.95, 0.93), recall (0.90,0.97), and F1-score (0.93,0.95) for low- and high-risk groups. Conclusion: The developed model is a deep learning-based, data-driven prediction tool that can predict the survival of COVID-19 patients with an AUC of 0.96. This model helps classify admitted patients into low-risk and high-risk groups and helps triage patients in the early stages.
Collapse
Affiliation(s)
- Moloud Taheriyan
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Ebrahimi
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh R. Niakan Kalhori
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran, Peter L. Reichertz Institute for Medical Informatics (PLRI) of Technical University of Braunschweig and Hannover Medical School, Braunschweig, Germany
| | - Amir Hossien Abooei
- Department of Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Marsa Gholamzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran, Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran, Corresponding author:Seyed Mohammad Ayyoubzadeh,
| |
Collapse
|
16
|
Kamalov F, Rajab K, Cherukuri AK, Elnagar A, Safaraliev M. Deep learning for Covid-19 forecasting: State-of-the-art review. Neurocomputing 2022; 511:142-154. [PMID: 36097509 PMCID: PMC9454152 DOI: 10.1016/j.neucom.2022.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
Abstract
The Covid-19 pandemic has galvanized scientists to apply machine learning methods to help combat the crisis. Despite the significant amount of research there exists no comprehensive survey devoted specifically to examining deep learning methods for Covid-19 forecasting. In this paper, we fill the gap in the literature by reviewing and analyzing the current studies that use deep learning for Covid-19 forecasting. In our review, all published papers and preprints, discoverable through Google Scholar, for the period from Apr 1, 2020 to Feb 20, 2022 which describe deep learning approaches to forecasting Covid-19 were considered. Our search identified 152 studies, of which 53 passed the initial quality screening and were included in our survey. We propose a model-based taxonomy to categorize the literature. We describe each model and highlight its performance. Finally, the deficiencies of the existing approaches are identified and the necessary improvements for future research are elucidated. The study provides a gateway for researchers who are interested in forecasting Covid-19 using deep learning.
Collapse
|
17
|
A new periocular dataset collected by mobile devices in unconstrained scenarios. Sci Rep 2022; 12:17989. [PMID: 36289312 PMCID: PMC9605955 DOI: 10.1038/s41598-022-22811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, ocular biometrics in unconstrained environments using images obtained at visible wavelength have gained the researchers' attention, especially with images captured by mobile devices. Periocular recognition has been demonstrated to be an alternative when the iris trait is not available due to occlusions or low image resolution. However, the periocular trait does not have the high uniqueness presented in the iris trait. Thus, the use of datasets containing many subjects is essential to assess biometric systems' capacity to extract discriminating information from the periocular region. Also, to address the within-class variability caused by lighting and attributes in the periocular region, it is of paramount importance to use datasets with images of the same subject captured in distinct sessions. As the datasets available in the literature do not present all these factors, in this work, we present a new periocular dataset containing samples from 1122 subjects, acquired in 3 sessions by 196 different mobile devices. The images were captured under unconstrained environments with just a single instruction to the participants: to place their eyes on a region of interest. We also performed an extensive benchmark with several Convolutional Neural Network (CNN) architectures and models that have been employed in state-of-the-art approaches based on Multi-class Classification, Multi-task Learning, Pairwise Filters Network, and Siamese Network. The results achieved in the closed- and open-world protocol, considering the identification and verification tasks, show that this area still needs research and development.
Collapse
|
18
|
Hornung R, Boulesteix AL. Interaction forests: Identifying and exploiting interpretable quantitative and qualitative interaction effects. Comput Stat Data Anal 2022. [DOI: 10.1016/j.csda.2022.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Do papers (really) match journals’ “aims and scope”? A computational assessment of innovation studies. Scientometrics 2022. [DOI: 10.1007/s11192-022-04327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|