1
|
Kiige JK, Kavoo AM, Mwajita MR, Mogire D, Ogada S, Wekesa TB, Kiirika LM. Metagenomic characterization of bacterial abundance and diversity in potato cyst nematode suppressive and conducive potato rhizosphere. PLoS One 2025; 20:e0323382. [PMID: 40343892 PMCID: PMC12063837 DOI: 10.1371/journal.pone.0323382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Potato (Solanum tuberosum L.) is an important food crop in Kenya, providing a source of nutrition and income for many farmers. However, potato cyst nematodes (PCN) cause significant damage to potato plants, leading to substantial economic losses and threatening the nation's food security. Understanding the composition and functional potential of bacterial communities in the soil is important for developing sustainable biological control strategies against PCN and improving soil health. This cross-sectional purposive study examined the bacterial communities associated with PCN-suppressive and conducive potato rhizosphere from two major potato-producing counties in Kenya. We analyzed 180 soil samples from symptomatic and asymptomatic potato plants using shotgun metagenomics, followed by functional analysis to identify genes and metabolic pathways relevant to soil and plant health. Taxonomic classification revealed Enterobacteriaceae and Pseudomonadaceae as the most dominant bacterial families present. Within these families, the genera Pseudomonas and Enterobacter were highly abundant, both known for their plant growth-promoting traits, including biological control of soil pathogens and nutrient solubilization. KEGG and Pfam database analysis revealed pathways associated with nutrient cycling, transport systems, and metabolic functions. The abundance of iron-acquisition, chemotaxis, and diverse transport genes across analyzed samples suggests the presence of beneficial bacterial communities. This study provides the first report on bacterial ecology in PCN-infested rhizosphere in Kenya and its implications for soil health and PCN management.
Collapse
Affiliation(s)
- John Kamathi Kiige
- Department of Agricultural Sciences, Karatina University, Karatina, Kenya
| | - Agnes Mumo Kavoo
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mwashasha Rashid Mwajita
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Derleen Mogire
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Stephen Ogada
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Tofick Barasa Wekesa
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Novo Science Bio Solutions Limited, Nairobi, Kenya
| | - Leonard Muriithi Kiirika
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
2
|
Shah S, Damare SR, Mascarenhas-Pereira MBL, Patil J, Parab S, Nair S, Ghosh A. An insight into the prokaryotic diversity from a polymetallic nodule-rich region in the Central Indian Ocean Basin using next generation sequencing approach. Front Microbiol 2024; 15:1295149. [PMID: 38567074 PMCID: PMC10985493 DOI: 10.3389/fmicb.2024.1295149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Deep sea is a vast, dark, and difficult-to-access terrain and is now looked upon as a unique niche harboring diverse microorganism. We used a metataxonomic approach to decipher the microbial diversity present in the water column (surface to near bottom), water overlaying the sediments, and the deep-sea sediments (up to 35 cm) from the Indian Contract Region (ICR) in the Central Indian Ocean Basin (CIOB). Samples were collected from #IRZ (Impact Reference Zone), #PRZ (Potential Reference Zone), and #BC20 (Control site, outside potential mining area) with an average water depth of 5,200 m. 16S rRNA (V3-V4 region) amplicon sequencing on the MiSeq platform resulted in 942,851 ASVs across 65 water and sediment samples. Higher prokaryotic diversity was observed below 200 m in the water column to the seafloor. Proteobacteria was the most dominant bacterial phylum among all the water samples while Firmicutes, Actinobacteria and, Bacteroidota dominated the sediments. Sediment (below 10 cm) was co-dominated by Firmicutes. Thermoplasmata was the dominant archaeal group in the water column while Crenarchaeota was in the sediments. BC20 was less diverse than IRZ and PRZ. Deep Sea microorganisms could play a vital role in the mineralization processes, nutrient cycling, and also different biogeochemical cycles.
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
- School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigão, India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | | - Jayesh Patil
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sneha Parab
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sushil Nair
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | |
Collapse
|
3
|
Liu N, Huang Z, Fang Y, Dong Z. Impacts of Thermal Drainage on Bacterial Diversity and Community Construction in Tianwan Nuclear Power Plant. MICROBIAL ECOLOGY 2023; 86:2981-2992. [PMID: 37684546 DOI: 10.1007/s00248-023-02291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
As one of the low-carbon and high-efficient energy sources, nuclear power is developing vigorously to alleviate the crisis of global climate warming and realize carbon neutrality goals. Meanwhile, the ecological effect of thermal drainage in the nuclear power plant is significantly remarkable, which environmental assessment system has not yet referred to microorganisms. The rapid response of microbial diversity and community structure to environmental changes is crucial for ecosystem stability. This study investigated the bacterial diversity, community construction, and the co-occurrence patterns by 16S rRNA gene amplicon sequencing among gradient warming regions in Tianwan Nuclear Power Plant. The alpha diversity of the high warming region was the lowest in summer, which was dominated by Proteobacteria, whereas the highest bacterial diversity presented in high warming regions in winter, which harbored higher proportions of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The spatial distribution of bacterial communities showed clear separation especially in summer. Strong correlations were between community compositions and environmental factors, such as salinity, DO, TN, and temperature in summer. Furthermore, remarkable seasonality in bacterial co-occurrence patterns was discovered: the robustness of the bacterial co-occurrence network was promoted in winter, while the complexity and robustness were decreased in summer due to the warming of thermal drainage. These findings reveal the potential factors underpinning the influence of thermal drainage on bacterial community structure, which make it possible to predict the ecological effect of the nuclear power plants by exploring how the microbial assembly is likely to respond to the temperature and other environmental changes.
Collapse
Affiliation(s)
- Nannan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| | - Zhifa Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhiguo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Xu S, Li G, He C, Huang Y, Yu D, Deng H, Tong Z, Wang Y, Dupuy C, Huang B, Shen Z, Xu J, Gong J. Diversity, community structure, and quantity of eukaryotic phytoplankton revealed using 18S rRNA and plastid 16S rRNA genes and pigment markers: a case study of the Pearl River Estuary. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:415-430. [PMID: 37637251 PMCID: PMC10449762 DOI: 10.1007/s42995-023-00186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/11/2023] [Indexed: 08/29/2023]
Abstract
Understanding consistencies and discrepancies in characterizing diversity and quantity of phytoplankton is essential for better modeling ecosystem change. In this study, eukaryotic phytoplankton in the Pearl River Estuary, South China Sea were investigated using nuclear 18S rRNA and plastid 16S or 23S rRNA genes and pigment analysis. It was found that 18S abundance poorly explained the variations in total chlorophyll a (Chl-a). However, the ratios of log-transformed 18S abundance to Chl-a in the major phytoplankton groups were generally environment dependent, suggesting that the ratio has potential as an indicator of the physiological state of phytoplankton. The richness of 18S-based operational taxonomic units was positively correlated with the richness of 16S-based amplicon sequence variants of the whole phytoplankton community, but insignificant or weak for individual phytoplankton groups. Overall, the 18S based, rather than the 16S based, community structure had a greater similarity to pigment-based estimations. Relative to the pigment data, the proportion of haptophytes in the 18S dataset, and diatoms and cryptophytes in the 16S dataset, were underestimated. This study highlights that 18S metabarcoding tends to reflect biomass-based community organization of eukaryotic phytoplankton. Because there were lower copy numbers of plastid 16S than 18S per genome, metabarcoding of 16S probably approximates cell abundance-based community organization. Changes in biomass organization of the pigment-based community were sensitive to environmental changes. Taken together, multiple methodologies are recommended to be applied to more accurately profile the diversity and community composition of phytoplankton in natural ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00186-x.
Collapse
Affiliation(s)
- Shumin Xu
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510006 China
| | - Guihao Li
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Cui He
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Yi Huang
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Dan Yu
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Huiwen Deng
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Zhuyin Tong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Yichong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Christine Dupuy
- BIOFEEL, UMRi LIENSs, La Rochelle Université/CNRS, La Rochelle, France
| | - Bangqin Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Zhuo Shen
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Jie Xu
- Centre for Regional Oceans, Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Jun Gong
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510006 China
| |
Collapse
|
5
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
6
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|