1
|
Zajdel P, Matłoka M, Konieczny J, Kos T, Lammers JC, Cavalco NG, Clark AA, Lenda T, Satała G, Canale V, Grychowska K, Krawczyk M, Nikiforuk A, Partyka A, Jastrzębska-Więsek M, Berghauzen-Maciejewska K, Biała D, Janicka M, Janusz A, Piast R, Mulewski K, Smuga D, Pieczykolan J, Wieczorek M, Moszczyński-Pętkowski R, Dubiel K, Ossowska K, Bojarski AJ, Kamiński K, McCorvy JD, Popik P. Simultaneous 5-HT 1BR agonist/5-HT 6R antagonist action as a potential treatment of Parkinson's disease and its comorbidities. J Pharmacol Exp Ther 2025; 392:100055. [PMID: 40023605 DOI: 10.1016/j.jpet.2024.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/19/2024] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease (PD) treatment focuses mainly on the augmentation of dopamine transmission, but to alleviate adverse motor effects accompanying L-DOPA use, additional treatments with serotonergic (5-HT) medications may be considered. We propose a novel concept based on the simultaneous activation of 5-HT1BR and 5-HT6R blockade as a putative therapeutic option for PD treatment. We have developed PZKKN-94, a dual human 5-HT1BR agonist (EC50 = 39 nM) and human 5-HT6R antagonist (KB = 7.7 nM), with selectivity over 43 targets, favorable drug-like properties, and brain penetration. Importantly, PZKKN-94 potency was increased or retained at rat 5-HT1B and 5-HT6 orthologs but not at mouse 5-HT6. Therefore, PZKKN-94 was tested in 2 rat disease models: haloperidol-induced catalepsy and 6-hydroxydopamine-induced sensorimotor deficits in rats, showing antiparkinsonian-like effects in both. Of note, PZKKN-94 did not affect the therapeutic effects of L-DOPA and attenuated L-DOPA-induced motor fluctuation ("on-off" phenomena) in the stepping and vibrissae tests. PZKKN-94 had no effect on L-DOPA-induced contralateral rotation, suggesting no impact on dopamine-mimetic medication effects. In addition, PZKKN-94 reversed scopolamine-, phencyclidine-, and aged-induced learning deficits in the rat novel object recognition test, increased cognitive flexibility in the attention set-shifting task, and displayed antidepressant-like actions in the forced swim test in rats. Our data suggest that dual-acting 5-HT1BR agonists/5-HT6R antagonists provide a novel therapeutic approach to alleviate both motor symptoms and accompanying cognitive and depression comorbidities in PD. Our present findings highlight the dual 5-HT1BR agonist/5-HT6R antagonist strategy to simultaneously spare L-DOPA's action and alleviate motor fluctuations related to L-DOPA treatment. SIGNIFICANCE STATEMENT: The commonly used L-DOPA-based medications for Parkinson's disease, though effective in alleviating initial disease states, are limited in long-term use due to the motor (dyskinesia and on-off phenomena) and nonmotor (psychotic-like) side effects. A novel nondopaminergic strategy for treatment of Parkinson's disease based on simultaneous activation of the 5-HT1B receptor and blockade of the 5-HT6 receptor is proposed. The compound PZKKN-94 produces an antiparkinsonian-like effect and attenuates motor fluctuations, preserving the efficacy of L-DOPA. In addition, PZKKN-94 demonstrates procognitive and antidepressant-like properties.
Collapse
Affiliation(s)
- Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | | | - Jolanta Konieczny
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Tomasz Kos
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Josie C Lammers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allison A Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tomasz Lenda
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | | - Martyna Krawczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | | | | - Dominika Biała
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | | | | | | | | | | | - Krystyna Ossowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Kamiński
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Piotr Popik
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
2
|
Esaki H, Izumi S, Nishikawa K, Nagayasu K, Kaneko S, Nishitani N, Deyama S, Kaneda K. Role of medial prefrontal cortex voltage-dependent potassium 4.3 channels in nicotine-induced enhancement of object recognition memory in male mice. Eur J Pharmacol 2024; 978:176790. [PMID: 38942263 DOI: 10.1016/j.ejphar.2024.176790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Matera C, Papotto C, Dallanoce C, De Amici M. Advances in small molecule selective ligands for heteromeric nicotinic acetylcholine receptors. Pharmacol Res 2023; 194:106813. [PMID: 37302724 DOI: 10.1016/j.phrs.2023.106813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
The study of nicotinic acetylcholine receptors (nAChRs) has significantly progressed in the last decade, due to a) the improved techniques available for structural studies; b) the identification of ligands interacting at orthosteric and allosteric recognition sites on the nAChR proteins, able to tune channel conformational states; c) the better functional characterization of receptor subtypes/subunits and their therapeutic potential; d) the availability of novel pharmacological agents able to activate or block nicotinic-mediated cholinergic responses with subtype or stoichiometry selectivity. The copious literature on nAChRs is related to the pharmacological profile of new, promising subtype selective derivatives as well as the encouraging preclinical and early clinical evaluation of known ligands. However, recently approved therapeutic derivatives are still missing, and examples of ligands discontinued in advanced CNS clinical trials include drug candidates acting at both neuronal homomeric and heteromeric receptors. In this review, we have selected heteromeric nAChRs as the target and comment on literature reports of the past five years dealing with the discovery of new small molecule ligands or the advanced pharmacological/preclinical investigation of more promising compounds. The results obtained with bifunctional nicotinic ligands and a light-activated ligand as well as the applications of promising radiopharmaceuticals for heteromeric subtypes are also discussed.
Collapse
Affiliation(s)
- Carlo Matera
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Claudio Papotto
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
4
|
Suárez Santiago JE, Roldán GR, Picazo O. Ketamine as a pharmacological tool for the preclinical study of memory deficit in schizophrenia. Behav Pharmacol 2023; 34:80-91. [PMID: 36094064 DOI: 10.1097/fbp.0000000000000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by the presence of positive symptoms (hallucinations, delusions, and disorganization of thought and language), negative symptoms (abulia, alogia, and affective flattening), and cognitive impairment (attention deficit, impaired declarative memory, and deficits in social cognition). Dopaminergic hyperactivity seems to explain the positive symptoms, but it does not completely clarify the appearance of negative and cognitive clinical manifestations. Preclinical data have demonstrated that acute and subchronic treatment with NMDA receptor antagonists such as ketamine (KET) represents a useful model that resembles the schizophrenia symptomatology, including cognitive impairment. This latter has been explained as a hypofunction of NMDA receptors located on the GABA parvalbumin-positive interneurons (near to the cortical pyramidal cells), thus generating an imbalance between the inhibitory and excitatory activity in the corticomesolimbic circuits. The use of behavioral models to explore alterations in different domains of memory is vital to learn more about the neurobiological changes that underlie schizophrenia. Thus, to better understand the neurophysiological mechanisms involved in cognitive impairment related to schizophrenia, the purpose of this review is to analyze the most recent findings regarding the effect of KET administration on these processes.
Collapse
Affiliation(s)
- José Eduardo Suárez Santiago
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Roldán Roldán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
| |
Collapse
|
5
|
Recent Advances in the Discovery of Nicotinic Acetylcholine Receptor Allosteric Modulators. Molecules 2023; 28:molecules28031270. [PMID: 36770942 PMCID: PMC9920195 DOI: 10.3390/molecules28031270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent agonists, allosteric activating PAMs and neutral or silent allosteric modulators are compounds capable of modulating the nicotinic receptor by interacting at allosteric modulatory sites distinct from the orthosteric sites. This survey is focused on the compounds that have been shown or have been designed to interact with nicotinic receptors as allosteric modulators of different subtypes, mainly α7 and α4β2. Minimal chemical changes can cause a different pharmacological profile, which can then lead to the design of selective modulators. Experimental evidence supports the use of allosteric modulators as therapeutic tools for neurological and non-neurological conditions.
Collapse
|
6
|
Seyedaghamiri F, Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farhoudi M. Possible Engagement of Nicotinic Acetylcholine Receptors in Pathophysiology of Brain Ischemia-Induced Cognitive Impairment. J Mol Neurosci 2021; 72:642-652. [PMID: 34596872 DOI: 10.1007/s12031-021-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Post-stroke disabilities like cognitive impairment impose are complex conditions with great economic burdens on health care systems. For these comorbidities, no effective therapies have been identified yet. Nicotinic acetylcholine receptors (nAChRs) are multifunctional receptors participating in various behavioral and neurobiological functions. During brain ischemia, the increased glutamate accumulation leads to neuronal excitotoxicity as well as mitochondrial dysfunction. These abnormalities then cause the increased levels of oxidants, which play key roles in neuronal death and apoptosis in the infarct zone. Additionally, recall of cytokines and inflammatory factors play a prominent role in the exacerbation of ischemic injury. As well, neurotrophic factors' insufficiency results in synaptic dysfunction and cognitive impairments in ischemic brain. Of note, nAChRs through various signaling pathways can participate in therapeutic approaches such as cholinergic system's stimulation, and reduction of excitotoxicity, inflammation, apoptosis, oxidative stress, mitochondrial dysfunction, and autophagy. Moreover, the possible roles of nAChRs in neurogenesis, synaptogenesis, and stimulation of neurotrophic factors expression have been reported previously. On the other hand, the majority of the above-mentioned mechanisms were found to be common in both brain ischemia pathogenesis and cognitive function tuning. Therefore, it seems that nAChRs might be known as key regulators in the control of ischemia pathology, and their modulation could be considered as a new avenue in the multi-target treatment of post-stroke cognitive impairment.
Collapse
Affiliation(s)
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Wu X, Craik DJ, Kaas Q. Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor. Mar Drugs 2021; 19:md19090482. [PMID: 34564144 PMCID: PMC8469569 DOI: 10.3390/md19090482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
The α4β2 nAChR is implicated in a range of diseases and disorders including nicotine addiction, epilepsy and Parkinson's and Alzheimer's diseases. Designing α4β2 nAChR selective inhibitors could help define the role of the α4β2 nAChR in such disease states. In this study, we aimed to modify globular and ribbon α-conotoxin GID to selectively target the α4β2 nAChR through competitive inhibition of the α4(+)β2(-) or α4(+)α4(-) interfaces. The binding modes of the globular α-conotoxin [γ4E]GID with rat α3β2, α4β2 and α7 nAChRs were deduced using computational methods and were validated using published experimental data. The binding mode of globular [γ4E]GID at α4β2 nAChR can explain the experimental mutagenesis data, suggesting that it could be used to design GID variants. The predicted mutational energy results showed that globular [γ4E]GID is optimal for binding to α4β2 nAChR and its activity could not likely be further improved through amino-acid substitutions. The binding mode of ribbon GID with the (α4)3(β2)2 nAChR was deduced using the information from the cryo-electron structure of (α4)3(β2)2 nAChR and the binding mode of ribbon AuIB. The program FoldX predicted the mutational energies of ribbon [γ4E]GID at the α4(+)α4(-) interface, and several ribbon[γ4E]GID mutants were suggested to have desirable properties to inhibit (α4)3(β2)2 nAChR.
Collapse
Affiliation(s)
- Xiaosa Wu
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia;
- National Institutes of Health, Building 35A, Room 3D-953B, 35 Convent Drive, Bethesda, MD 20892-3701, USA
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence: (D.J.C.); (Q.K.)
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence: (D.J.C.); (Q.K.)
| |
Collapse
|
8
|
Drop M, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Bantreil X, Walczak M, Koczurkiewicz-Adamczyk P, Latacz G, Gwizdak A, Krawczyk M, Gołębiowska J, Grychowska K, Bojarski AJ, Nikiforuk A, Subra G, Martinez J, Pawłowski M, Popik P, Marin P, Lamaty F, Zajdel P. 2-Phenyl-1 H-pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT 6 Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chem Neurosci 2021; 12:1228-1240. [PMID: 33705101 PMCID: PMC8041276 DOI: 10.1021/acschemneuro.1c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
Serotonin type 6
receptor (5-HT6R) has gained particular
interest as a promising target for treating cognitive deficits, given
the positive effects of its antagonists in a wide range of memory
impairment paradigms. Herein, we report on degradation of the 1H-pyrrolo[3,2-c]quinoline scaffold
to provide the 2-phenyl-1H-pyrrole-3-carboxamide,
which is devoid of canonical indole-like skeleton and retains recognition
of 5-HT6R. This modification has changed the compound’s
activity at 5-HT6R-operated signaling pathways from neutral
antagonism to inverse agonism. The study identified compound 27 that behaves as an inverse agonist of the 5-HT6R at the Gs and Cdk5 signaling pathways. Compound 27 showed high selectivity and metabolic stability and was brain penetrant.
Finally, 27 reversed scopolamine-induced memory decline
in the novel object recognition test and exhibited procognitive properties
in the attentional set-shifting task in rats. In light of these findings, 27 might be considered for further evaluation as a new cognition-enhancing
agent, while 2-phenyl-1H-pyrrole-3-carboxamide might
be used as a template for designing 5-HT6R inverse agonists.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Anna Gwizdak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
9
|
Esaki H, Izumi S, Fukao A, Ito S, Nishitani N, Deyama S, Kaneda K. Nicotine Enhances Object Recognition Memory via Stimulating α4β2 and α7 Nicotinic Acetylcholine Receptors in the Medial Prefrontal Cortex of Mice. Biol Pharm Bull 2021; 44:1007-1013. [PMID: 34193682 DOI: 10.1248/bpb.b21-00314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotine has been known to enhance recognition memory in various species. However, the brain region where nicotine acts and exerts its effect remains unclear. Since the medial prefrontal cortex (mPFC) is associated with memory, we examined the role of the mPFC in nicotine-induced enhancement of recognition memory using the novel object recognition test in male C57BL/6J mice. Systemic nicotine administration 10 min before training session significantly enhanced object recognition memory in test session that was performed 24 h after the training. Intra-mPFC infusion of mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist, 5 min before nicotine administration blocked the effect of nicotine. Additionally, intra-mPFC infusion of dihydro-β-erythroidine, a selective α4β2 nAChR antagonist, or methyllycaconitine, a selective α7 nAChR antagonist, significantly suppressed the nicotine-induced object recognition memory enhancement. Finally, intra-mPFC infusion of nicotine 1 min before the training session augmented object recognition memory in a dose-dependent manner. These findings suggest that mPFC α4β2 and α7 nAChRs mediate the nicotine-induced object recognition memory enhancement.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Akari Fukao
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|