1
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
2
|
Vicente‐Garcia C, Vona D, Flemma A, Cicco SR, Farinola GM. Diatoms in Focus: Chemically Doped Biosilica for Customized Nanomaterials. Chempluschem 2024; 89:e202400462. [PMID: 39422416 PMCID: PMC11639631 DOI: 10.1002/cplu.202400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Indexed: 10/19/2024]
Abstract
Diatoms are photosynthetic microalgae widely diffused around the globe and well adapted to thrive in diverse environments. Their success is closely related to the nanostructured biosilica shell (frustule) that serves as exoskeleton. Said structures have attracted great attention, thanks to their hierarchically ordered network of micro- and nanopores. Frustules display high specific surface, mechanical resistance and photonic properties, useful for the design of functional and complex materials, with applications including sensing, biomedicine, optoelectronics and energy storage and conversion. Current technology allows to alter the chemical composition of extracted frustules with a diverse array of elements, via chemical and biochemical strategies, without compromising their valuable morphology. We started our research on diatoms from the viewpoint of material scientists, envisaging the possibilities of these nanostructured silica shells as a general platform to obtain functional materials for several applications via chemical functionalization. Our first paper in the field was published in ChemPlusChem ten years ago. Ten years later, in this Perspective, we gather the most recent and relevant functional materials derived from diatom biosilica to show the growth and diversification that this field is currently experiencing, and the key role it will play in the near future.
Collapse
Affiliation(s)
- Cesar Vicente‐Garcia
- Dipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125BariItaly
| | - Danilo Vona
- Dipartimento di Scienze del SuoloDella Pianta e Degli AlimentiUniversità Degli Studi di Bari “Aldo Moro”Via Amendola, 165/a70126BariItaly
| | - Annarita Flemma
- Dipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125BariItaly
| | - Stefania Roberta Cicco
- CNR Istituto di Chimica dei Composti OrganometalliciDipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125Bari, Italy
| | - Gianluca Maria Farinola
- Dipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125BariItaly
| |
Collapse
|
3
|
Chen Y, Tan BSN, Cheng Y, Zhao Y. Artificial Polymerizations in Living Organisms for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202410579. [PMID: 39086115 DOI: 10.1002/anie.202410579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Within living organisms, numerous nanomachines are constantly involved in complex polymerization processes, generating a diverse array of biomacromolecules for maintaining biological activities. Transporting artificial polymerizations from lab settings into biological contexts has expanded opportunities for understanding and managing biological events, creating novel cellular compartments, and introducing new functionalities. This review summarizes the recent advancements in artificial polymerizations, including those responding to external stimuli, internal environmental factors, and those that polymerize spontaneously. More importantly, the cutting-edge biomedical application scenarios of artificial polymerization, notably in safeguarding cells, modulating biological events, improving diagnostic performance, and facilitating therapeutic efficacy are highlighted. Finally, this review outlines the key challenges and technological obstacles that remain for polymerizations in biological organisms, as well as offers insights into potential directions for advancing their practical applications and clinical trials.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
4
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
5
|
Abdul Rahman A, Mohd Isa IL, Tofail SAM, Bartlomiej L, Rodriguez BJ, Biggs MJ, Pandit A. Modification of Living Diatom, Thalassiosira weissflogii, with a Calcium Precursor through a Calcium Uptake Mechanism: A Next Generation Biomaterial for Advanced Delivery Systems. ACS APPLIED BIO MATERIALS 2024; 7:4102-4115. [PMID: 38758756 PMCID: PMC11190972 DOI: 10.1021/acsabm.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The diatom's frustule, characterized by its rugged and porous exterior, exhibits a remarkable biomimetic morphology attributable to its highly ordered pores, extensive surface area, and unique architecture. Despite these advantages, the toxicity and nonbiodegradable nature of silica-based organisms pose a significant challenge when attempting to utilize these organisms as nanotopographically functionalized microparticles in the realm of biomedicine. In this study, we addressed this limitation by modulating the chemical composition of diatom microparticles by modulating the active silica metabolic uptake mechanism while maintaining their intricate three-dimensional architecture through calcium incorporation into living diatoms. Here, the diatom Thalassiosira weissflogii was chemically modified to replace its silica composition with a biodegradable calcium template, while simultaneously preserving the unique three-dimensional (3D) frustule structure with hierarchical patterns of pores and nanoscale architectural features, which was evident by the deposition of calcium as calcium carbonate. Calcium hydroxide is incorporated into the exoskeleton through the active mechanism of calcium uptake via a carbon-concentrating mechanism, without altering the microstructure. Our findings suggest that calcium-modified diatoms hold potential as a nature-inspired delivery system for immunotherapy through antibody-specific binding.
Collapse
Affiliation(s)
- Asrizal Abdul Rahman
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Isma Liza Mohd Isa
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Syed A. M. Tofail
- Materials
and Surface Science Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lukasz Bartlomiej
- Conway
Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin 4, Ireland
| | - Brian J. Rodriguez
- Conway
Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin 4, Ireland
| | - Manus J. Biggs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
6
|
Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303714. [PMID: 37471001 PMCID: PMC10799182 DOI: 10.1002/adma.202303714] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Chuanrui Chen
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Belluati A, Harley I, Lieberwirth I, Bruns N. An Outer Membrane-Inspired Polymer Coating Protects and Endows Escherichia coli with Novel Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303384. [PMID: 37452438 DOI: 10.1002/smll.202303384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Indexed: 07/18/2023]
Abstract
A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ingo Lieberwirth
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Nico Bruns
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
8
|
Vona D, Flemma A, Piccapane F, Cotugno P, Cicco SR, Armenise V, Vicente-Garcia C, Giangregorio MM, Procino G, Ragni R. Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae. Mar Drugs 2023; 21:438. [PMID: 37623719 PMCID: PMC10456091 DOI: 10.3390/md21080438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases.
Collapse
Affiliation(s)
- Danilo Vona
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Annarita Flemma
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Francesca Piccapane
- Bioscience, Biotechnology and Biopharmaceutics Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy;
| | - Pietro Cotugno
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Stefania Roberta Cicco
- Institute for the Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Chemistry Department, Via Orabona 4, I-70126 Bari, Italy;
| | - Vincenza Armenise
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Cesar Vicente-Garcia
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Maria Michela Giangregorio
- Institute of Nanotechnology (Nanotec), Consiglio Nazionale delle Ricerche (CNR), Chemistry Department, Via Orabona 4, I-70126 Bari, Italy;
| | - Giuseppe Procino
- Bioscience, Biotechnology and Biopharmaceutics Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy;
| | - Roberta Ragni
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| |
Collapse
|
9
|
Adler C, Monavari M, Abraham GA, Boccaccini AR, Ghorbani F. Mussel-inspired polydopamine decorated silane modified-electroconductive gelatin-PEDOT:PSS scaffolds for bone regeneration. RSC Adv 2023; 13:15960-15974. [PMID: 37250225 PMCID: PMC10214007 DOI: 10.1039/d3ra01311a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
This study seeks to simulate both the chemistry and piezoelectricity of bone by synthesizing electroconductive silane-modified gelatin-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) scaffolds using the freeze drying technique. In order to enhance hydrophilicity, cell interaction, and biomineralization, the scaffolds were functionalized with polydopamine (PDA) inspired by mussels. Physicochemical, electrical, and mechanical analyses were conducted on the scaffolds, as well as in vitro evaluations using the osteosarcoma cell line MG-63. It was found that scaffolds had interconnected porous structures, so the PDA layer formation reduced the size of pores while maintaining scaffold uniformity. PDA functionalization reduced the electrical resistance of the constructs while improving their hydrophilicity, compressive strength, and modulus. As a result of the PDA functionalization and the use of silane coupling agents, higher stability and durability were achieved as well as an improvement in biomineralization capability after being soaked in SBF solution for a month. Additionally, the PDA coating enabled the constructs to enhance viability, adhesion, and proliferation of MG-63 cells, as well as to express alkaline phosphatase and deposit HA, indicating that scaffolds can be used for bone regeneration. Therefore, the PDA-coated scaffolds developed in this study and the non-toxic performance of PEDOT:PSS present a promising approach for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Catalina Adler
- Faculty of Engineering, National University of Mar del Plata Mar del Plata Argentina
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| | - Mahshid Monavari
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| | - Gustavo A Abraham
- Faculty of Engineering, National University of Mar del Plata Mar del Plata Argentina
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET) Mar del Plata Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| |
Collapse
|
10
|
Improving the In Vitro Removal of Indoxyl Sulfate and p-Cresyl Sulfate by Coating Diatomaceous Earth (DE) and Poly-vinyl-pyrrolidone-co-styrene (PVP-co-S) with Polydopamine. Toxins (Basel) 2022; 14:toxins14120864. [PMID: 36548761 PMCID: PMC9781211 DOI: 10.3390/toxins14120864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polydopamine (PDA) is a synthetic eumelanin polymer mimicking the biopolymer secreted by mussels to attach to surfaces with a high binding strength. It exhibits unique adhesive properties and has recently attracted considerable interest as a multifunctional thin film coating. In this study, we demonstrate that a PDA coating on silica- and polymer-based materials improves the entrapment and retention of uremic toxins produced in specific diseases. The low-cost natural nanotextured fossil diatomaceous earth (DE), an abundant source of mesoporous silica, and polyvinylpyrrolidone-co-Styrene (PVP-co-S), a commercial absorbent comprising polymeric particles, were easily coated with a PDA layer by oxidative polymerization of dopamine at mild basic aqueous conditions. An in-depth chemical-physical investigation of both the resulting PDA-coated materials was performed by SEM, AFM, UV-visible, Raman spectroscopy and spectroscopic ellipsometry. Finally, the obtained hybrid systems were successfully tested for the removal of two uremic toxins (indoxyl sulfate and p-cresyl sulfate) directly from patients' sera.
Collapse
|
11
|
Zhao Y, Yang X, Luo J, Wei Y, Wang H. Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|