1
|
Cai Z, Apolinário S, Baião AR, Pacini C, Sousa MD, Vinga S, Reddel RR, Robinson PJ, Garnett MJ, Zhong Q, Gonçalves E. Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning. Nat Commun 2024; 15:10390. [PMID: 39614072 PMCID: PMC11607321 DOI: 10.1038/s41467-024-54771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learning model, MOSA (Multi-Omic Synthetic Augmentation), specifically designed to integrate and augment the Cancer Dependency Map (DepMap). Harnessing orthogonal multi-omic information, this model successfully generates molecular and phenotypic profiles, resulting in an increase of 32.7% in the number of multi-omic profiles and thereby generating a complete DepMap for 1523 cancer cell lines. The synthetically enhanced data increases statistical power, uncovering less studied mechanisms associated with drug resistance, and refines the identification of genetic associations and clustering of cancer cell lines. By applying SHapley Additive exPlanations (SHAP) for model interpretation, MOSA reveals multi-omic features essential for cell clustering and biomarker identification related to drug and gene dependencies. This understanding is crucial for developing much-needed effective strategies to prioritize cancer targets.
Collapse
Affiliation(s)
- Zhaoxiang Cai
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Sofia Apolinário
- INESC-ID, 1000-029, Lisboa, Portugal
- Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Ana R Baião
- INESC-ID, 1000-029, Lisboa, Portugal
- Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Clare Pacini
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Miguel D Sousa
- INESC-ID, 1000-029, Lisboa, Portugal
- Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Susana Vinga
- INESC-ID, 1000-029, Lisboa, Portugal
- Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Qing Zhong
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| | - Emanuel Gonçalves
- INESC-ID, 1000-029, Lisboa, Portugal.
- Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001, Lisboa, Portugal.
| |
Collapse
|
2
|
Mansour SM, Sabra O, El-Komy F, Ahmed K, El-Abhar H. Novel insights into gut health: Cilostazol strengthens gut integrity by adjusting TLR-2/NF-κB/IL-23 and CD44/AKT/GSK-3β/cyclin-D1 trajectories in methotrexate-induced mucositis model. Eur J Pharmacol 2024; 975:176669. [PMID: 38795758 DOI: 10.1016/j.ejphar.2024.176669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Methotrexate (MTX)-induced gastrointestinal mucositis is a common adverse effect characterized by redox imbalance and overproduction of inflammatory mediators that perturb intestinal integrity. Currently, there is no definitive treatment for this condition and its prevention is still far beyond comprehension. Because of its pleiotropic pharmacological actions, we aimed to explore the potential mechanisms through which cilostazol (CILO) can protect against MTX-induced intestinal mucositis. Wistar rats were allocated into 4 groups, control, CILO (100 mg/kg, p.o for 14 days), MTX (7.5 mg/kg for 4 successive days), and CILO + MTX. The improving effect of CILO on the morphological structure was confirmed by an upturn in the histopathological and transition electron microscope examinations evidenced by the increased jejunal villus height/width and the crypt depth besides the maintenance of tight junctions. These findings were verified biochemically; on the molecular level, CILO reduced the MTX-induced lipid peroxidation, cleaved caspase-3, p53, and the inflammatory parameters (TLR-2, NF-κB, IL-23, TNF-α, IL-1β), while increasing the anti-inflammatory marker IL-10 and the antioxidant enzyme SOD. Moreover, CILO decreased the injurious axis AKT/GSK-3β/cyclin-D1, and CD44+, but increased the immunoexpression of the cell proliferating marker PCNA. CILO also upheld the intestinal barrier by enhancing the tight junction molecules (ZO-1, claudin-4) and the E-cadherin/β-catenin complex while abating the mesenchymal marker vimentin. In conclusion, CILO protected gut integrity by reducing the epithelial-mesenchymal transition process, the MTX-induced oxidative, apoptotic, and inflammatory mediators, and turning off the CD44/AKT/GSK-3β/cyclin D1 trajectory and intensifying the expression of PCNA.
Collapse
Affiliation(s)
- Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt.
| | - Omar Sabra
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt; Department of Pharmaceutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Fatma El-Komy
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt; Department of Clinical Pharmacy, School of Pharmacy, University College Cork, Cork, Ireland
| | - Kawkab Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hanan El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt
| |
Collapse
|
3
|
Yoshimori T, Kawami M, Kumagai Y, Futatsugi S, Yumoto R, Uchida Y, Takano M. Abemaciclib-induced epithelial-mesenchymal transition mediated by cyclin-dependent kinase 4/6 independent of cell cycle arrest pathway. Int J Biochem Cell Biol 2024; 172:106601. [PMID: 38821314 DOI: 10.1016/j.biocel.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Abemaciclib (ABM), a cyclin-dependent kinase 4/6 inhibitor, shows pharmacological effects in cell cycle arrest. Epithelial-mesenchymal transition is an important cellular event associated with pathophysiological states such as organ fibrosis and cancer progression. In the present study, we evaluated the contribution of factors associated with cell cycle arrest to ABM-induced epithelial-mesenchymal transition. Treatment with 0.6 µM ABM induced both cell cycle arrest and epithelial-mesenchymal transition-related phenotypic changes. Interestingly, the knockdown of cyclin-dependent kinase 4/6, pharmacological targets of ABM or cyclin D1, which forms complexes with cyclin-dependent kinase 4/6, resulted in cell cycle arrest at the G1-phase and induction of epithelial-mesenchymal transition, indicating that downregulation of cyclin-dependent kinase 4/6-cyclin D1 complexes would mimic ABM. In contrast, knockdown of the Rb protein, which is phosphorylated by cyclin-dependent kinase 4/6, had no effect on the expression level of α-smooth muscle actin, an epithelial-mesenchymal transition marker. Furthermore, ABM-induced epithelial-mesenchymal transition was not affected by Rb knockdown, suggesting that Rb is not involved in the transition process. Our study is the first to suggest that cyclin-dependent kinase 4/6-cyclin D1 complexes, as pharmacological targets of ABM, may contribute to ABM-induced epithelial-mesenchymal transition, followed by clinical disorders such as organ fibrosis and cancer progression. This study suggests that blocking epithelial-mesenchymal transition might be a promising way to prevent negative side effects caused by a medication (ABM) without affecting its ability to treat the disease.
Collapse
Affiliation(s)
- Tomoyo Yoshimori
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Masashi Kawami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan.
| | - Yuta Kumagai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Sorahito Futatsugi
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Ryoko Yumoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Yasuo Uchida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan.
| | - Mikihisa Takano
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| |
Collapse
|
4
|
Freitas-Dias C, Gonçalves F, Martins F, Lemos I, Gonçalves LG, Serpa J. Interaction between NSCLC Cells, CD8 + T-Cells and Immune Checkpoint Inhibitors Potentiates Coagulation and Promotes Metabolic Remodeling-New Cues on CAT-VTE. Cells 2024; 13:305. [PMID: 38391918 PMCID: PMC10886748 DOI: 10.3390/cells13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Cancer-associated thrombosis (CAT) and venous thromboembolism (VTE) are frequent cancer-related complications associated with high mortality; thus, this urges the identification of predictive markers. Immune checkpoint inhibitors (ICIs) used in cancer immunotherapy allow T-cell activation against cancer cells. Retrospective studies showed increased VTE following ICI administration in some patients. Non-small cell lung cancer (NSCLC) patients are at high risk of thrombosis and thus, the adoption of immunotherapy, as a first-line treatment, seems to be associated with coagulation-fibrinolysis derangement. METHODS We pharmacologically modulated NSCLC cell lines in co-culture with CD8+ T-cells (TCD8+) and myeloid-derived suppressor cells (MDSCs), isolated from healthy blood donors. The effects of ICIs Nivolumab and Ipilimumab on NSCLC cell death were assessed by annexin V and propidium iodide (PI) flow cytometry analysis. The potential procoagulant properties were analyzed by in vitro clotting assays and enzyme-linked immunosorbent assays (ELISAs). The metabolic remodeling induced by the ICIs was explored by 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS Flow cytometry analysis showed that TCD8+ and ICIs increase cell death in H292 and PC-9 cells but not in A549 cells. Conditioned media from NSCLC cells exposed to TCD8+ and ICI induced in vitro platelet aggregation. In A549, Podoplanin (PDPN) levels increased with Nivolumab. In H292, ICIs increased PDPN levels in the absence of TCD8+. In PC-9, Ipilimumab decreased PDPN levels, this effect being rescued by TCD8+. MDSCs did not interfere with the effect of TCD8+ in the production of TF or PDPN in any NSCLC cell lines. The exometabolome showed a metabolic remodeling in NSCLC cells upon exposure to TCD8+ and ICIs. CONCLUSIONS This study provides some insights into the interplay of immune cells, ICIs and cancer cells influencing the coagulation status. ICIs are important promoters of coagulation, benefiting from TCD8+ mediation. The exometabolome analysis highlighted the relevance of acetate, pyruvate, glycine, glutamine, valine, leucine and isoleucine as biomarkers. Further investigation is needed to validate this finding in a cohort of NSCLC patients.
Collapse
Affiliation(s)
- Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.F.-D.); (F.G.); (F.M.); (I.L.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
- Faculdade de Ciências, FCUL, Universidade de Lisboa, Campo Grande, 130, 1169-056 Lisboa, Portugal
| | - Filipe Gonçalves
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.F.-D.); (F.G.); (F.M.); (I.L.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.F.-D.); (F.G.); (F.M.); (I.L.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.F.-D.); (F.G.); (F.M.); (I.L.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.F.-D.); (F.G.); (F.M.); (I.L.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| |
Collapse
|
5
|
Iaconis D, Caccuri F, Manelfi C, Talarico C, Bugatti A, Filippini F, Zani A, Novelli R, Kuzikov M, Ellinger B, Gribbon P, Riecken K, Esposito F, Corona A, Tramontano E, Beccari AR, Caruso A, Allegretti M. DHFR Inhibitors Display a Pleiotropic Anti-Viral Activity against SARS-CoV-2: Insights into the Mechanisms of Action. Viruses 2023; 15:v15051128. [PMID: 37243214 DOI: 10.3390/v15051128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.
Collapse
Affiliation(s)
- Daniela Iaconis
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Francesca Caccuri
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Carmine Talarico
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Antonella Bugatti
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Rubina Novelli
- Dompè Famaceutici SpA, Via Campo di Pile snc, 67100 L'Aquila, Italy
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | | | - Arnaldo Caruso
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | |
Collapse
|
6
|
Kawami M, Ojima T, Yumoto R, Takano M. Role of integrin α2 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Toxicol Res 2022; 38:449-458. [PMID: 36277370 PMCID: PMC9532481 DOI: 10.1007/s43188-022-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Methotrexate (MTX) is widely used to treat various diseases. However, it induces adverse reactions like serious lung injury, including pulmonary fibrosis. Increasing evidence suggests that epithelial-mesenchymal transition (EMT) in injured alveolar epithelium contributes to the development of the pathophysiological state of the lung. We demonstrated that MTX induced EMT in cultured alveolar epithelial cell lines. Integrin-mediated signaling is considered a significant factor in recognizing the EMT process. However, the relationship between MTX-induced EMT and integrin family members is poorly understood. In the present study, we aimed to clarify the role of integrin in MTX-induced EMT in A549 and NCI-H1299 (H1299) cells by focusing on the integrin alpha 2 (ITGA2) subunit, selected based on our microarray analysis. MTX treatment for 72 h significantly increased the mRNA and cell surface expression of ITGA2 in both cell lines. However, this upregulation by MTX was suppressed by co-treatment with SB431542 and folic acid, which are inhibitors of MTX-induced EMT in A549 cells. The mRNA expression levels of EMT-related genes were more affected in the MTX-treated A549 cells with high ITGA2 expression than in those with low ITGA2 expression. Finally, E7820, an ITGA2 inhibitor, suppressed MTX-induced EMT-related phenotypic changes, such as morphology and mRNA and protein expression of α-smooth muscle actin, a representative EMT marker. These findings suggest that ITGA2 may play a key role in MTX-induced EMT in alveolar epithelial cells.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Takamichi Ojima
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| |
Collapse
|
7
|
Dou J, Mi Y, Daneshmand S, Heidari Majd M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Kawami M, Honda M, Hara T, Yumoto R, Takano M. Role of Nrf2 in Methotrexate-Induced Epithelial–Mesenchymal Transition in Alveolar A549 Cells. Biol Pharm Bull 2022; 45:1069-1076. [DOI: 10.1248/bpb.b22-00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Mikito Honda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takuya Hara
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
9
|
Kim SO, Choi YH, Lee EH. Aqueous extracts of Corni Fructus protect C2C12 myoblasts from DNA damage and apoptosis caused by oxidative stress. Mol Biol Rep 2022; 49:4819-4828. [PMID: 35471621 DOI: 10.1007/s11033-022-07332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although the various pharmacological effects of Corni Fructus are highly correlated with its antioxidant activity, the blocking effect against oxidative stress in muscle cells is not clear. The purpose of this study was to investigate the effect of aqueous extracts of Corni Fructus (CFE) against oxidative stress caused by hydrogen peroxide (H2O2) in murine skeletal C2C12 myoblasts. METHODS AND RESULTS MTT assay for cell viability, DCF-DA staining for reactive oxygen species (ROS) production, Comet assay for DNA damage, annexin V-FITC and PI double staining for apoptosis, JC-1 staining and caspase assay for monitor mitochondrial integrity, and western blotting for related protein levels were conducted in H2O2 oxidative stressed C2C12 cells. Our results showed that CFE pretreatment significantly ameliorated the loss of cell viability and inhibited apoptosis in H2O2-treated C2C12 cells in a concentration-dependent manner. DNA damage induced by H2O2 was also markedly attenuated in the presence of CFE, which was associated with suppression of ROS generation. In addition, H2O2 reduced mitochondrial membrane potential and caused downregulation of Bcl-2 and upregulation of Bax expression, although these were abrogated by CFE pretreatment. Moreover, CFE blocked H2O2-induced cytosolic release of cytochrome c, activation of caspase-9 and caspase-3, and degradation of poly (ADP-ribose) polymerase. CONCLUSION Taken together, the present results demonstrate that CFE could protect C2C12 cells from H2O2-induced damage by eliminating ROS generation, thereby blocking mitochondria-mediated apoptosis pathway. These results indicate that CFE has therapeutic potential for the prevention and treatment of oxidative stress-mediated myoblast injury.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Food and Nutrition, Kyungsung University, Busan, 48434, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 17104, Korea
| | - Eunjoo Hwang Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
10
|
Protection of Oxidative Stress-induced DNA Damage and Apoptosis by Rosmarinic Acid in Murine Myoblast C2C12 Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0248-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Kawami M, Takenaka S, Akai M, Yumoto R, Takano M. Characterization of miR-34a-Induced Epithelial-Mesenchymal Transition in Non-Small Lung Cancer Cells Focusing on p53. Biomolecules 2021; 11:biom11121853. [PMID: 34944497 PMCID: PMC8699678 DOI: 10.3390/biom11121853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Epithelial–mesenchymal transition (EMT), a phenotypic conversion of the epithelial to mesenchymal state, contributes to cancer progression. Currently, several microRNAs (miRNAs) are associated with EMT-mediated cancer progression, but the contribution of miR-34a to EMT in cancer cells remains controversial. The present study aimed to clarify the role of miR-34a in the EMT-related phenotypes of human non-small cell lung cancer (NSCLC) cell lines, A549 (p53 wild-type) and H1299 (p53-deficient). Methods: The miR-34a mimic and p53 small interfering RNA (siRNA) were transfected into the cells using Lipofectamine, and the obtained total RNA and cell lysates were used for real-time polymerase chain reaction and Western blotting analysis, respectively. Results: The introduction of the miR-34a mimic led to an increase in the mRNA and protein expression levels of α-smooth muscle actin (α-SMA), a mesenchymal marker gene, in A549, but not in H1299 cells. Additionally, miR-34a-induced the upregulation of p53 activity and migration was observed in A549, but not in H1299 cells. However, under the p53-knockdown condition, only α-SMA upregulation by miR-34a was abolished. Conclusion: These findings indicate a close relationship between p53 and miR-34a-induced EMT in p53-wild type NSCLC cells, which provides novel insights about the role of miR-34a in EMT-like phenotypic changes in NSCLC.
Collapse
|
12
|
Gao ZW, Liu C, Yang L, Chen HC, Yang LF, Zhang HZ, Dong K. CD73 Severed as a Potential Prognostic Marker and Promote Lung Cancer Cells Migration via Enhancing EMT Progression. Front Genet 2021; 12:728200. [PMID: 34868205 PMCID: PMC8635862 DOI: 10.3389/fgene.2021.728200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
To investigate the expression levels and prognostic value of CD73 in lung cancer. And moreover, to identify the effect and potential mechanism of CD73 on lung cancer cells proliferation and migration. CD73 expression levels in lung cancer were analyzed base on GEPIA2 and GEO database. GEPIA2 and Kaplan-Meier Plotter (KM Plotter) was used to analyzed the correlation between CD73 expression and prognosis. GEO dataset were analyzed via GEO2R. CD73 overexpression cell model was construction via recombinant lentivirus transfection into A549 and NCI-H520 cells. CCK8 assay were used to investigate cells proliferation. Migration and invasion ability were evaluated by scratch and transwell methods. Base on GEPIA2, GSE32683, GSE116959 and GSE37745 dataset, we found that CD73 expression were significant higher in tumor tissues of lung adenocarcinoma (LUAD) compared with that in non-tumor normal tissues and in lung squamous cell carcinoma (LUSC), while there were no significant difference of CD73 expression between LUSC and normal control tissues. Interestingly, a high CD73 level predict poor overall survival (OS) of LUSC. However, GEPIA2 and KM plotter showed the opposite conclusion of prognostic value of CD73 in LUAD. By using cell experiments, we found that CD73 overexpression promoted proliferation and migration of LUAD A549 cells. However, there was no significant effect of CD73 overexpression on LUSC NCI-H520 cells. Furthermore, CD73 overexpression facilitates epithelial to mesenchymal transition (EMT) progression of A549 cells. In conclusion, our results indicated that CD73 expression were increased in LUAD and might be an poor prognostic marker for LUSC patients. CD73 play an important role in LUAD cells proliferation and migration. These data allowed to support CD73 as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Chong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Lan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hao-Chuan Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Long-Fei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Ke Dong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
13
|
Kim SY, Cha HJ, Hwangbo H, Park C, Lee H, Song KS, Shim JH, Noh JS, Kim HS, Lee BJ, Kim S, Kim GY, Jeon YJ, Choi YH. Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle ( Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway. Foods 2021; 10:foods10112807. [PMID: 34829088 PMCID: PMC8623046 DOI: 10.3390/foods10112807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to explore the efficacy of fermented extract of sea tangle (Laminaria japonica Aresch, FST) with Lactobacillus brevis on DNA damage and apoptosis in hydrogen peroxide (H2O2)-stimulated osteoblastic MC3T3-E1 cells and clarify related signaling pathways. Our results showed that exposure to FST significantly improved cell viability, inhibited apoptosis, and suppressed the generation of reactive oxygen species (ROS) in H2O2-stimulated cells. In addition, H2O2 triggered DNA damage in MC3T3-E1 cells was markedly attenuated by FST pretreatment. Moreover, H2O2-induced mitochondrial dysfunctions associated with apoptotic events, including loss of mitochondrial membrane potential (MMP), decreased Bcl-2/Bcl-2 associated x-protein (Bax) ratio, and cytosolic release of cytochrome c, were reduced in the presence of FST. FST also diminished H2O2-induced activation of caspase-3, which was associated with the ability of FST to protect the degradation of poly (ADP-ribose) polymerase. Furthermore, FST notably enhanced nuclear translocation and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of H2O2 with concomitant upregulation of heme oxygenase-1 (HO-1) expression. However, artificial blockade of this pathway by the HO-1 inhibitor, zinc protoporphyrin IX, greatly abolished the protective effect of FST against H2O2-induced MC3T3-E1 cell injury. Taken together, these results demonstrate that FST could protect MC3T3-E1 cells from H2O2-induced damage by maintaining mitochondrial function while eliminating ROS along with activation of the Nrf2/HO-1 antioxidant pathway.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Korea;
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea;
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Kyoung Seob Song
- Department of Medical Life Science, College of Medicine, Kosin University, Busan 49104, Korea;
| | - Jung-Hyun Shim
- Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea;
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea;
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea;
| | - Suhkmann Kim
- Center for Proteome Biophysics and Chemistry, Department of Chemistry, College of Natural Sciences, Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
14
|
Park C, Ji SY, Lee H, Choi SH, Kwon CY, Kim SY, Lee ET, Choo ST, Kim GY, Choi YH, Kim MR. Mori Ramulus Suppresses Hydrogen Peroxide-Induced Oxidative Damage in Murine Myoblast C2C12 Cells through Activation of AMPK. Int J Mol Sci 2021; 22:ijms222111729. [PMID: 34769159 PMCID: PMC8583786 DOI: 10.3390/ijms222111729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Mori Ramulus, the dried twigs of Morus alba L., has been attracting attention for its potent antioxidant activity, but its role in muscle cells has not yet been elucidated. The purpose of this study was to evaluate the protective effect of aqueous extracts of Mori Ramulus (AEMR) against oxidative stress caused by hydrogen peroxide (H2O2) in C2C12 mouse myoblasts, and in dexamethasone (DEX)-induced muscle atrophied models. Our results showed that AEMR rescued H2O2-induced cell viability loss and the collapse of the mitochondria membrane potential. AEMR was also able to activate AMP-activated protein kinase (AMPK) in H2O2-treated C2C12 cells, whereas compound C, a pharmacological inhibitor of AMPK, blocked the protective effects of AEMR. In addition, H2O2-triggered DNA damage was markedly attenuated in the presence of AEMR, which was associated with the inhibition of reactive oxygen species (ROS) generation. Further studies showed that AEMR inhibited cytochrome c release from mitochondria into the cytoplasm, and Bcl-2 suppression and Bax activation induced by H2O2. Furthermore, AEMR diminished H2O2-induced activation of caspase-3, which was associated with the ability of AEMR to block the degradation of poly (ADP-ribose) polymerase, thereby attenuating H2O2-induced apoptosis. However, compound C greatly abolished the protective effect of AEMR against H2O2-induced C2C12 cell apoptosis, including the restoration of mitochondrial dysfunction. Taken together, these results demonstrate that AEMR could protect C2C12 myoblasts from oxidative damage by maintaining mitochondrial function while eliminating ROS, at least with activation of the AMPK signaling pathway. In addition, oral administration of AEMR alleviated gastrocnemius and soleus muscle loss in DEX-induced muscle atrophied rats. Our findings support that AEMR might be a promising therapeutic candidate for treating oxidative stress-mediated myoblast injury and muscle atrophy.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Seon Yeong Ji
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang 50141, Korea;
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Dong-Eui University, Busan 47340, Korea;
| | - So Young Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
| | - Eun Tag Lee
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Sung Tae Choo
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Gi-Young Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| | - Mi Ryeo Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| |
Collapse
|