1
|
Venugopalan A, Schmidt EW. Animal-Encoded Nonribosomal Pathway to Bursatellin Analogs. J Am Chem Soc 2025; 147:6623-6632. [PMID: 39933076 PMCID: PMC11869996 DOI: 10.1021/jacs.4c15714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
The bursatellin-oxazinin family is a series of tyrosine-derived, nitrile-containing marine natural products from gastropod and bivalve molluscs. Although the first analogs were identified and associated with toxicity 40 years ago, their biosynthetic origins were unknown. During an investigation of published mollusc genomes and transcriptomes, we serendipitously identified a putative bursatellin biosynthetic gene cluster (referred hereafter as the bur-ox pathway). Through biochemical characterization of some bur-ox genes, we provide evidence suggesting that bursatellin-type metabolites are produced by molluscs themselves rather than by their microbial symbionts. We show that the reductive domain from a monomodular nonribosomal peptide synthetase (NRPS) protein FmtATR performs a four-electron reduction to produce tyrosinols from tyrosine derivatives. Moreover, an aminocarboxypropyltransferase enzyme, ACT, uses S-adenosylmethionine (SAM) to transform tyrosinols into their phenolic homoserine ethers, which in bursatellin is further modified to the nitrile. Widespread occurrence of bur-ox in molluscs suggests a common biosynthetic origin for bursatellins and oxazinins as well as an important but currently unidentified physiological role for this metabolite family in molluscs inhabiting diverse ecological niches. The presence of bur-ox pathway homologues in culinary bivalves, such as mussels and geoducks, calls into question the potential of oxazinins as toxins. As one of the few NRPS pathways of animal origin to be characterized, bur-ox sheds light on underappreciated chemical and biochemical diversity in animals.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Venugopalan A, Schmidt EW. Animal-encoded nonribosomal pathway to bursatellin analogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622736. [PMID: 39605576 PMCID: PMC11601421 DOI: 10.1101/2024.11.12.622736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bursatellin-oxazinin family is a series of tyrosine-derived, nitrile-containing marine natural products from gastro-pod and bivalve molluscs. Although the first analogs were identified and associated with toxicity forty years ago, their biosynthetic origins were unknown. During an investigation of published mollusc genomes and transcriptomes, we serendipitously identified a putative bursatellin biosynthetic gene cluster (referred hereafter as the bur-ox pathway). Through biochemical characterization of some bur-ox genes, we provide evidence suggesting that bursatellin-type metabolites are produced by molluscs themselves rather than by their microbial symbionts. We show that the reductive domain from a monomodular nonribosomal peptide synthetase (NRPS) protein FmtATR performs a four-electron reduction to produce tyrosinols from tyrosine derivatives. Moreover, an aminocarboxypro-pyltransferase enzyme, ACT, uses S -adenosylmethionine (SAM) to transform tyrosinols into their phenolic homoserine ethers, which in bursatellin is further modified to the nitrile. Widespread occurrence of bur-ox in molluscs suggests a common biosynthetic origin for bursatellins and oxazinins as well as an important but currently unidentified physiological role for this metabolite family in molluscs inhabiting diverse ecological niches. Further, the presence of bur-ox pathway homologs in many culinary bivalves such as mussels and geoducks suggests that possible impacts on human consumers should be investigated. As one of the few NRPS pathways of animal origin to be characterized, bur-ox sheds light on underappreciated chemical and biochemical diversity in animals.
Collapse
|
3
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Shen SM, Li SW, Su MZ, Yao LG, Appendino G, Guo YW. Structurally Diverse Diterpenoids from the Sanya Bay Nudibranch Hexabranchus sanguineus and Its Sponge-Prey Chelonaplysilla sp. Chemistry 2023; 29:e202203858. [PMID: 36617497 DOI: 10.1002/chem.202203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Investigation of the South China Sea nudibranch Hexabranchus sanguineus from Sanya Bay afforded, in addition to three known compounds, nine new diterpenoids of the 5,19-cycloclerodane- (sanyanolides A-D), clerodane- (sanyanolide E) and subersin- (sanyanolides F-I) type. Remarkably, six diterpenoids aforementioned from H. sanguineus were also isolated from the sponge Chelonaplysilla sp. from the same water region, suggesting a trophic relationship between H. sanguineus and Chelonaplysilla sp. The structure and absolute configuration of new compounds were established by a combination of spectroscopic data, X-ray diffraction analysis and/or time-dependent density functional theory/electronic circular dichroism calculations. A plausible biogenetic relationship between these diterpenoids, along with the chemo-ecological implications of their co-occurrence in the two organisms investigated, was proposed and discussed. In in vitro bioassays, echinoclerodane A exhibited a potent inhibitory effect (IC50 =2.81 μM) on LPS-induced inflammatory response in RAW 264.7 macrophage cells. In addition, echinoclerodane A and oculatolide showed considerable antibacterial activities with MIC values ranging from 1.0 to 8.0 μg/mL.
Collapse
Affiliation(s)
- Shou-Mao Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, P. R. China
| | - Song-Wei Li
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, P. R. China
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| |
Collapse
|
5
|
Liu J, Gu YC, Su MZ, Guo YW. Chemistry and bioactivity of secondary metabolites from South China Sea marine fauna and flora: recent research advances and perspective. Acta Pharmacol Sin 2022; 43:3062-3079. [PMID: 36104434 PMCID: PMC9712606 DOI: 10.1038/s41401-022-00980-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Marine organisms often produce a variety of metabolites with unique structures and diverse biological activities that enable them to survive and struggle in the extremely challenging environment. During the last two decades, our group devoted great effort to the discovery of pharmaceutically interesting lead compounds from South China Sea marine plants and invertebrates. We discovered numerous marine secondary metabolites spanning a wide range of structural classes, various biosynthetic origins and various aspects of biological activities. In a series of reviews, we have summarized the bioactive natural products isolated from Chinese marine flora and fauna found during 2000-2012. The present review provides an updated summary covering our latest research progress and development in the last decade (2012-2022) highlighting the discovery of over 400 novel marine secondary metabolites with promising bioactivities from South China Sea marine organisms.
Collapse
Affiliation(s)
- Jiao Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
6
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|