1
|
Feng X, Wang D, Li D. Morphological, physiological and transcriptional analyses provide insights into the biosynthesis of phenolics in Juniperus rigida under UV-B treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109534. [PMID: 39874666 DOI: 10.1016/j.plaphy.2025.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Phenolics play a crucial role in plant defense mechanisms against increased UV-B radiation. Due to their significant medicinal properties, the phenolic compounds produced by Juniperus rigida have great potential as valuable sources for medicine. However, the process of synthesizing J. rigida phenolics under UV-B treatment remained unclear. To investigate the mechanism of J. rigida phenolic synthesis, this study examined the pattern of phenolics in J. rigida by analyzing its morphological structure, physiology, and key enzyme genes. The results showed that the phenolic compounds in J. rigida increased under low-intensity UV-B treatment, whereas a decrease was observed under high-intensity UV-B treatment. In particular, rutin and quercitrin were identified as key contributors to the antioxidant activity under UV-B treatment. Phenolics were mainly found in living cells of J. rigida needles, such as the vesicle-containing sheath cells, secretory cells, palisade tissue, spongy tissue, epidermis, endodermis, and parenchyma. Furthermore, the cell nucleus was significantly larger and darker after UV-B treatment. There were also temporal differences between the gene expression and accumulation of bioactive compound. Notably, 4CL, CHS, CHI, FLS, and PLR are the key genes for phenolics synthesis among the differentially expressed genes. These findings would not only elucidate the biosynthetic mechanism of phenolic compounds in J. rigida, but also provide a scientific basis for the use of UV-B radiation to synthesize active compounds in medicinal plants.
Collapse
Affiliation(s)
- Xueping Feng
- College of Forestry, Northwest A & F University, Yangling, 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A & F University, Yangling, 712100, China; Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570100, China
| | - Dongmei Wang
- College of Forestry, Northwest A & F University, Yangling, 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A & F University, Yangling, 712100, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Neale PJ, Hylander S, Banaszak AT, Häder DP, Rose KC, Vione D, Wängberg SÅ, Jansen MAK, Busquets R, Andersen MPS, Madronich S, Hanson ML, Schikowski T, Solomon KR, Sulzberger B, Wallington TJ, Heikkilä AM, Pandey KK, Andrady AL, Bruckman LS, White CC, Zhu L, Bernhard GH, Bais A, Aucamp PJ, Chiodo G, Cordero RR, Petropavlovskikh I, Neale RE, Olsen CM, Hales S, Lal A, Lingham G, Rhodes LE, Young AR, Robson TM, Robinson SA, Barnes PW, Bornman JF, Harper AB, Lee H, Calderón RM, Ossola R, Paul ND, Revell LE, Wang QW, Zepp RG. Environmental consequences of interacting effects of changes in stratospheric ozone, ultraviolet radiation, and climate: UNEP Environmental Effects Assessment Panel, Update 2024. Photochem Photobiol Sci 2025; 24:357-392. [PMID: 40095356 PMCID: PMC11971163 DOI: 10.1007/s43630-025-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century. Potential environmental consequences of climate intervention scenarios are also briefly discussed, illustrating the large uncertainties of, for example, Stratospheric Aerosol Injection (SAI). Modelling studies predict that, although SAI would cool the Earth's surface, other climate factors would be affected, including stratospheric ozone depletion and precipitation patterns. The contribution to global warming of replacements for ozone-depleting substances (ODS) are assessed. With respect to the breakdown products of chemicals under the purview of the Montreal Protocol, the risks to ecosystem and human health from the formation of trifluoroacetic acid (TFA) as a degradation product of ODS replacements are currently de minimis. UV-radiation and climate change continue to have complex interactive effects on the environment due largely to human activities. UV-radiation, other weathering factors, and microbial action contribute significantly to the breakdown of plastic waste in the environment, and in affecting transport, fate, and toxicity of the plastics in terrestrial and aquatic ecosystems, and the atmosphere. Sustainability demands continue to drive industry innovations to mitigate environmental consequences of the use and disposal of plastic and plastic-containing materials. Terrestrial ecosystems in alpine and polar environments are increasingly being exposed to enhanced UV-radiation due to earlier seasonal snow and ice melt because of climate warming and extended periods of ozone depletion. Solar radiation, including UV-radiation, also contributes to the decomposition of dead plant material, which affects nutrient cycling, carbon storage, emission of greenhouse gases, and soil fertility. In aquatic ecosystems, loss of ice cover is increasing the area of polar oceans exposed to UV-radiation with possible negative effects on phytoplankton productivity. However, modelling studies of Arctic Ocean circulation suggests that phytoplankton are circulating to progressively deeper ocean layers with less UV irradiation. Human health is also modified by climate change and behaviour patterns, resulting in changes in exposure to UV-radiation with harmful or beneficial effects depending on conditions and skin type. For example, incidence of melanoma has been associated with increased air temperature, which affects time spent outdoors and thus exposure to UV-radiation. Overall, implementation of the Montreal Protocol and its Amendments has mitigated the deleterious effects of high levels of UV-radiation and global warming for both environmental and human health.
Collapse
Affiliation(s)
- Patrick J Neale
- Environmental Research Center, Smithsonian Institution, Edgewater, MD, USA
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Donat-P Häder
- Biology, Friedrich-Alexander-University (Retired), Erlangen, Germany
| | - Kevin C Rose
- Department of Biological Sciences and Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Davide Vione
- Department of Chemistry, University of Turin, Turin, Italy
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gotheburg, Sweden
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
- Civil Environmental & Geomatic Engineering, University College London, London, UK
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Sasha Madronich
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
- USDA UV-B Monitoring and Research Program, Colorado State University, Fort. Collins, CO, USA
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Tamara Schikowski
- Working Group Environmental Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Department of Environment and Health, School of Public Health, University of Bielefeld, Bielefeld, Germany
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Barbara Sulzberger
- Retired From Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Anu M Heikkilä
- Climate Research, Finnish Meteorological Institute, Helsinki, Finland
| | | | - Anthony L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | | - Alkiviadis Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Gabriel Chiodo
- Institute of Geosciences, Spanish National Research Council (IGEO-UCM-CSIC), Madrid, Spain
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Raúl R Cordero
- Department of Physics, Universidad de Santiago, Santiago, Chile
| | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Simon Hales
- Public Health, University of Otago, Wellington, New Zealand
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Gareth Lingham
- Centre for Ophthalmology and Visual Science (Incorporating Lion's Eye Institute), University of Western Australia, Perth, Australia
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Lesley E Rhodes
- School of Biological Sciences, University of Manchester, Manchester, UK
- Dermatology Centre, Salford Royal Hospital, Manchester, UK
| | | | - T Matthew Robson
- UK National School of Forestry, Institute of Science and Environment, University of Cumbria, Ambleside, UK
- Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- Environmental Futures, University of Wollongong, Wollongong, Australia
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University, New Orleans, LA, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - Anna B Harper
- Department of Geography, University of Georgia, Athens, GA, USA
| | - Hanna Lee
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Roy Mackenzie Calderón
- Cape Horn International Center, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, Santiago, Chile
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Richard G Zepp
- Office of Research and Development, United States Environmental Protection Agency, Athens, GA, USA
| |
Collapse
|
3
|
Bao M, Yuan Y, Zang S, Yan F, Xu Z, Wu H. How warming impacts the photosynthetic physiology of the bloom-forming cyanobacterium, Microcystis aeruginosa, under UV exposure. Photochem Photobiol Sci 2025; 24:519-529. [PMID: 40122965 DOI: 10.1007/s43630-025-00705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Microcystis aeruginosa is a common cyanobacterium leading to algal blooms. Coupled effects of temperature increase and UV radiation increase will affect its photosynthesis performance, which may in turn will affect its proliferation and distribution, and change the environmental health of the water body. In this study, M. aeruginosa FACHB 469 was incubated at 25 °C and 30 °C and subjected to photosynthetically active radiation (PAR) and UV radiation (PAR + UVR) to monitor the relevant physiological responses. Exposure to both PAR and PAR + UVR resulted in a decline in PSII maximum quantum yield of M. aeruginosa, with UVR having more significant inhibitory effect. Meanwhile, UVR significantly increased the PSII photoinactivation rate constant (Kpi) and decreased the PSII repair rate constant (Krec), whereas the warming did not have a significant effect on it, and no significant interaction effect between warming and UVR was observed. Further analysis of the strategies of algal cells to cope with UVR at different temperatures revealed that at 25 °C, algal cells mainly relied on the repair cycle of PSII, and reduced the content of phycocyanin to lower light energy capture, and increased superoxide dismutase (SOD) and catalase (CAT) activities to alleviate the damage of UVR; whereas under warming conditions, algal cells, while relying on PSII repair, mainly photoprotect by strengthening the NPQ mechanism, thus improving their tolerance to UVR. These findings suggest that the differential strategies employed by M. aeruginosa to cope with UVR under varying temperature conditions may influence the resilience of cyanobacterial blooms to environmental stressors in the future.
Collapse
Affiliation(s)
- Menglin Bao
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Yingze Yuan
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, 264025, China.
| |
Collapse
|
4
|
Muthubharathi BC, Subalakshmi PK, Mounish BSC, Rao TS, Balamurugan K. Impact of low-dose UV-A in Caenorhabditis elegans during candidate bacterial infections. Photochem Photobiol 2025; 101:404-422. [PMID: 39205325 DOI: 10.1111/php.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Ultraviolet radiation is a non-ionizing radiation produced by longer wavelength energy sources with lower frequency and is categorized into UV-A, UV-B, and UV-C. Minimal exposure to this radiation has several health benefits, which include treating microbial contaminations and skin therapies. However, the antimicrobial action of low-dose UV-A during pathogenic bacterial infections is still unrevealed. In this study, the impact of low-dose UV-A as pre- or post-treatment using the model organism, Caenorhabditis elegans with candidate pathogens (Acinetobacter baumannii and Staphylococcus aureus) mediated infections was investigated. The results indicated enrichment of metabolites, reduced level of antioxidants, increased expression of dopamine biosynthesis and transportation, and decrease in serotonin biosynthesis when the organism was exposed to low-dose UV-A for 5 min. This, in turn, elevated the expression of candidate regulatory proteins involved in lifespan determination, innate immunity, and cAMP-response element binding protein (CREB), which appear to increase the lifespan and brood size of C. elegans during A. baumannii and S. aureus infections. The findings suggested that the low-dose UV-A treatment during A. baumannii and S. aureus infections prolonged the lifespan and increased the egg-laying capacity of C. elegans.
Collapse
Affiliation(s)
| | | | | | - Toleti Subba Rao
- School of Arts and Sciences, Sai University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
5
|
Singh P, Choudhary KK. Mechanistic insights on physiological, biochemical, and metabolite profiling of pearl millet cultivars focusing bioactive compounds under elevated UV-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109682. [PMID: 40010257 DOI: 10.1016/j.plaphy.2025.109682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Ultraviolet-B (UV-B) radiation is a potent stressor showing functional duality in plants. The escalating impact of climate change and UV-B radiation trigger a series of stress acclimation responses in plants, which are initiated through UVR8 signaling and result in accumulation of secondary metabolites. The impact of UV-B on major cereal crops has been explored, but its impact on pearl millet has not been investigated, specifically secondary metabolites linked with beneficial bioactive compounds. Four tropical cultivars of Pearl millet (Pennisetum glaucum L.), were grown under elevated UV-B radiation (eUV-B; ambient+7.2 kJ m-2 day-1) in natural field conditions to assess changes in physiology, leaf alterations, oxidative stress, antioxidant profile and secondary metabolites. Chlorophyll fluorescence measurements showed decline in Fv/Fm ratio at PDS (panicle development stage) in MPMH-21, and MPMH-17, which leads to higher ROS as evidenced through spectrophotometric observations and histochemical localization. Protection from excessive O2- radical and H2O2 was manifested by stimulation of antioxidative defense and UV-B induced metabolites (phenolics, flavonoids, anthocyanin). Alterations in stomatal aperture and wax deposition was also observed through SEM. Both MPMH-21 and MPMH-17 cultivar showed less biomass partitioning to grains, while HHB-272 and HHB-67 resulted in increased grain yield up to 28% and 23.2%, respectively. GC-MS analysis revealed an increase in phytosterol and triterpenoids like β-sitosterol, stigmasterol, and squalene, under eUV-B. This suggests that plants adapt to UV-B stress by shifting the primary metabolites towards the production of secondary metabolites. Further, eUV-B promotes synthesis of few compounds, such as neophytadiene, and Phenol, 2,4-bis(1,1-dimethylethyl) (2,4-DTBP), which possesses anti-cancerous activities. The findings indicated differential responses of the test plant might be due to mechanistic variations in the antioxidants and metabolites during the panicle development stage and grain filling stage, which protected these plants from oxidative stress induced via eUV-B.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
6
|
Bellinato F, Adami G, Reatini MA, Cattani G, Cannizzaro MV, Del Regno L, Peris K, Gisondi P, Girolomoni G. Impact of particulate matter exposure on melanoma risk: A multicentre case-control study. J Eur Acad Dermatol Venereol 2025. [PMID: 39822107 DOI: 10.1111/jdv.20539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/15/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The relationship between particulate matter (PM) exposure and melanoma risk remains largely unexplored. This study aims to investigate the association between PM10 and PM2.5 long-term exposure and melanoma risk. METHODS Case-control study involving 2575 participants, comprising 1473 melanoma patients and 1102 healthy controls attending Departments of Dermatology of University Hospital in North and Central Italy. Demographic data, smoking status, history of sunburns and skin type were collected. PM10 and PM2.5 exposure levels were estimated for each participant's residential address using a Bayesian hierarchical model, providing daily concentrations at a 1 km2 spatial resolution from 2013 to 2021. Logistic regression analyses were performed to evaluate the association between PM exposure and melanoma risk, adjusting for potential confounders. RESULTS Melanoma patients and controls were 52% males and had a mean age of 63.89 and 61.66 years, respectively. The majority of melanoma patients had Fitzpatrick phototypes 2 (59%) and 3 (36%). There were no significant differences in the geographical distribution of cases and controls based on ZIP codes (p = 0.894). The average melanoma Breslow thickness was 1.01 mm, with 68.15% of cases diagnosed at stage 0 and IA. The multivariate logistic regression revealed a protective effect for higher PM10 (OR = 0.89, 95%CI: 0.86-0.92, p < 0.001) and PM2.5 levels (OR = 0.72, 95%CI: 0.68-0.76, p < 0.001). Darker skin phototypes (Fitzpatrick 4) and cigarette smoking were also associated with a reduced risk of melanoma. CONCLUSIONS Higher levels of PM10 and PM2.5 may have a protective effect against melanoma, potentially due to the reduction in ultraviolet radiation exposure. Further research to understand the complex interactions between environmental factors and melanoma risk are needed.
Collapse
Affiliation(s)
- Francesco Bellinato
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giovanni Adami
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Giorgio Cattani
- Italian Institute for Environmental Protection and Research, Rome, Italy
| | - Maria Vittoria Cannizzaro
- Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Del Regno
- Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Alves PV, Bourscheidt V, Fabrício dos Santos LO, Humbelino de Melo PR. Seasonal variations and trends in solar UV spectral irradiances based on data from the Ozone Monitoring Instrument at solar noon in Southern Amazonas, Brazil. REMOTE SENSING APPLICATIONS: SOCIETY AND ENVIRONMENT 2025; 37:101423. [DOI: 10.1016/j.rsase.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Chatzopoulou A, Tourpali K, Bais AF, Braesicke P. Twenty-first century surface UV radiation changes deduced from CMIP6 models. Part II: effects on UV index and plant growth weighted irradiance. Photochem Photobiol Sci 2025; 24:113-130. [PMID: 39719535 DOI: 10.1007/s43630-024-00676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024]
Abstract
This paper investigates the evolution of changes in surface ultraviolet (UV) radiation globally, emphasizing the significant impacts of key factors influencing its variability, i.e., total column ozone, aerosols, clouds, and surface reflectivity. Simulations of UV radiation were performed by the UVSPEC radiative transfer model and span from the mid-twentieth century to the end of the twenty-first century. Input data were derived from eleven Earth System Models that participated in the 6th Phase of the Coupled Model Intercomparison Project (CMIP6). The UV Index (UVI) simulations for the late twentieth century indicate an increase in UVI levels relative to the 1950s in the Southern Hemisphere's mid and high latitudes, attributed to ozone depletion, and decreases in southeastern Asia due to increases in aerosols. Projections of changes in UVI for the last decade of the twenty-first century were derived for three Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP3-7.0, and SSP5-8.5. Under SSP1-2.6, the scenario with the lowest greenhouse gas (GHG) and aerosol emissions, UVI is projected to increase relative to the 1950s by up to 20% in Europe and North America and to decrease by as much as - 10% over tropical and polar regions. Under SSP3-7.0 and SSP5-8.5, scenarios with higher GHG and aerosol emissions, UVI changes are generally negative globally due to ozone recovery and increases in aerosol optical depth, while localized positive changes are found over Central and South America, Europe, Africa, and the Pacific and Indian Oceans. The changes in the biologically effective solar irradiance for plant growth exhibit similar geographical patterns to UVI with slight differences, due to weaker sensitivity to changes in ozone.
Collapse
Affiliation(s)
- Anthi Chatzopoulou
- Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - K Tourpali
- Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - A F Bais
- Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - P Braesicke
- Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
9
|
Lorenz S, Heinzl F, Bauer S, Janßen M, De Bock V, Mangold A, Scholz-Kreisel P, Weiskopf D. Increasing solar UV radiation in Dortmund, Germany: data and trend analyses and comparison to Uccle, Belgium. Photochem Photobiol Sci 2024; 23:2173-2199. [PMID: 39580782 DOI: 10.1007/s43630-024-00658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Increasing solar ultraviolet radiation (UVR) can raise human exposure to UVR and adversely affect the environment. Precise measurements of ground-level solar UVR and long-term data series are crucial for evaluating time trends in UVR. This study focuses on spectrally resolved data from a UVR measuring station in Dortmund, Germany (51.5° N, 7.5° E, 130 m a.s.l.). After a strict quality assessment, UV data, such as the daily maximum UV Index (UVImax) and daily erythemal radiant exposure (Her,day) values, were analyzed concerning monthly and annual distribution, frequency, occurrence of highest values and their influencing factors. An advanced linear trend model with a flexible covariance matrix was utilized and applied to monthly mean values. Missing values were estimated by a validated imputation method. Findings were compared to those from a station in Uccle, Belgium (50.8° N, 4.3° E, 100 m a.s.l.). Parameters possibly influencing trends in both UVR and global radiation, such as ozone and sunshine duration, were additionally evaluated. The 1997-2022 trend results show a statistically significant increase in monthly mean of Her,day (4.9% p. decade) and UVImax (3.2% p. decade) in Dortmund and Her,day (7.5% p. decade) and UVImax (5.8% p. decade) in Uccle. Total column ozone shows a slight decrease in the summer months. Global radiation increases similarly to the UV data, and sunshine duration in Dortmund increases about twice as much as global radiation, suggesting a strong influence of change in cloud cover. To address health-related consequences effectively, future adaptation and prevention strategies to climate change must consider the observed trends.
Collapse
Affiliation(s)
- Sebastian Lorenz
- Federal Office for Radiation Protection, Ingolstaedter Landstrasse 1, 85764, Oberschleissheim, Germany.
| | - Felix Heinzl
- Federal Office for Radiation Protection, Ingolstaedter Landstrasse 1, 85764, Oberschleissheim, Germany
| | - Stefan Bauer
- Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1-25, 44149, Dortmund, Germany
| | - Marco Janßen
- Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1-25, 44149, Dortmund, Germany
| | - Veerle De Bock
- Royal Meteorological Institute of Belgium, Ringlaan 3, 1180, Brussels, Belgium
| | - Alexander Mangold
- Royal Meteorological Institute of Belgium, Ringlaan 3, 1180, Brussels, Belgium
| | - Peter Scholz-Kreisel
- Federal Office for Radiation Protection, Ingolstaedter Landstrasse 1, 85764, Oberschleissheim, Germany
| | - Daniela Weiskopf
- Federal Office for Radiation Protection, Ingolstaedter Landstrasse 1, 85764, Oberschleissheim, Germany
| |
Collapse
|
10
|
Pruteanu LL, Mare R, Mihalescu B, Jäntschi L. Bio-Food Quality, Environmental Pollution, and the Role of Algae in Promoting Human Health and Sustainability. Life (Basel) 2024; 14:1513. [PMID: 39598311 PMCID: PMC11596003 DOI: 10.3390/life14111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Healthcare resources have changed fundamentally compared to decades ago. Modern bio-food products and sustainable solutions for their production have increased the attention of researchers, taking into account the current level of pollution of the earth and atmosphere along with modern technologies applied to processed foods. Therefore, this review aims to highlight: (1) the impact and relationship between the physiological parameters of the atmosphere, solar radiation and soil, (in terms of their composition and stages of formation and organization) along with the evolution to modern life; (2) the environmental impacts on algae, living organisms, food, and human health and sustainability. In addition, we address the significant impact of algae as a sustainable resource in reducing environmental pollution contributing to a healthier life.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Roxana Mare
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Beatrice Mihalescu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Lorentz Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Ormsby MJ, Woodford L, White HL, Fellows R, Quilliam RS. The plastisphere can protect Salmonella Typhimurium from UV stress under simulated environmental conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124464. [PMID: 38964649 DOI: 10.1016/j.envpol.2024.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Plastic waste is found with increasing frequency in the environment, in low- and middle-income countries. Plastic pollution has increased concurrently with both economic development and rapid urbanisation, amplifying the effects of inadequate waste management. Distinct microbial communities can quickly colonise plastic surfaces in what is collectively known as the 'plastisphere'. The plastisphere can act as a reservoir for human pathogenic bacteria, including Salmonella enterica sp. (such as S. Typhimurium), which can persist for long periods, retain pathogenicity, and pose an increased public health risk. Through employing a novel mesocosm setup, we have shown here that the plastisphere provides enhanced protection against environmental pressures such as ultraviolet (UV) radiation and allows S. Typhimurium to persist at concentrations (>1 × 103 CFU/ml) capable of causing human infection, for up to 28 days. Additionally, using a Galleria Mellonella model of infection, S. Typhimurium exhibits greater pathogenicity following recovery from the UV-exposed plastisphere, suggesting that the plastisphere may select for more virulent variants. This study demonstrates the protection afforded by the plastisphere and provides further evidence of environmental plastic waste acting as a reservoir for dangerous clinical pathogens. Quantifying the role of plastic pollution in facilitating the survival, persistence, and dissemination of human pathogens is critical for a more holistic understanding of the potential public health risks associated with plastic waste.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
12
|
Mmbando GS. Variation in ultraviolet-B (UV-B)-induced DNA damage repair mechanisms in plants and humans: an avenue for developing protection against skin photoaging. Int J Radiat Biol 2024; 100:1505-1516. [PMID: 39231421 DOI: 10.1080/09553002.2024.2398081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings. CONCLUSION By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- College of Natural and Mathematical Sciences, Department of Biology, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
13
|
Evyapan G, Ozkol H, Uce Ozkol H, Alvur Ö, Akar S. The preventive effects of natural plant compound carvacrol against combined UVA and UVB-induced endoplasmic reticulum stress in skin damage of rats. Photochem Photobiol Sci 2024; 23:1783-1790. [PMID: 39251489 DOI: 10.1007/s43630-024-00631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
The skin is constantly exposed to a variety of environmental stressors, including ultraviolet (UV) radiation. Exposure of the skin to UV radiation causes a number of detrimental biological damages such as endoplasmic reticulum (ER) stress. The ER stress response is a cytoprotective mechanism that maintains homeostasis of the ER by increasing the capacity of the ER against the accumulation of unfolded proteins in the ER. Carvacrol (CRV) is a monoterpenoid phenol found in essential oils with antimicrobial and anti-inflammatory activities. We investigated for the first time in the literature the potential protective role of CRV against combined UVA and UVB-induced skin damage by targeting the ER stress pathway in a rat model. For this purpose, expressions of Grp78, Perk, Atf6, Ire-1, Chop, Xbp1, Casp12, elF2α, and Traf2 genes related to ER stress were analyzed by RT-PCR and protein expression levels of GRP78, ATF6, CHOP, and XBP1 were determined by ELISA assay in tissue sections taken from the back of the rats. As a result of analysis, it was seen that the expression levels of aforementioned ER stress genes increased significantly in the UVA + UVB irradiated group compared to the control group, while their expression levels decreased markedly by supplementation of CRV in UVA + UVB + CRV group. With regard to expressions of foregoing proteins, their levels escalated notably with UVA + UVB application and decreased markedly by CRV supplementation. In conclusion, present study revealed that CRV ameliorates UVA + UVB-induced ER stress via reducing the expression of mRNA as well as proteins involved in the unfolded protein response (UPR) pathway and inducing apoptosis as evidenced from high Caspase12 level.
Collapse
Affiliation(s)
- Gulsah Evyapan
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Halil Ozkol
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hatice Uce Ozkol
- Department of Dermatology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Alvur
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Sakine Akar
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
14
|
Leksin I, Shelyakin M, Zakhozhiy I, Kozlova O, Beckett R, Minibayeva F. Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile. PHYSIOLOGIA PLANTARUM 2024; 176:e14512. [PMID: 39221518 DOI: 10.1111/ppl.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.
Collapse
Affiliation(s)
- Ilya Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Mikhail Shelyakin
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Ilya Zakhozhiy
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Olga Kozlova
- Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Richard Beckett
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- University of KwaZulu-Natal, Scottsville, South Africa
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
15
|
Orford JT, Tan H, Martin JM, Wong BBM, Alton LA. Impacts of Exposure to Ultraviolet Radiation and an Agricultural Pollutant on Morphology and Behavior of Tadpoles (Limnodynastes tasmaniensis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1615-1626. [PMID: 38837484 DOI: 10.1002/etc.5895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Amphibians are the most threatened vertebrate class globally. Multiple factors have been implicated in their global decline, and it has been hypothesized that interactions between stressors may be a major cause. Increased ultraviolet (UV) radiation, as a result of ozone depletion, has been identified as one such stressor. Exposure to UV radiation has been shown to have detrimental effects on amphibians and can exacerbate the effects of other stressors, such as chemical pollutants. Chemical pollution has likewise been recognized as a major factor contributing to amphibian declines, particularly, endocrine-disrupting chemicals. In this regard, 17β-trenbolone is a potent anabolic steroid used in the agricultural industry to increase muscle mass in cattle and has been repeatedly detected in the environment where amphibians live and breed. At high concentrations, 17β-trenbolone has been shown to impact amphibian survival and gonadal development. In the present study, we investigated the effects of environmentally realistic UV radiation and 17β-trenbolone exposure, both in isolation and in combination, on the morphology and behavior of tadpoles (Limnodynastes tasmaniensis). We found that neither stressor in isolation affected tadpoles, nor did we find any interactive effects. The results from our 17β-trenbolone treatment are consistent with recent research suggesting that, at environmentally realistic concentrations, tadpoles may be less vulnerable to this pollutant compared to other vertebrate classes. The absence of UV radiation-induced effects found in the present study could be due to species-specific variation in susceptibility, as well as the dosage utilized. We suggest that future research should incorporate long-term studies with multiple stressors to accurately identify the threats to, and subsequent consequences for, amphibians under natural conditions. Environ Toxicol Chem 2024;43:1615-1626. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Yamamoto ALC, Corrêa MDP, Torres RR, Martins FB, Godin-Beekmann S. Projected changes in ultraviolet index and UV doses over the twenty-first century: impacts of ozone and aerosols from CMIP6. Photochem Photobiol Sci 2024; 23:1279-1294. [PMID: 38762827 DOI: 10.1007/s43630-024-00594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
This study evaluated the health-related weighted ultraviolet radiation (UVR) due to the total ozone content (TOC) and the aerosol optical depth (AOD) changes. Clear-sky Ultraviolet Index (UVI), daily doses, and exposure times for erythema induction (Dery and Tery) and vitamin D synthesis (DvitD and TvitD) were computed by a radiative transfer estimator. TOC and AOD data were provided by six Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6). For projections, we consider four Shared Socioeconomic Pathways scenarios-SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)-and two time-slices (near: 2041-2060 and far future: 2081-2100). UVR projections showed pronounced changes for the summer hemispheres in the far future. TOC increases in mid- and high latitudes of the Southern Hemisphere caused decreases in UVR at the summer solstice. However, projections did not indicate sun-safe exposure conditions in South America, Australia, and Southern Africa. On the contrary, exposure around solar noon from 10 to 20 min will still be sufficient to induce erythema in skin type III individuals throughout this century. In southern Argentina and Chile, the UVR insufficiency for vitamin D synthesis at solar noon in skin type III remains the same during this century at the winter solstice. In the Northern Hemisphere, UVI and Dery at the summer solstice should remain high (UVI ≥ 8; Dery ~ 7.0 kJ m-2) in highly populated locations. Above 45 °N, UVR levels cannot be enough to synthesize vitamin D in skin type III during the boreal winter. Our results show that climate change will affect human health through excess or lack of solar UVR availability.
Collapse
Affiliation(s)
| | - Marcelo de Paula Corrêa
- Natural Resources Institute, Federal University of Itajubá, Av. BPS, 1303, Itajubá, MG, 37500-903, Brazil
| | - Roger Rodrigues Torres
- Natural Resources Institute, Federal University of Itajubá, Av. BPS, 1303, Itajubá, MG, 37500-903, Brazil
| | - Fabrina Bolzan Martins
- Natural Resources Institute, Federal University of Itajubá, Av. BPS, 1303, Itajubá, MG, 37500-903, Brazil
| | | |
Collapse
|
17
|
Rosskopf E, Gioia FD, Vincent I, Hong J, Zhao X. Impacts of the Ban on the Soil-Applied Fumigant Methyl Bromide. PHYTOPATHOLOGY 2024; 114:1161-1175. [PMID: 38427594 DOI: 10.1094/phyto-09-23-0345-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The loss of the soil fumigant methyl bromide (MeBr) and adoption of soil fumigant alternatives has been challenging for farmers, particularly for those crops in which pathogens previously controlled by MeBr have emerged as significant problems, but it has resulted in some unanticipated benefits for the scientific community and the environment. Applauded as one of the most effective environmental agreements to date, the universally accepted Montreal Protocol on Ozone Depleting Substances has had a significant impact on the environment, reducing the release of halogenated compounds from anthropogenic sources enough to mitigate global warming by an estimated 1.1°C by 2021. The funding associated with various MeBr transition programs has increased collaboration across scientific disciplines, commodity groups, industry, and regulatory agencies. Chemical alternatives and improved application strategies, including the development of gas-retentive agricultural films, coupled with sound efficacy data and grower ingenuity have resulted in the sustained production of many of the impacted crops; although there has been some loss of acreage and value, particularly for Florida fumigated crops, for some, value has continued to increase, allowing production to continue. The loss of a single, broad-spectrum tool for pest control has led to a deeper understanding of the specific pest complexes impacting these at-risk crops, as well as the development of new, biologically based management tools for their control while increasing our understanding of the role of the soil microbiome in pest control and crop production.
Collapse
Affiliation(s)
- Erin Rosskopf
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802
| | - Isaac Vincent
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| | - Jason Hong
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| | - Xin Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| |
Collapse
|
18
|
Madronich S, Bernhard GH, Neale PJ, Heikkilä A, Andersen MPS, Andrady AL, Aucamp PJ, Bais AF, Banaszak AT, Barnes PJ, Bornman JF, Bruckman LS, Busquets R, Chiodo G, Häder DP, Hanson ML, Hylander S, Jansen MAK, Lingham G, Lucas RM, Calderon RM, Olsen C, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Rhodes LE, Robinson SA, Robson TM, Rose KC, Schikowski T, Solomon KR, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Wilson SR, Zhu L, Neale RE. Continuing benefits of the Montreal Protocol and protection of the stratospheric ozone layer for human health and the environment. Photochem Photobiol Sci 2024; 23:1087-1115. [PMID: 38763938 DOI: 10.1007/s43630-024-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
The protection of Earth's stratospheric ozone (O3) is an ongoing process under the auspices of the universally ratified Montreal Protocol and its Amendments and adjustments. A critical part of this process is the assessment of the environmental issues related to changes in O3. The United Nations Environment Programme's Environmental Effects Assessment Panel provides annual scientific evaluations of some of the key issues arising in the recent collective knowledge base. This current update includes a comprehensive assessment of the incidence rates of skin cancer, cataract and other skin and eye diseases observed worldwide; the effects of UV radiation on tropospheric oxidants, and air and water quality; trends in breakdown products of fluorinated chemicals and recent information of their toxicity; and recent technological innovations of building materials for greater resistance to UV radiation. These issues span a wide range of topics, including both harmful and beneficial effects of exposure to UV radiation, and complex interactions with climate change. While the Montreal Protocol has succeeded in preventing large reductions in stratospheric O3, future changes may occur due to a number of natural and anthropogenic factors. Thus, frequent assessments of potential environmental impacts are essential to ensure that policies remain based on the best available scientific knowledge.
Collapse
Affiliation(s)
- S Madronich
- National Center for Atmospheric Research, Boulder, CO, USA.
- Natural Resource Ecology Laboratory, USDA UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA.
| | - G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA
| | - P J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - A Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - M P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - A L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, NC, USA
| | - P J Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - P J Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | - L S Bruckman
- Department of Materials Science and Engineering, Reserve University, Cleveland, OH, USA
| | - R Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | - G Chiodo
- Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | - M L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - M A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland
| | - G Lingham
- Centre For Ophthalmology and Visual Science (Incorporating Lion's Eye Institute), University of Western Australia, Perth, Australia
- Centre for Eye Research Ireland, Environmental, Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - R M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - R Mackenzie Calderon
- Cape Horn International Center, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, O'Higgins 310, Puerto Williams, Chile
| | - C Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - R Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - K K Pandey
- Indian Academy of Wood Science, Bengaluru, India
| | - I Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, CO, USA
- NOAA Global Monitoring Laboratory, Boulder, CO, USA
| | - L E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - L E Rhodes
- Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Dermatology Centre, Salford Royal Hospital, Greater Manchester, UK
| | - S A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T M Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, UK
- Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - T Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - T J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - S-Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - L Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Public Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
19
|
Dugast C, Bruneau L, Fianu A, Ferdynus C, Boussaid K, Vuichard J, Duloutre F, Dumez J, Sultan-Bichat N, Bertolotti A. PRESOLRE: study protocol for a primary school-based, cluster randomised controlled trial of three sun exposure risk prevention strategies on Reunion Island. BMJ Open 2024; 14:e082045. [PMID: 38754877 PMCID: PMC11097802 DOI: 10.1136/bmjopen-2023-082045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Reunion Island, a French overseas department, is located in the southern hemisphere, close to the Capricorn tropic. This island has a multicultural and multiethnic population of 860 000 inhabitants, a quarter of whom are at high risk of developing skin cancer due to intense ultraviolet radiation. Melanoma is responsible for the majority of skin cancer deaths. The early prevention of melanoma is based on sun protection in childhood, but French regulations are not adapted to the environmental conditions of this tropical region.The main objective of our study is to evaluate the effectiveness of three sun protection programs conducted in Reunionese primary schools through a pupil knowledge questionnaire. METHODS AND ANALYSIS PRESOLRE is an interventional, open-label, cluster-randomised controlled trial, in four parallel arms, that is being conducted throughout 2022-2023 on Reunion Island. The trial design assumes an escalation interventional effect using: first, a control arm without proposed intervention (arm 1); second, an arm whose classes are encouraged to use the validated educational programme 'Living With the Sun' (LWS) (arm 2); third, an arm whose classes are encouraged to use both 'LWS' combined with 'Mission Soleil Réunion's sun protection awareness programme (arm 3); fourth, an arm benefiting from an intervention similar to arm 3, combined with the distribution of hats, sunglasses and sun creams (arm 4). In all, 1780 pupils from 18 classes of 20 pupils, on average, will be included. Randomisation applies to the classes of pupils (so defined as clusters). The primary outcome is based on the proportion of correct answers to the knowledge questions after the awareness programme, compared between the four arms using a linear mixed model with random intercept. ETHICS AND DISSEMINATION The study obtained ethics approval in 2022 (ID: 2022-A00350-43). Results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05367180.
Collapse
Affiliation(s)
- Charline Dugast
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Léa Bruneau
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Adrian Fianu
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
- Center for Epidemiology and Research in POPulation health (CERPOP) National Institute of Health and Medical Research (INSERM), Université Paul Sabatier (UPS) Toulouse, Toulouse, France
| | - Cyril Ferdynus
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Karim Boussaid
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Juliette Vuichard
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Floreana Duloutre
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Jessica Dumez
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
| | - Nathalie Sultan-Bichat
- Dermatology Department, West Reunion University Hospital, Saint Paul, Reunion Island, France
- MISOLRE Prevention Association, Saint-Paul, Reunion Island, France
| | - Antoine Bertolotti
- Center for Clinical Investigation (CIC) 14 10 Clinical Epidemiology National Institute of Health and Medical Research (INSERM), Reunion University Hospital, Saint Pierre, Reunion Island, France
- MISOLRE Prevention Association, Saint-Paul, Reunion Island, France
- Infectious Diseases-Dermatology Department, Reunion University Hospital, Saint Pierre, Reunion Island, France
| |
Collapse
|
20
|
Ač A, Jansen MAK, Grace J, Urban O. Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem-climate interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1769-1781. [PMID: 38314642 DOI: 10.1111/pce.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.
Collapse
Affiliation(s)
- Alexander Ač
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marcel A K Jansen
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - John Grace
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Otmar Urban
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
21
|
Zhang L, Wang X, Zu Y, He Y, Li Z, Li Y. Effects of UV-B Radiation Exposure on Transgenerational Plasticity in Grain Morphology and Proanthocyanidin Content in Yuanyang Red Rice. Int J Mol Sci 2024; 25:4766. [PMID: 38731985 PMCID: PMC11084601 DOI: 10.3390/ijms25094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xiupin Wang
- College of Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
22
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
23
|
Olsen CM, Pandeya N, Ragaini BS, Neale RE, Whiteman DC. International patterns and trends in the incidence of melanoma and cutaneous squamous cell carcinoma, 1989-2020. Br J Dermatol 2024; 190:492-500. [PMID: 37890023 DOI: 10.1093/bjd/ljad425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) and melanoma have different associations with sun exposure. OBJECTIVES To compare trends in the incidence rates of cSCC and melanoma, to provide insight into changing patterns of exposure to ultraviolet radiation (UVR). METHODS We compared trends in the incidence of cSCC and melanoma in seven susceptible populations residing at mid-to-high latitudes: Finland, Norway, Sweden, Denmark, Scotland, the Netherlands and Tasmania (Australia). We fitted Joinpoint models to describe trends in age-standardized incidence rates for melanoma and cSCC and calculated the average annual percentage rate of change for the period 1989-2020 (1989-2018 for Tasmania). We calculated the incident rate ratio (IRR) as the ratio of the age-standardized rates (European Standard Population) for cSCC to melanoma and conducted age-period-cohort modelling to compare age, period and cohort effects. RESULTS The ratio of cSCC-to-melanoma incidence increased with proximity to the equator and over time. In the most recent time period, the incidence of cSCC was higher than the incidence of melanoma for men and women in all seven populations. While the ratio of cSCC-to-melanoma incidence was higher for men vs. women, in most countries the cSCC-to-melanoma IRR increased over time to a greater extent in women than in men. Melanoma incidence was higher among younger people and cSCC incidence was higher among older people; the age at which the incidence of cSCC overtook the incidence of melanoma was progressively younger with proximity to the equator. CONCLUSIONS Despite concerted international efforts to preserve the ozone layer over the past four decades resulting in significant reductions in surface ultraviolet B at mid-latitudes, the incidence of skin cancer, particularly cSCC, continues to rise in those regions. Our findings are consistent with a stronger association with age-associated cumulative sun exposure for cSCC vs. melanoma and suggest that women are currently receiving greater UV radiation exposure than in the past.
Collapse
Affiliation(s)
- Catherine M Olsen
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Nirmala Pandeya
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Bruna S Ragaini
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David C Whiteman
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
25
|
Minoretti P, Gómez Serrano M, Liaño Riera M, Santiago Sáez A, García Martín Á. Occupational Health Challenges for Aviation Workers Amid the Changing Climate: A Narrative Review. Cureus 2024; 16:e55935. [PMID: 38601381 PMCID: PMC11004853 DOI: 10.7759/cureus.55935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
Although there are many forecasts regarding the impact of climate change on the aviation sector, a critical but frequently neglected dimension is the occupational safety risks faced by aviation professionals. This narrative review explores the potential impacts of the changing climate on the health and safety of aviation personnel. Furthermore, we examine the significance of resilience in helping these workers adapt and effectively manage climate-related challenges in their professional lives. Climate change poses increasing threats to the well-being of flight personnel through elevated temperatures, heightened ultraviolet radiation exposure, increased mental workload from extreme weather events, and other psychological stressors. Building resilience through workforce training, planning, and adaptation can reduce vulnerability. In future research, the iterative process of selecting measurement components to gauge the impact of climate change should balance feasibility, relevance for stakeholders, and accurately capturing exposure effects. For instance, while salivary cortisol measures stress biologically, assessments of depression or burnout may provide more nuanced insights on pilot health for industry decision-makers managing climate impacts. In conclusion, a strategic emphasis on enhancing the physical and psychological well-being of the aviation workforce is imperative for facilitating a more efficient adaptation within the sector. This is of paramount importance, considering the critical function that aviation serves in fostering human connectivity. Consequently, it is essential for regulatory bodies and policymakers to prioritize the safeguarding of employee health in the face of climate change challenges.
Collapse
Affiliation(s)
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
26
|
Al-Sadek T, Yusuf N. Ultraviolet Radiation Biological and Medical Implications. Curr Issues Mol Biol 2024; 46:1924-1942. [PMID: 38534742 DOI: 10.3390/cimb46030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Ultraviolet (UV) radiation plays a crucial role in the development of melanoma and non-melanoma skin cancers. The types of UV radiation are differentiated by wavelength: UVA (315 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm). UV radiation can cause direct DNA damage in the forms of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). In addition, UV radiation can also cause DNA damage indirectly through photosensitization reactions caused by reactive oxygen species (ROS), which manifest as 8-hydroxy-2'-deoxyguanine (8-OHdG). Both direct and indirect DNA damage can lead to mutations in genes that promote the development of skin cancers. The development of melanoma is largely influenced by the signaling of the melanocortin one receptor (MC1R), which plays an essential role in the synthesis of melanin in the skin. UV-induced mutations in the BRAF and NRAS genes are also significant risk factors in melanoma development. UV radiation plays a significant role in basal cell carcinoma (BCC) development by causing mutations in the Hedgehog (Hh) pathway, which dysregulates cell proliferation and survival. UV radiation can also induce the development of squamous cell carcinoma via mutations in the TP53 gene and upregulation of MMPs in the stroma layer of the skin.
Collapse
Affiliation(s)
- Tarek Al-Sadek
- Department of Dermatology, UAB Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Department of Dermatology, UAB Heersink School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Kaya S, Erdogan DE, Sancar A, Adebali O, Oztas O. Global repair is the primary nucleotide excision repair subpathway for the removal of pyrimidine-pyrimidone (6-4) damage from the Arabidopsis genome. Sci Rep 2024; 14:3308. [PMID: 38332020 PMCID: PMC10853524 DOI: 10.1038/s41598-024-53472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Ultraviolet (UV) component of solar radiation impairs genome stability by inducing the formation of pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] in plant genomes. (6-4)PPs disrupt growth and development by interfering with transcription and DNA replication. To resist UV stress, plants employ both photoreactivation and nucleotide excision repair that excises oligonucleotide containing (6-4)PPs through two subpathways: global and transcription-coupled excision repair (TCR). Here, we analyzed the genome-wide excision repair-mediated repair of (6-4)PPs in Arabidopsis thaliana and found that (6-4)PPs can be repaired by TCR; however, the main subpathway to remove (6-4)PPs from the genome is global repair. Our analysis showed that open chromatin genome regions are more rapidly repaired than heterochromatin regions, and the repair level peaks at the promoter, transcription start site and transcription end site of genes. Our study revealed that the repair of (6-4)PP in plants showed a distinct genome-wide repair profile compared to the repair of other major UV-induced DNA lesion called cyclobutane pyrimidine dimers (CPDs).
Collapse
Affiliation(s)
- Sezgi Kaya
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Dugcar Ebrar Erdogan
- Department of Molecular Biology and Genetics, College of Sciences, Koc University, Istanbul, Turkey
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ogun Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | - Onur Oztas
- Department of Molecular Biology and Genetics, College of Sciences, Koc University, Istanbul, Turkey.
| |
Collapse
|
28
|
Watson TPG, Tong M, Bailie J, Ekanayake K, Bailie RS. Relationship between climate change and skin cancer and implications for prevention and management: a scoping review. Public Health 2024; 227:243-249. [PMID: 38262229 DOI: 10.1016/j.puhe.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVES This study aimed to explore the published research on the relationship between climate change and skin cancer and the implications for prevention, management and further research. STUDY DESIGN Scoping review. METHODS This scoping review following JBI methodology reviewed English articles identified in searches of MEDLINE, Embase, CINAHL, Web of Science and Scopus on 14 April 2023. The screening of articles was completed by two independent reviewers. Data were extracted by a single reviewer and checked by another. A causal pathway diagram was iteratively developed throughout the review and was used to categorise the findings. RESULTS The search identified 1376 papers, of which 45 were included in the final review. Nine papers reported primary research, and 36 papers were reviews, perspectives, commentaries, editorials, or essays. The papers examined climate change influencing behaviours related to ultraviolet exposure (30 papers), ambient temperature (21 papers) and air pollution (five papers) as possible risk factors; occupational, rural, and contextual factors affecting skin cancer (11 papers); and prevention and access to health care in the context of climate change (seven papers). Most papers were published in journals in subject areas other than health. CONCLUSIONS This review identified ultraviolet radiation, occupation, rising temperature, individual behaviour and air pollution as possible influences on skin cancer rates. Furthermore, it highlights the complexity and uncertainties in the relationship between climate change and skin cancer and the need for further research on this relationship, including primary epidemiological research and reviews that follow recognised review guidelines and include assessment of health services and social determinants in the causal pathways of this relationship.
Collapse
Affiliation(s)
- T P G Watson
- Sydney Medical School, The University of Sydney, Camperdown, New South Wales, 2050, Australia; University Centre for Rural Health, The University of Sydney, Lismore, New South Wales, 2480, Australia
| | - M Tong
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - J Bailie
- University Centre for Rural Health, The University of Sydney, Lismore, New South Wales, 2480, Australia; School of Public Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - K Ekanayake
- University of Sydney Library, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - R S Bailie
- School of Public Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia.
| |
Collapse
|
29
|
Tyuterev VG, Barbe A, Manceron L, Grouiez B, Tashkun SA, Burgalat J, Rotger M. Ozone spectroscopy in the terahertz range from first high-resolution Synchrotron SOLEIL experiments combined with far-infrared measurements and ab initio intensity calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123456. [PMID: 37897864 DOI: 10.1016/j.saa.2023.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/30/2023]
Abstract
Ozone is one of the important molecules in terms of the impact on the atmospheric chemistry, climate changes, bio- and eco-systems and human health. It has a strong absorption in the microwave, terahertz and far-infrared spectral ranges where a large part of the Earth's outgoing longwave radiation to space is located. In this work, the observations, and analyses of the ozone high-resolution spectra in the THz range recorded using the Synchrotron light source of the SOLEIL CNRS equipment are reported for the first time. Thanks to the exceptional brightness of the Synchrotron radiation and to the signal/noise ratio, it was possible to observe many more ozone transitions of the cold rotational band and the hot ν2-ν2 band in the range 0.9-6 THz compared to the previous works. In addition, we have carried out new measurements and assignments for the ν2 band. The simultaneous fit of the rotational band GS-GS, the hot band ν2-ν2 and the FIR ν2 band yielded an overall weighted standard deviation of 0.68 for 13,466 line positions within the experimental accuracy. This includes all previously available MW (with the best uncertainty 0.1 - 10 kHz), FIR data and the original SOLEIL measurements that provided experimental accuracy of 0.00005 - 0.0001 cm-1 for the best lines. Significant deviations in new experimental spectra compared to available spectroscopic databases were evidenced, particularly for the line positions and energy levels at high J, Ka rotational quantum numbers that are the most pronounced in the 4.5 - 6 THz range. Accurate ab initio calculations of line intensities combined with empirically fitted line positions were used to create new linelists that permit theoretical modelling of the transmittance in a good agreement with the Synchrotron spectra in the entire range of observations for various pressures and optical paths. The region near 100 cm-1 and above appears to be more sensitive to the temperature conditions that should be considered in atmospheric observation for the currently operational and future ground based and space missions.
Collapse
Affiliation(s)
- V G Tyuterev
- National Research Tomsk State University, Tomsk, 634050, Russia; V. E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Sciences, Tomsk 634050, Russia.
| | - A Barbe
- GSMA UMR 7331 Université de Reims, 51000, France
| | - L Manceron
- Synchrotron SOLEIL, Beamline AILES, Saint-Aubin, France
| | - B Grouiez
- GSMA UMR 7331 Université de Reims, 51000, France
| | - S A Tashkun
- V. E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Sciences, Tomsk 634050, Russia
| | - J Burgalat
- GSMA UMR 7331 Université de Reims, 51000, France
| | - M Rotger
- GSMA UMR 7331 Université de Reims, 51000, France
| |
Collapse
|
30
|
Yin H, Perera-Castro AV, Randall KL, Turnbull JD, Waterman MJ, Dunn J, Robinson SA. Basking in the sun: how mosses photosynthesise and survive in Antarctica. PHOTOSYNTHESIS RESEARCH 2023; 158:151-169. [PMID: 37515652 PMCID: PMC10684656 DOI: 10.1007/s11120-023-01040-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica's climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could damage the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen if these strategies will still work as the Antarctic climate changes.
Collapse
Affiliation(s)
- Hao Yin
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Krystal L Randall
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Johanna D Turnbull
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Melinda J Waterman
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jodie Dunn
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
31
|
Milić Komić S, Živanović B, Dumanović J, Kolarž P, Sedlarević Zorić A, Morina F, Vidović M, Veljović Jovanović S. Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties. Int J Mol Sci 2023; 24:15350. [PMID: 37895033 PMCID: PMC10607338 DOI: 10.3390/ijms242015350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m-2 s-1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m-2 d-1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m-2 d-1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation.
Collapse
Affiliation(s)
- Sonja Milić Komić
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Bojana Živanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Jelena Dumanović
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Predrag Kolarž
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Ana Sedlarević Zorić
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Filis Morina
- Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovska 31/1160, 370 05 Ceske Budejovice, Czech Republic;
| | - Marija Vidović
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| |
Collapse
|
32
|
Sudhakaran G, Selvam M, Sreekutty AR, Chandran A, Almutairi BO, Arokiyaraj S, Raman P, Guru A, Arockiaraj J. Luteolin photo-protects zebrafish from environmental stressor ultraviolet radiation (UVB). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:720-734. [PMID: 37609830 DOI: 10.1080/15287394.2023.2249944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1β and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Chennai, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
33
|
Bernhard GH, Madronich S, Lucas RM, Byrne SN, Schikowski T, Neale RE. Linkages between COVID-19, solar UV radiation, and the Montreal Protocol. Photochem Photobiol Sci 2023; 22:991-1009. [PMID: 36995652 PMCID: PMC10062285 DOI: 10.1007/s43630-023-00373-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 03/31/2023]
Abstract
There are several connections between coronavirus disease 2019 (COVID-19), solar UV radiation, and the Montreal Protocol. Exposure to ambient solar UV radiation inactivates SARS-CoV-2, the virus responsible for COVID-19. An action spectrum describing the wavelength dependence of the inactivation of SARS-CoV-2 by UV and visible radiation has recently been published. In contrast to action spectra that have been assumed in the past for estimating the effect of UV radiation on SARS-CoV-2, the new action spectrum has a large sensitivity in the UV-A (315-400 nm) range. If this "UV-A tail" is correct, solar UV radiation could be much more efficient in inactivating the virus responsible for COVID-19 than previously thought. Furthermore, the sensitivity of inactivation rates to the total column ozone would be reduced because ozone absorbs only a small amount of UV-A radiation. Using solar simulators, the times for inactivating SARS-CoV-2 have been determined by several groups; however, many measurements are affected by poorly defined experimental setups. The most reliable data suggest that 90% of viral particles embedded in saliva are inactivated within ~ 7 min by solar radiation for a solar zenith angle (SZA) of 16.5° and within ~ 13 min for a SZA of 63.4°. Slightly longer inactivation times were found for aerosolised virus particles. These times can become considerably longer during cloudy conditions or if virus particles are shielded from solar radiation. Many publications have provided evidence of an inverse relationship between ambient solar UV radiation and the incidence or severity of COVID-19, but the reasons for these negative correlations have not been unambiguously identified and could also be explained by confounders, such as ambient temperature, humidity, visible radiation, daylength, temporal changes in risk and disease management, and the proximity of people to other people. Meta-analyses of observational studies indicate inverse associations between serum 25-hydroxy vitamin D (25(OH)D) concentration and the risk of SARS-CoV-2 positivity or severity of COVID-19, although the quality of these studies is largely low. Mendelian randomisation studies have not found statistically significant evidence of a causal effect of 25(OH)D concentration on COVID-19 susceptibility or severity, but a potential link between vitamin D status and disease severity cannot be excluded as some randomised trials suggest that vitamin D supplementation is beneficial for people admitted to a hospital. Several studies indicate significant positive associations between air pollution and COVID-19 incidence and fatality rates. Conversely, well-established cohort studies indicate no association between long-term exposure to air pollution and infection with SARS-CoV-2. By limiting increases in UV radiation, the Montreal Protocol has also suppressed the inactivation rates of pathogens exposed to UV radiation. However, there is insufficient evidence to conclude that the expected larger inactivation rates without the Montreal Protocol would have had tangible consequences on the progress of the COVID-19 pandemic.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA.
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S N Byrne
- Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - T Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Public Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
34
|
Bernhard GH, Bais AF, Aucamp PJ, Klekociuk AR, Liley JB, McKenzie RL. Stratospheric ozone, UV radiation, and climate interactions. Photochem Photobiol Sci 2023; 22:937-989. [PMID: 37083996 PMCID: PMC10120513 DOI: 10.1007/s43630-023-00371-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/14/2023]
Abstract
This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low- and mid-latitudes (0-60°) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50° would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50°, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60°) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are ≤ 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 °C over mid-latitude regions of the continents, and by more than 1.0 °C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating "Black Summer" fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA.
| | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece.
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| |
Collapse
|
35
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
36
|
Andrady AL, Heikkilä AM, Pandey KK, Bruckman LS, White CC, Zhu M, Zhu L. Effects of UV radiation on natural and synthetic materials. Photochem Photobiol Sci 2023; 22:1177-1202. [PMID: 37039962 PMCID: PMC10088630 DOI: 10.1007/s43630-023-00377-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 04/12/2023]
Abstract
The deleterious effects of solar ultraviolet (UV) radiation on construction materials, especially wood and plastics, and the consequent impacts on their useful lifetimes, are well documented in scientific literature. Any future increase in solar UV radiation and ambient temperature due to climate change will therefore shorten service lifetimes of materials, which will require higher levels of stabilisation or other interventions to maintain their lifetimes at the present levels. The implementation of the Montreal Protocol and its amendments on substances that deplete the ozone layer, controls the solar UV-B radiation received on Earth. This current quadrennial assessment provides a comprehensive update on the deleterious effects of solar UV radiation on the durability of natural and synthetic materials, as well as recent innovations in better stabilising of materials against solar UV radiation-induced damage. Pertinent emerging technologies for wood and plastics used in construction, composite materials used in construction, textile fibres, comfort fabric, and photovoltaic materials, are addressed in detail. Also addressed are the trends in technology designed to increase sustainability via replacing toxic, unsustainable, legacy additives with 'greener' benign substitutes that may indirectly affect the UV stability of the redesigned materials. An emerging class of efficient photostabilisers are the nanoscale particles that include oxide fillers and nanocarbons used in high-performance composites, which provide good UV stability to materials. They also allow the design of UV-shielding fabric materials with impressive UV protection factors. An emerging environmental issue related to the photodegradation of plastics is the generation of ubiquitous micro-scale particles from plastic litter exposed to solar UV radiation.
Collapse
Affiliation(s)
- A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC USA
| | | | - K. K. Pandey
- Indian Academy of Wood Science, Bangalore, India
| | - L. S. Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH USA
| | | | - M. Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - L. Zhu
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
37
|
Neale RE, Lucas RM, Byrne SN, Hollestein L, Rhodes LE, Yazar S, Young AR, Berwick M, Ireland RA, Olsen CM. The effects of exposure to solar radiation on human health. Photochem Photobiol Sci 2023; 22:1011-1047. [PMID: 36856971 PMCID: PMC9976694 DOI: 10.1007/s43630-023-00375-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 03/02/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the United Nations Environment Programme (UNEP) evaluates the effects of ultraviolet (UV) radiation on human health within the context of the Montreal Protocol and its Amendments. We assess work published since our last comprehensive assessment in 2018. Over the last four years gains have been made in knowledge of the links between sun exposure and health outcomes, mechanisms, and estimates of disease burden, including economic impacts. Of particular note, there is new information about the way in which exposure to UV radiation modulates the immune system, causing both harms and benefits for health. The burden of skin cancer remains high, with many lives lost to melanoma and many more people treated for keratinocyte cancer, but it has been estimated that the Montreal Protocol will prevent 11 million cases of melanoma and 432 million cases of keratinocyte cancer that would otherwise have occurred in the United States in people born between 1890 and 2100. While the incidence of skin cancer continues to rise, rates have stabilised in younger populations in some countries. Mortality has also plateaued, partly due to the use of systemic therapies for advanced disease. However, these therapies are very expensive, contributing to the extremely high economic burden of skin cancer, and emphasising the importance and comparative cost-effectiveness of prevention. Photodermatoses, inflammatory skin conditions induced by exposure to UV radiation, can have a marked detrimental impact on the quality of life of sufferers. More information is emerging about their potential link with commonly used drugs, particularly anti-hypertensives. The eyes are also harmed by over-exposure to UV radiation. The incidence of cataract and pterygium is continuing to rise, and there is now evidence of a link between intraocular melanoma and sun exposure. It has been estimated that the Montreal Protocol will prevent 63 million cases of cataract that would otherwise have occurred in the United States in people born between 1890 and 2100. Despite the clearly established harms, exposure to UV radiation also has benefits for human health. While the best recognised benefit is production of vitamin D, beneficial effects mediated by factors other than vitamin D are emerging. For both sun exposure and vitamin D, there is increasingly convincing evidence of a positive role in diseases related to immune function, including both autoimmune diseases and infection. With its influence on the intensity of UV radiation and global warming, the Montreal Protocol has, and will have, both direct and indirect effects on human health, potentially changing the balance of the risks and benefits of spending time outdoors.
Collapse
Affiliation(s)
- R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia
| | - S N Byrne
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L Hollestein
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - L E Rhodes
- Dermatology Research Centre, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Northern Care Alliance NHS Trust, Manchester, UK
| | - S Yazar
- Garvan Medical Research Institute, Sydney, NSW, Australia
| | | | - M Berwick
- University of New Mexico Comprehensive Cancer Center, Albuquerque, USA
| | - R A Ireland
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - C M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|