1
|
Liu L, Wang L, Hao N, Du N, Li Y, Kang S. miRNA-1229-5p promotes migration and invasion and suppresses apoptosis of endometrial cells via the STMN1/p38 MAPK axis in endometriosis. Gene 2025; 950:149385. [PMID: 40037422 DOI: 10.1016/j.gene.2025.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Emerging evidence suggests that aberrantly expressed microRNAs (miRNAs) participate in endometriosis pathogenesis. miR-1229-5p participates in the pathogenesis of several disease, but its precise role and mechanism in endometriosis is unclear. METHODS Endometrial tissues were obtained from patients with endometriosis and healthy controls. RT-qPCR and western blotting were employed to detect the expression levels of genes and proteins, respectively. Transcriptome sequencing and luciferase reporter assay were utilized to identify the target of miR-1229-5p. CCK-8, transwell assay, wound healing assay and flow cytometry assay were performed to evaluate the functional roles of miR-1229-5p. Finally, the clinical significance of miR-1229-5p was furtherly analyzed. RESULTS MiR-1229-5p was upregulated in ectopic endometrium of ovarian endometriosis patients (n = 60) compared to normal endometria of controls (n = 40), and its expression also served as an indicator for endometriosis severity. STMN1 was identified as the target of miR-1229-5p by luciferase experiments, and its expression was significantly downregulated in ectopic endometrium. Functionally, miR-1229-5p overexpression promoted migration, invasion, and inhibited apoptosis of ESCs and Ishikawa cells. Meanwhile, upregulation of miR-1229-5p also facilitated the protein expression of Bcl-2, MMP2, MMP9, N-cadherin, and ZEB1, and repressed the protein levels of Bax and E-cadherin. Whereas downregulation of miR-1229-5p exerted opposite effects. Importantly, STMN1 overexpression could partially reverse the effects of miR-1229-5p upregulation. Mechanistically, miR-1229-5p activates the p38 mitogen-activated protein kinase (p38 MAPK) signaling via targeting STMN1. CONCLUSION The newly identified miR-1229-5p-STMN1-p38 MAPK axis illustrates the molecular mechanism of endometriosis progression and offers a potential therapeutic target for treating endometriosis.
Collapse
Affiliation(s)
- Lusha Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixian Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Hao
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiyi Du
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Molecular Biology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shan Kang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Zhang C, Zhou T, Qiao S, Lu L, Zhu M, Wang A, Zhang S. Taurine Attenuates Neuronal Ferroptosis by CSF-Derived Exosomes of GABABR Encephalitis Through GABABR/NF2/P-YAP Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04819-3. [PMID: 40085353 DOI: 10.1007/s12035-025-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
GABAB receptor (GABABR) encephalitis represents a rare subtype of paraneoplastic limbic encephalitis (LE), characterized by persistent seizures and cognitive impairments. Nevertheless, the precise phenotype and underlying mechanisms of neuronal dysfunction associated with intrathecal lymphocytes in GABABR encephalitis remain inadequately understood. In the present study, we demonstrate that exosomes derived from the cerebrospinal fluid (CSF) of patients with GABABR encephalitis can induce neuronal ferroptosis, oxidative stress, iron accumulation, and lipid hyperoxidation in an in vitro model of anti-GABABR encephalitis. MicroRNA (miRNA) sequencing revealed that miR-92a-3p is a differentially expressed miRNA in CSF exosomes, and its expression was positively correlated with unfavorable clinical outcomes in GABABR encephalitis patients during a 6-month follow-up period. The NF2/P-YAP signaling pathway was identified as a downstream effector of miR-92a-3p, influencing the expression of ACSL4/GPX4 and IL-6, with the expression of these genes being enhanced following taurine supplementation. Clinically, taurine levels in CSF exhibited a negative correlation with IL-6 levels, CSF cell counts, blood-CSF barrier integrity, and clinical prognosis in GABABR encephalitis. Mechanistically, taurine effectively reduced reactive oxygen species (ROS) and iron accumulation, as well as IL-6 production, while modulating the levels of NF2, P-YAP, ACSL4, and GPX4 in neurons treated with CSF-derived exosomes from GABABR encephalitis through GABABR activation. Proliferation assays indicated that extracellular taurine intake activated CD4 + T cells, CD8 + T cells, and CD19 + B cells in the CSF of patients with GABABR encephalitis. In summary, our findings reveal for the first time that intrathecal lymphocytes in GABABR encephalitis maintain an activated state by absorbing extracellular taurine and that decreased taurine levels in CSF promote neuronal ferroptosis via the miR-92a-3p-mediated NF2/P-YAP/ACSL4 pathway.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University, Jinan, China
| | - Tianyu Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University, Jinan, China
| | - Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
| | - Lu Lu
- Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Meirong Zhu
- Department of Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China.
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wu L, Lan D, Sun B, Su R, Pei F, Kuang Z, Su Y, Lin S, Wang X, Zhang S, Chen X, Jia J, Zeng C. Luoshi Neiyi Prescription inhibits estradiol synthesis and inflammation in endometriosis through the HIF1A/EZH2/SF-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118659. [PMID: 39098622 DOI: 10.1016/j.jep.2024.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endometriosis (EMS) is a common gynecological disease that causes dysmenorrhea, chronic pelvic pain and infertility. Luoshi Neiyi Prescription (LSNYP), a traditional Chinese medicine (TCM) formula, is used to relieve EMS in the clinic. AIMS This study aimed to examine the active components of LSNYP and the possible mechanism involved in its treatment of EMS. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to identify the chemical components of LSNYP. Human primary ectopic endometrial stromal cells (ecESCs) and eutopic endometrial stromal cells (euESCs) were isolated, and the expression levels of hypoxia inducible factor 1A (HIF1A), enhancer of zeste homolog 2 (EZH2) and steroidogenic factor 1 (SF-1) were detected by immunofluorescence and qPCR. Cobalt chloride (CoCl2) was utilized to construct an in vitro hypoxic environment, and lentiviruses were engineered to downregulate HIF1A and EZH2 and upregulate EZH2. Subsequently, the expression levels of HIF1A, EZH2, and SF-1 were measured using qPCR or western blotting. The binding of EZH2 to the SF-1 locus in ESCs was examined via ChIP. Furthermore, the effects of LSNYP on the HIF1A/EZH2/SF-1 pathway were evaluated both in vitro and in vivo. RESULTS A total of 185 components were identified in LSNYP. The protein and gene expression levels of HIF1A and SF-1 were increased, whereas those of EZH2 were decreased in ecESCs. After treating euESCs with 50 μmol L-1 CoCl2 for 24 h, cell viability and estradiol (E2) production were enhanced. Hypoxia decreased EZH2 protein expression, while si-HIF1A increased it. SF-1 was increased when EZH2 was downregulated in normal and hypoxic environments, whereas the overexpression of EZH2 led to a decrease in SF-1 expression. ChIP revealed that hypoxia reduced EZH2 binding to the SF-1 locus in euESCs. In vitro, LSNYP-containing serum decreased E2 and prostaglandin E2 (PGE2) production, inhibited cell proliferation and invasion, and reduced the expression of HIF1A, SF-1, steroidogenic acute regulatory protein (StAR), and aromatase cytochrome P450 (P450arom). In vivo, LSNYP suppressed inflammation and adhesion and inhibited the HIF1A/EZH2/SF-1 pathway in endometriotic tissues. CONCLUSIONS LSNYP may exert pharmacological effects on EMS by inhibiting E2 synthesis and inflammation through regulation of the HIF1A/EZH2/SF-1 pathway. These results suggest that LSNYP may be a promising candidate for the treatment of EMS.
Collapse
Affiliation(s)
- Lizheng Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Dantong Lan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rui Su
- Department of Gynecology, Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong, 510801, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Zijun Kuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yixuan Su
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuanyin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Siyuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
4
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
5
|
Chico-Sordo L, Ruiz-Martínez T, Toribio M, González-Martín R, Spagnolo E, Domínguez F, Hernández A, García-Velasco JA. Identification of miR-30c-5p microRNA in Serum as a Candidate Biomarker to Diagnose Endometriosis. Int J Mol Sci 2024; 25:1853. [PMID: 38339132 PMCID: PMC10855247 DOI: 10.3390/ijms25031853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The diagnosis of endometriosis by laparoscopy is delayed until advanced stages. In recent years, microRNAs have emerged as novel biomarkers for different diseases. These molecules are small non-coding RNA sequences involved in the regulation of gene expression and can be detected in peripheral blood. Our aim was to identify candidate serum microRNAs associated with endometriosis and their role as minimally invasive biomarkers. Serum samples were obtained from 159 women, of whom 77 were diagnosed with endometriosis by laparoscopy and 82 were healthy women. First, a preliminary study identified 29 differentially expressed microRNAs between the two study groups. Next, nine of the differentially expressed microRNAs in the preliminary analysis were evaluated in a new cohort of 67 women with endometriosis and 72 healthy women. Upon validation by quantitative real-time PCR technique, the circulating level of miR-30c-5p was significantly higher in the endometriosis group compared with the healthy women group. The area under the curve value of miR-30c-5p was 0.8437, demonstrating its diagnostic potential even when serum samples registered an acceptable limit of hemolysis. Dysregulation of this microRNA was associated with molecular pathways related to cancer and neuronal processes. We concluded that miR-30c-5p is a potential minimally invasive biomarker of endometriosis, with higher expression in the group of women with endometriosis diagnosed by laparoscopy.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
| | | | - Mónica Toribio
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
| | - Roberto González-Martín
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
| | - Emanuela Spagnolo
- Gynaecology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Francisco Domínguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
| | - Alicia Hernández
- Gynaecology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
- School of Health Sciences, Medical Specialties and Public Health, Obstetrics and Gynecology Area, Rey Juan Carlos University Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
6
|
Campbell AN, Choi WJ, Chi ES, Orun AR, Poland JC, Stivison EA, Kubina JN, Hudson KL, Loi MNC, Bhatia JN, Gilligan JW, Quintanà AA, Blind RD. Steroidogenic Factor-1 form and function: From phospholipids to physiology. Adv Biol Regul 2024; 91:100991. [PMID: 37802761 PMCID: PMC10922105 DOI: 10.1016/j.jbior.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Steroidogenic Factor-1 (SF-1, NR5A1) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors, consisting of a DNA-binding domain (DBD) connected to a transcriptional regulatory ligand binding domain (LBD) via an unstructured hinge domain. SF-1 is a master regulator of development and adult function along the hypothalamic pituitary adrenal and gonadal axes, with strong pathophysiological association with endometriosis and adrenocortical carcinoma. SF-1 was shown to bind and be regulated by phospholipids, one of the most interesting aspects of SF-1 regulation is the manner in which SF-1 interacts with phospholipids: SF-1 buries the phospholipid acyl chains deep in the hydrophobic core of the SF-1 protein, while the lipid headgroups remain solvent-exposed on the exterior of the SF-1 protein surface. Here, we have reviewed several aspects of SF-1 structure, function and physiology, touching on other transcription factors that help regulate SF-1 target genes, non-canonical functions of SF-1, the DNA-binding properties of SF-1, the use of mass spectrometry to identify lipids that associate with SF-1, how protein phosphorylation regulates SF-1 and the structural biology of the phospholipid-ligand binding domain. Together this review summarizes the form and function of Steroidogenic Factor-1 in physiology and in human disease, with particular emphasis on adrenal cancer.
Collapse
Affiliation(s)
- Alexis N Campbell
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Woong Jae Choi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ethan S Chi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Abigail R Orun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James C Poland
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Elizabeth A Stivison
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jakub N Kubina
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kimora L Hudson
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mong Na Claire Loi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jay N Bhatia
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joseph W Gilligan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Adrian A Quintanà
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raymond D Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Pant A, Moar K, K Arora T, Maurya PK. Biomarkers of endometriosis. Clin Chim Acta 2023; 549:117563. [PMID: 37739024 DOI: 10.1016/j.cca.2023.117563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Endometriosis is one of the most severe female reproductive disorders, affecting 6-10% of women between 18 and 35. It is a gynaecological condition where endometrial tissue develops and settles outside the uterus. The aetiology of endometriosis is primarily influenced by genetic, epigenetic, and non-genetic variables, making it highly challenging to create a therapeutic therapy explicitly targeting the ectopic tissue. The delay in the treatment is due to the limitations in the diagnostic approaches, which are restricted to invasive techniques such as laparoscopy or laparotomy. This accords to 70% of the women being diagnosed at later stages. By understanding the subject, several treatment medications have been produced to lessen the disease's symptoms. Nevertheless, endometriosis cannot be permanently cured. A viable or persuasive standard screening test for endometriosis must be utilized in a clinical context. A helpful assessment method for the early identification of endometriosis could be biomarkers. A major research priority is the identification of a biomarker that is sensitive and specific enough for detecting endometriosis. The present article has reviewed studies published on the expression of biomarkers of endometriosis. It outlines various biomarkers from different sample types, such as serum/plasma and urine, in addition to tissue. This would provide a non-invasive approach to diagnosing the disease at the initial stages without any harmful repercussions. Future high-throughput advances in science and technology are anticipated to result in the creation of a potent remedy for endometriosis. To achieve successful outcomes, it is necessary to research the discussed biomarkers that demonstrate substantial results extensively.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|