1
|
Zhang Z, Zhang J, Li H, Zhao Q, Li X, Liu G, Lu X, Zhao J, Qu Y. The combination of continuous-pulse feeding hydrolysates with soybean hulls induction during fed-batch fermentation of Trichoderma reesei b5 significantly elevated the cellulase production and its degradation ability on lignocellulosic biomass. Int J Biol Macromol 2025; 307:142244. [PMID: 40107548 DOI: 10.1016/j.ijbiomac.2025.142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/14/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
To date, the high cost of cellulase is still a major factor limiting industrial production of lignocellulose bioconversion. This study developed a novel strategy combining continuous-pulse feeding glucose with soybean hulls (SBH) induction to efficiently elevate cellulase production by Trichoderma reesei b5 and enhance hydrolysis performance of cellulase on lignocellulose. In this strategy, the sugar concentration in the fermentation system was strictly controlled to meet the sugar requirements of strain for enzyme production without inhibition. Using SBH instead of microcrystalline cellulose effectively enhanced cellulase secretion as well as improved the enzyme system compositions, causing the improvement of hydrolysis performance. Using this strategy, filter-paperase (FPase) activity in the fermentation broth was more than ten-folds higher than that in batch fermentation (6.0 U/mL vs. 75.9 U/mL), and achieved the highest β-glucosidase activity reported in the literature to date (905 U/mL). This study also confirmed the feasibility of using on-site produced enzymatic hydrolysates instead of glucose as feeding medium. It provides a feasible process for large-scale production of low-cost and efficient cellulase, which is of great significance for the construction of "sugar platforms" based on lignocellulose and industrialization of lignocellulosic bioconversion.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jiarong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Huiwen Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
He Y, Zhang H, Huwati Y, Shu N, Hu W, Jia X, Ding K, Liang X, Liu L, Han L, Xiao W. On-site cellulase production by Trichoderma reesei RutC-30 to enhance the enzymatic saccharification of ball-milled corn stover. Enzyme Microb Technol 2024; 181:110530. [PMID: 39442493 DOI: 10.1016/j.enzmictec.2024.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cellulases are essential for the enzymatic saccharification of lignocellulose. They play a crucial role in breaking down the structure of lignocellulose to obtain fermentable sugars. In this study, we conducted on-site cellulase production by Trichoderma reesei RutC-30 through submerged fermentation. The effects of carbon source, nitrogen source, KH2PO4, and mineral elements on cellulase production were evaluated using the hydrolyzed total sugar concentration of ball-milled corn stover as an indicator. The optimal fermentation medium conditions for cellulase production were determined through orthogonal experimental design analysis. Additionally, by optimizing culture conditions, including inoculation, pH, and bottling volume, we achieved a total sugar concentration of 92.25 g/L. After the optimization, the FPA, CMCA, protein, and total sugar concentration increased by 75.49 %, 18.43 %, 89.71 %, and 17.83 %, respectively. Furthermore, corn stover pretreated by different methods was applied to induce cellulase production. Ball-milled and steam-exploded corn stover was identified as suitable incubation carbon sources with total sugar concentration up to 94.31 g/L. Our work exploits the cellulase induced by lignocellulose and then applies it to lignocellulose, enabling the customization and providing a reference for the production of cellulase with corn stover as an inducer.
Collapse
Affiliation(s)
- Yinghui He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Hui Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Yeledana Huwati
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Na Shu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Wei Hu
- China Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiwen Jia
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Kaili Ding
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Xueyan Liang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Luoyang Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Weihua Xiao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Zhang Y, Wang R, Liu L, Wang E, Yang J, Yuan H. Distinct lignocellulolytic enzymes produced by Trichoderma harzianum in response to different pretreated substrates. BIORESOURCE TECHNOLOGY 2023; 378:128990. [PMID: 37003454 DOI: 10.1016/j.biortech.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In order to optimize the composition of enzyme cocktail for improving the hydrolytic efficiency of lignocellulose, different substrates were tested as inducers for producing lignocellulolytic enzymes by Trichoderma harzianum EM0925 in this study. As results, ultrafine grinding or steam explosion pretreated substrates can induce T. harzianum EM0925 to secret holo lignocellulolytic enzymes; acid treated substrate can induce cellobiohydrolase; while alkali or sodium chlorite treated substrates can induce β-xylosidase specifically. Furthermore, the combination of enzyme cocktails with different hydrolysis characteristics can further improve the hydrolysis efficiency, since 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding treated corn stover at low enzyme dosage (1.2 mg proteins/g substrate). This study for the first time demonstrated an effective solution that specific-pretreated substrates can be used as inducers for specific enzyme production by T. harzianum, which provided new idea and potential strategy for the construction of highly-efficient lignocellulolytic enzyme cocktails.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China; Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Singh N, Sithole B, Govinden R. Screening for cellulases and preliminary optimisation of glucose tolerant β-glucosidase production and characterisation. Mycology 2022; 14:91-107. [PMID: 37152851 PMCID: PMC10161942 DOI: 10.1080/21501203.2022.2155261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The search for a novel microbial producer of cellulases including a glucose tolerant β-glucosidase is a challenge as most are inhibited by their product glucose. This study aims to screen for cellulolytic fungi using qualitative and quantitative screening methods. Primary screening revealed 34 of 46 fungal isolates with β-glucosidase activity. Eleven and 13 of these also displayed endoglucanase and exoglucanase activities, respectively. During secondary screening, this number was reduced to 26 β-glucosidase producers with 13 also having endoglucanase and exoglucanase activities. Isolate C1 displayed enhanced production of β-glucosidases in the presence of 0.05 M glucose (69% higher activity). Optimisation of growth conditions for β-glucosidase production by one variable at a time experiments improved production for (isolates) PS1 (64%), MB5 (84%), and C2 (69%). Isolate PS1 identified as Chaetomella sp. BBA70074 displayed the highest tolerance to glucose, retaining 10% of β-glucosidase activity in the presence of 0.8 M glucose. Tolerance to glucose increased to 14% when produced under optimal conditions. β-Glucosidase had a molecular weight of 170 kDa with a pH and temperature optima of 6 and 70°C, respectively. Future studies will include optimisation of the production of the glucose tolerant enzyme by Chaetomella sp. BBA70074.
Collapse
Affiliation(s)
- Nivisti Singh
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Bruce Sithole
- Discipline of Engineering, Howard Campus, University of KwaZulu-Natal, Durban, South Africa
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban, South Africa
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Integrating 1G with 2G Bioethanol Production by Using Distillers’ Dried Grains with Solubles (DDGS) as the Feedstock for Lignocellulolytic Enzyme Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First-generation (1G) bioethanol is one of the most used liquid biofuels in the transport industry. It is generated by using sugar- or starch-based feedstocks, while second-generation (2G) bioethanol is generated by using lignocellulosic feedstocks. Distillers’ dried grains with solubles (DDGS) is a byproduct of first-generation bioethanol production with a current annual production of 22.6 million tons in the USA. DDGS is rich in fiber and valuable nutrients contents, which can be used to produce lignocellulolytic enzymes such as cellulases and hemicellulases for 2G bioethanol production. However, DDGS needs a pretreatment method such as dilute acid, ammonia soaking, or steam hydrolysis to release monosaccharides and short-length oligosaccharides as fermentable sugars for use in microbial media. These fermentable sugars can then induce microbial growth and enzyme production compared to only glucose or xylose in the media. In addition, selection of one or more suitable microbial strains, which work best with the DDGS for enzyme production, is also needed. Media optimization and fermentation process optimization strategies can then be applied to find the optimum conditions for the production of cellulases and hemicellulases needed for 2G bioethanol production. Therefore, in this review, a summary of all such techniques is compiled with a special focus on recent findings obtained in previous pieces of research conducted by the authors and by others in the literature. Furthermore, a comparison of such techniques applied to other feedstocks and process improvement strategies is also provided. Overall, dilute acid pretreatment is proven to be better than other pretreatment methods, and fermentation optimization strategies can enhance enzyme production by considerable folds with a suitable feedstock such as DDGS. Future studies can be further enhanced by the technoeconomic viability of DDGS as the on-site enzyme feedstock for the manufacture of second-generation bioethanol (2G) in first-generation (1G) ethanol plants, thus bridging the two processes for the efficient production of bioethanol using corn or other starch-based lignocellulosic plants.
Collapse
|