1
|
Li R, Zhang J, Ren L. A Meta-Analysis of the Impact of Using Angiotensin-Converting Enzyme Inhibitors (ACEIs) or Angiotensin II Receptor Blockers (ARBs) on Mortality, Severity, and Healthcare Resource Utilization in Patients with COVID-19. Adv Respir Med 2025; 93:4. [PMID: 39996621 PMCID: PMC11852372 DOI: 10.3390/arm93010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE The primary objective of this study is to explore the potential link between the utilization of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) and its impact on mortality, disease severity, and healthcare resource utilization in individuals diagnosed with COVID-19. We aim to establish a solid theoretical foundation for safe and effective clinical medications. METHODS We conducted a comprehensive search of various databases, including CNKI, PubMed, Science, Cell, Springer, Nature, Web of Science, and Embase. We also traced the literature of the included studies to ensure a thorough analysis of the available evidence. After applying a set of inclusion and exclusion criteria, we ultimately included a total of 41 articles in our analysis. To determine the overall effect size for dichotomous variables, we used the Mantel-Haenszel odds ratio in random effect models. For continuous variables, we calculated the inverse variance SMD using random effect models. To assess the outcomes and heterogeneity, we considered p-values (p < 0.05) and I2 values for all outcomes. We performed multivariate and univariate meta-regression analyses using the maximum likelihood approach with the CMA 3.0 software. RESULTS The results of our analysis indicated that the use of ACEIs or ARBs did not significantly influence mortality (OR = 1.10, 95% CI 0.83-1.46, p = 0.43, I2 = 84%), severity (OR = 0.99, 95% CI 0.68-1.45, p = 0.98, I2 = 84%), or healthcare resource utilization (SMD = 0.03, 95% CI 0.06-0.12, p = 0.54, I2 = 37%) in patients with COVID-19 compared to those not taking ACEIs or ARBs. The multivariate meta-regression analysis model explained 63%, 31%, and 100% of the sources of heterogeneity for the three outcome indicators. CONCLUSIONS The use of ACEIs and ARBs is not significantly correlated with mortality, severity, or healthcare resource utilization in patients with COVID-19, indicating safe clinical use of the medications.
Collapse
Affiliation(s)
| | | | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430032, China; (R.L.)
| |
Collapse
|
2
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Azzouzi M, Ouafi ZE, Azougagh O, Daoudi W, Ghazal H, Barkany SE, Abderrazak R, Mazières S, Aatiaoui AE, Oussaid A. Design, synthesis, and computational studies of novel imidazo[1,2- a]pyrimidine derivatives as potential dual inhibitors of hACE2 and spike protein for blocking SARS-CoV-2 cell entry. J Mol Struct 2023; 1285:135525. [PMID: 37057139 PMCID: PMC10080474 DOI: 10.1016/j.molstruc.2023.135525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
In the present work, a new series of imidazo[1,2-a]pyrimidine Schiff base derivatives have been obtained using an easy and conventional synthetic route. The synthesized compounds were spectroscopically characterized using 1H, 13C NMR, LC-MS(ESI), and FT-IR techniques. Green metric calculations indicate adherence to several green chemistry principles. The energy of Frontier Molecular Orbitals (FMO), Molecular Electrostatic Potential (MEP), Quantum Theory of Atoms in Molecules (QTAIM), and Reduced Density Gradient (RDG) were determined by the Density Functional Theory (DFT) method at B3LYP/6-31 G (d, p) as the basis set. Moreover, molecular docking studies targeting the human ACE2 and the spike, key entrance proteins of the severe acute respiratory syndrome coronavirus-2 were carried out along with hACE2 natural ligand Angiotensin II, the MLN-4760 inhibitor as well as the Cannabidiolic Acid CBDA which has been demonstrated to bind to the spike protein and block cell entry. The molecular modeling results showed auspicious results in terms of binding affinity as the top-scoring compound exhibited a remarkable affinity (-9.1 and -7.3 kcal/mol) to the ACE2 and spike protein respectively compared to CBDA (-5.7 kcal/mol), the MLN-4760 inhibitor (-7.3 kcal/mol), and angiotensin II (-9.2 kcal/mol). These findings suggest that the synthesized compounds may potentially act as effective entrance inhibitors, preventing the SARS-CoV-2 infection of human cells. Furthermore, in silico, ADMET, and drug-likeness prediction expressed promising drug-like characteristics.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Zainab El Ouafi
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences Casablanca, Casablanca, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Walid Daoudi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Hassan Ghazal
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences Casablanca, Casablanca, Morocco
- Electronic Systems, Sensors and Nanobiotechnologies (E2SN), École Nationale Supérieure des Arts et Métiers (ENSAM), Mohammed V University, Rabat, Morocco
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Rfaki Abderrazak
- National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
| | - Stéphane Mazières
- Laboratory of IMRCP, University Paul Sabatier, CNRS UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
4
|
Ma L, Zhao W, Huang T, Jin E, Wu G, Zhao W, Bao Y. On the collection and integration of SARS-CoV-2 genome data. BIOSAFETY AND HEALTH 2023; 5:204-210. [PMID: 40078223 PMCID: PMC11894986 DOI: 10.1016/j.bsheal.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 03/14/2025] Open
Abstract
Genome data of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for virus diagnosis, vaccine development, and variant surveillance. To archive and integrate worldwide SARS-CoV-2 genome data, a series of resources have been constructed, serving as a fundamental infrastructure for SARS-CoV-2 research, pandemic prevention and control, and coronavirus disease 2019 (COVID-19) therapy. Here we present an overview of extant SARS-CoV-2 resources that are devoted to genome data deposition and integration. We review deposition resources in data accessibility, metadata standardization, data curation and annotation; review integrative resources in data source, de-redundancy processing, data curation and quality assessment, and variant annotation. Moreover, we address issues that impede SARS-CoV-2 genome data integration, including low-complexity, inconsistency and absence of isolate name, sequence inconsistency, asynchronous update of genome data, and mismatched metadata. We finally provide insights into data standardization consensus and data submission guidelines, to promote SARS-CoV-2 genome data sharing and integration.
Collapse
Affiliation(s)
- Lina Ma
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Huang
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui Jin
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gangao Wu
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenming Zhao
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kapoor S, Singh A, Gupta V. In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2023; 129:103350. [PMID: 36536697 PMCID: PMC9750507 DOI: 10.1016/j.pce.2022.103350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/17/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Background With few available effective interventions, emergence of novel mutants responding poorly to existing vaccines and ever swelling newer waves of infection, SARS-CoV-2 is posing difficult challenges to mankind. This mandates development of newer and effective therapeutics to prevent loss of life and contain the spread of this deadly virus. Nsp12 or RNA-dependent RNA polymerase (RdRp) is a suitable druggable target as it plays a central role in viral replication. Methodology Catalytically important conserved amino acid residues of RdRp were delineated through a comprehensive literature search and multiple sequence alignments. PDB ID 7BV2 was used to create binding pockets using SeeSAR and to generate docked poses of the FDA approved drugs on the receptor and estimating their binding affinity and other properties. Result In silico approach used in this study assisted in prediction of several potential RdRp inhibitors; and re-validation of the already reported ones. Five molecules namely Inosine, Ribavirin, 2-Deoxy-2-Fluoro-D-glucose, Guaifenesin, and Lamivudine were shortlisted which exhibited reasonable binding affinities, with neither torsional nor intermolecular or intramolecular clashes. Conclusion This study aimed to widen the prospect of interventions against the SARS-CoV-2 RdRp. Our results also re-validate already reported molecules like 2-Deoxy-D-glucose as a similar molecule 2-deoxy-2-fluoro-D-glucose is picked up in this study. Additionally, ribavirin and lamivudine, already known antivirals with polymerase inhibition activity are also picked up as the top leads. Selected potent inhibitors of RdRp hold promise to cater for any future coronavirus-outbreak subject to in vitro and in vivo validations.
Collapse
Affiliation(s)
- Shreya Kapoor
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
- Delhi Technological University, New Delhi, India
| | - Anurag Singh
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
- ICMR-National Institute of Virology, Pune, Maharashtra, 411021, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
6
|
Barcia RE, Keller GA, Bello N, Azzato F, Diez RA, Giunti G. Polypharmacy and Drug Interactions in the COVID-19 Pandemic. Prague Med Rep 2023; 124:392-412. [PMID: 38069645 DOI: 10.14712/23362936.2023.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The COVID-19 pandemic generated a great impact on health systems. We compared evolution, polypharmacy, and potential drug-drug interactions (P-DDIs) in COVID-19 and non-COVID-19 hospitalizations during first wave of pandemic. Prescriptions for hospitalized patients ≥ 18 years (COVID-19 and non-COVID-19 rooms) between April and September 2020 were included. The computerized medical decision support system SIMDA and the physician order entry system Hdc.DrApp.la were used. Patients in COVID-19 rooms were divided into detectable and non-detectable, according to real-time reverse transcription polymerase chain reaction (RT-PCR). Number of drugs, prescribed on day 1, after day 1, and total; polypharmacy, excessive polypharmacy, and P-DDIs were compared. 1,623 admissions were evaluated: 881 COVID-19, 538 detectable and 343 non-detectable, and 742 non-COVID-19. Mortality was 15% in COVID-19 and 13% in non-COVID-19 (RR [non-COVID-19 vs. COVID-19]: 0.84 [95% CI] [0.66-1.07]). In COVID-19, mortality was 19% in detectable and 9% in non-detectable (RR: 2.07 [1.42-3.00]). Average number of drugs was 4.54/patient (SD ± 3.06) in COVID-19 and 5.92/patient (±3.24) in non-COVID-19 (p<0.001) on day 1 and 5.57/patient (±3.93) in COVID-19 and 9.17/patient (±5.27) in non-COVID-19 (p<0.001) throughout the hospitalization. 45% received polypharmacy in COVID-19 and 62% in non-COVID-19 (RR: 1.38 [1.25-1.51]) and excessive polypharmacy 7% in COVID-19 and 14% in non-COVID-19 (RR: 2.09 [1.54-2.83]). The frequency of total P-DDIs was 0.31/patient (±0.67) in COVID-19 and 0.40/patient (±0.94) in non-COVID-19 (p=0.022). Hospitalizations in the COVID-19 setting are associated with less use of drugs, less polypharmacy and less P-DDIs. Detectable patients had higher mortality.
Collapse
Affiliation(s)
- Ricardo Enrique Barcia
- 6° Cátedra de Medicina Interna, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- DrApp, Empresa de Desarrollos Informáticos para Medicina, Buenos Aires, Argentina.
| | - Guillermo Alberto Keller
- Centro de Vigilancia y Seguridad de Medicamentos, Departamento de Toxicología y Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Bello
- División Infectología, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Azzato
- 6° Cátedra de Medicina Interna, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Alejandro Diez
- Centro de Vigilancia y Seguridad de Medicamentos, Departamento de Toxicología y Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido Giunti
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Franco JVA, Garegnani LI, Oltra GV, Metzendorf MI, Trivisonno LF, Sgarbossa N, Ducks D, Heldt K, Mumm R, Barnes B, Scheidt-Nave C. Short and Long-Term Wellbeing of Children following SARS-CoV-2 Infection: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14392. [PMID: 36361269 PMCID: PMC9657555 DOI: 10.3390/ijerph192114392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 05/13/2023]
Abstract
Post-COVID conditions in children and adolescents were mostly investigated as the incidence of individual or clusters of symptoms. We aimed to describe the findings of studies assessing key outcomes related to global wellbeing and recovery in children and adolescents from a public health perspective. We searched the Cochrane COVID-19 Study Register and WHO COVID-19 Global literature on coronavirus disease database on 5 November 2021 and tracked ongoing studies published after this date. We included observational studies on children and adolescents with a follow-up greater than 12 weeks and focused on the outcomes of quality of life, recovery/duration of symptoms, school attendance and resource use/rehabilitation. We assessed their methodological quality, and we prepared a narrative synthesis of the results. We included 21 longitudinal and 4 cross-sectional studies (6 with a control group) with over 68 thousand unvaccinated children and adolescents with mostly asymptomatic or mild disease. Study limitations included convenience sampling, a poor description of their study population and heterogeneous definitions of outcomes. Quality of life was not largely affected in adolescents following COVID-19, but there might be greater impairment in young children and in those with more severe forms of the disease (4 studies). There might also be an impairment in daily activities and increased school absenteeism following COVID-19, but the findings were heterogeneous (5 studies). A total of 22 studies provided highly variable estimates based on heterogeneous definitions of overall persistence of symptoms (recovery), ranging from 0 to 67% at 8-12 weeks and 8 to 51% at 6-12 months. We found limited data on resource use and the need for rehabilitation. One controlled study indicated that the quality of life of infected children and adolescents might not substantially differ from controls. All controlled studies found a higher burden of persistent symptoms in COVID-19 cases compared with test-negative controls or cases of influenza. There is limited evidence on the short and long-term well-being of children following SARS-CoV-2 infection. High-quality longitudinal studies with control groups are needed to describe the outcomes in this population, especially in vaccinated children and those affected by new variants of the virus.
Collapse
Affiliation(s)
- Juan Victor Ariel Franco
- Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Luis Ignacio Garegnani
- Research Department, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires 4234, Argentina
| | - Gisela Viviana Oltra
- Research Department, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires 4234, Argentina
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Nadia Sgarbossa
- Department of Health Science, Universidad Nacional de La Matanza, Buenos Aires 1754, Argentina
| | - Denise Ducks
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Katharina Heldt
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Rebekka Mumm
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Benjamin Barnes
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Christa Scheidt-Nave
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| |
Collapse
|
9
|
Factors Related to the Possibility of Accepting COVID-19 Vaccines: A Population-Based Cross-Sectional Study. Neuromodulation 2022. [DOI: 10.5812/ipmn-131019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: The reluctance to accept vaccination could severely affect global efforts to control the COVID-19 pandemic. Objectives: The present study investigated the willingness to accept COVID-19 vaccines and related factors among Isfahan University of Medical Sciences students. Methods: This study was conducted in June-July 2021 at Isfahan University of Medical Sciences. A total of 324 students completed the designed questionnaire in this population-based, web-based, cross-sectional study. SPSS 25.0 software was used to analyze the data. Results: The estimate of willingness to accept the COVID-19 vaccine in the study participants was 91.7%. The highest percentage of acceptance was related to medical students. Education level (P = 0.002) and acceptability (P
Collapse
|
10
|
Shahanshah MFH, Anvitha D, Gupta V. In-silico screening to delineate novel antagonists to SARS-CoV-2 nucleocapsid protein. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 127:103188. [PMID: 35757560 PMCID: PMC9212792 DOI: 10.1016/j.pce.2022.103188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Since its inception, SARS-CoV-2 has crossed all borders and continues rampaging around the globe, causing profound economic damage and heavy burden on the scientific community and the healthcare fraternity and facilities. With the emergence of new variants, the global pandemic has prolonged and raised concerns regarding the existing therapies. Most of the identified mutants have the potential to exacerbate the already existing crisis. In line with the urgent need for promising antivirals against the novel coronavirus, we conducted an in-silico drug docking study using SeeSAR and other bioinformatics tools and identified prospective molecules that target the nucleocapsid protein of SARS-CoV-2. The highly conserved N protein plays a crucial role in viral assembly and pathogenicity by interacting with the host ribosomal subunits and suppressing nonsense mediated decay (NMD) of viral mRNA by the host cell. In the current study, FDA approved drugs were docked into pockets created within the N protein including the crucial conserved residues and analyzed for their affinity. The docked compounds give us novel plausible models that can be inspected further and paves way for the development of potent therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
| | - D Anvitha
- Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Vandana Gupta
- Ram Lal Anand College, University of Delhi, New Delhi, India
| |
Collapse
|
11
|
Franco JVA, Garegnani LI, Oltra GV, Metzendorf MI, Trivisonno LF, Sgarbossa N, Ducks D, Heldt K, Mumm R, Barnes B, Scheidt-Nave C. Long-Term Health Symptoms and Sequelae Following SARS-CoV-2 Infection: An Evidence Map. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9915. [PMID: 36011562 PMCID: PMC9408764 DOI: 10.3390/ijerph19169915] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 05/27/2023]
Abstract
Post-COVID-19 conditions, also known as 'Long-COVID-19', describe a longer and more complex course of illness than acute COVID-19 with no widely accepted uniform case definition. We aimed to map the available evidence on persistent symptoms and sequelae following SARS-CoV-2 in children and adults. We searched the Cochrane COVID-19 Study Register and the WHO COVID-19 Global literature on coronavirus disease database on 5 November 2021. We included longitudinal and cross-sectional studies and we extracted their characteristics, including the type of core outcomes for post-COVID-19 conditions. We included 565 studies (657 records). Most studies were uncontrolled cohort studies. The median follow-up time was 13 weeks (IQR 9 to 24). Only 72% of studies were conducted in high-income countries, 93% included unvaccinated adults with mild-to-critical disease, only 10% included children and adolescents, and less than 5% included children under the age of five. While most studies focused on health symptoms, including respiratory symptoms (71%), neurological symptoms (57%), fatigue (54%), pain (50%), mental functioning (43%), cardiovascular functioning (40%), and post-exertion symptoms (28%), cognitive function (26%), fewer studies assessed other symptoms such as overall recovery (24%), the need for rehabilitation (18%), health-related quality of life (16%), changes in work/occupation and study (10%), or survival related to long-COVID-19 (4%). There is a need for controlled cohort studies with long-term follow-up and a focus on overall recovery, health-related quality of life, and the ability to perform daily tasks. Studies need to be extended to later phases of the pandemic and countries with low resources.
Collapse
Affiliation(s)
- Juan Victor Ariel Franco
- Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Luis Ignacio Garegnani
- Research Department, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires C1199, Argentina
| | - Gisela Viviana Oltra
- Research Department, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires C1199, Argentina
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Nadia Sgarbossa
- Department of Health Science, Universidad Nacional de La Matanza, Buenos Aires B1754JEC, Argentina
| | - Denise Ducks
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Katharina Heldt
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Rebekka Mumm
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Benjamin Barnes
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| | - Christa Scheidt-Nave
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, 13353 Berlin, Germany
| |
Collapse
|
12
|
Garegnani LI, Madrid E, Meza N. Misleading clinical evidence and systematic reviews on ivermectin for COVID-19. BMJ Evid Based Med 2022; 27:156-158. [PMID: 33888547 DOI: 10.1136/bmjebm-2021-111678] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Ignacio Garegnani
- Research Department. Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Eva Madrid
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Cochrane Chile Associate Centre, Viña del Mar, Chile
| | - Nicolás Meza
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Cochrane Chile Associate Centre, Viña del Mar, Chile
| |
Collapse
|
13
|
Panayiotakopoulos GD, Papadimitriou DT. Rifampicin for COVID-19. World J Virol 2022; 11:90-97. [PMID: 35433334 PMCID: PMC8966591 DOI: 10.5501/wjv.v11.i2.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccinations for coronavirus disease-2019 (COVID-19) have begun more than a year before, yet without specific treatments available. Rifampicin, critically important for human medicine (World Health Organization's list of essential medicines), may prove pharmacologically effective for treatment and chemoprophylaxis of healthcare personnel and those at higher risk. It has been known since 1969 that rifampicin has a direct selective antiviral effect on viruses which have their own RNA polymerase (severe acute respiratory syndrome coronavirus 2), like the main mechanism of action of remdesivir. This involves inhibition of late viral protein synthesis, the virion assembly, and the viral polymerase itself. This antiviral effect is dependent on the administration route, with local application resulting in higher drug concentrations at the site of viral replication. This would suggest also trying lung administration of rifampicin by nebulization to increase the drug's concentration at infection sites while minimizing systemic side effects. Recent in silico studies with a computer-aided approach, found rifampicin among the most promising existing drugs that could be repurposed for the treatment of COVID-19.
Collapse
Affiliation(s)
- George D Panayiotakopoulos
- Department of Clinical Pharmacology, University of Patras Medical School, Rion 26504, Greece
- The National Public Health Organization of Greece, Athens 15123, Greece
| | - Dimitrios T Papadimitriou
- Department of Pediatric, Adolescent Endocrinology & Diabetes, Athens Medical Center, Marousi 15125, Greece
- Endocrine Unit, Aretaieion University Hospital, Athens 11528, Greece
| |
Collapse
|
14
|
Örs ED, Alkan ŞB, Öksüz A. Possible Effect of Astaxanthin on Obesity-related Increased COVID-19
Infection Morbidity and Mortality. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211011105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract:
Obesity is defined by the World Health Organisation (WHO) as a body mass index
equal to 30 kg/m2 or greater. It is an important and escalating global public health problem.
Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable
and possibly communicable diseases. There is considerable evidence that obesity is
associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection
as well as significantly higher COVID-19 morbidity and mortality. It appears plausible
that controlling the chronic systemic low-grade inflammation associated with obesity may have
a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients.
Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant,
and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a
co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases.
This review article will discuss the pathogenesis of COVID-19 infection and the effect of
ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti-
inflammatory properties in obese COVID-19 patients will be discussed.
Collapse
Affiliation(s)
- Elif Didem Örs
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Öksüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
15
|
Black SD. Molecular Modeling and Preliminary Clinical Data Suggesting Antiviral Activity for Chlorpheniramine (Chlorphenamine) Against COVID-19. Cureus 2022; 14:e20980. [PMID: 35154957 PMCID: PMC8820487 DOI: 10.7759/cureus.20980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/05/2022] Open
|
16
|
Cao Y, Xu X, Kitanovski S, Song L, Wang J, Hao P, Hoffmann D. Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses. Front Immunol 2021; 12:656433. [PMID: 34122413 PMCID: PMC8195239 DOI: 10.3389/fimmu.2021.656433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background The pathogenesis of COVID-19 emerges as complex, with multiple factors leading to injury of different organs. Some of the studies on aspects of SARS-CoV-2 cell entry and innate immunity have produced seemingly contradictory claims. In this situation, a comprehensive comparative analysis of a large number of related datasets from several studies could bring more clarity, which is imperative for therapy development. Methods We therefore performed a comprehensive comparative study, analyzing RNA-Seq data of infections with SARS-CoV-2, SARS-CoV and MERS-CoV, including data from different types of cells as well as COVID-19 patients. Using these data, we investigated viral entry routes and innate immune responses. Results and Conclusion First, our analyses support the existence of cell entry mechanisms for SARS and SARS-CoV-2 other than the ACE2 route with evidence of inefficient infection of cells without expression of ACE2; expression of TMPRSS2/TPMRSS4 is unnecessary for efficient SARS-CoV-2 infection with evidence of efficient infection of A549 cells transduced with a vector expressing human ACE2. Second, we find that innate immune responses in terms of interferons and interferon simulated genes are strong in relevant cells, for example Calu3 cells, but vary markedly with cell type, virus dose, and virus type.
Collapse
Affiliation(s)
- Yingying Cao
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Xintian Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Lina Song
- Department of Dermatology, University Hospital Essen, Essen, Germany
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, German Cancer Research Center, Heidelberg, Germany
| | - Jun Wang
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|