1
|
Yu F, Zhong Y, Zhang B, Zhou Y, He M, Yang Y, Wang Q, Yang X, Ren X, Qian J, Zhang H, Tian M. A New Theranostic Platform Against Gram-Positive Bacteria Based on Near-Infrared-Emissive Aggregation-Induced Emission Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308071. [PMID: 38342680 DOI: 10.1002/smll.202308071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Infections induced by Gram-positive bacteria pose a great threat to public health. Antibiotic therapy, as the first chosen strategy against Gram-positive bacteria, is inevitably associated with antibiotic resistance selection. Novel therapeutic strategies for the discrimination and inactivation of Gram-positive bacteria are thus needed. Here, a specific type of aggregation-induced emission luminogen (AIEgen) with near-infrared fluorescence emission as a novel antibiotic-free therapeutic strategy against Gram-positive bacteria is proposed. With the combination of a positively charged group into a highly twisted architecture, self-assembled AIEgens (AIE nanoparticles (NPs)) at a relatively low concentration (5 µm) exhibited specific binding and photothermal effect against living Gram-positive bacteria both in vitro and in vivo. Moreover, toxicity assays demonstrated excellent biocompatibility of AIE NPs at this concentration. All these properties make the AIE NPs as a novel generation of theranostic platform for combating Gram-positive bacteria and highlight their promising potential for in vivo tracing of such bacteria.
Collapse
Affiliation(s)
- Feiyan Yu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yu Zhou
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Mubin He
- State Key Laboratory of Extreme Photonics and Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, 310058, China
| | - Yang Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Qianqian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Xi Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Jun Qian
- State Key Laboratory of Extreme Photonics and Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, 310058, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310007, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| |
Collapse
|
2
|
Smith P, Ulrich R. The neutral condition in conflict tasks: On the violation of the midpoint assumption in reaction time trends. Q J Exp Psychol (Hove) 2024; 77:1023-1043. [PMID: 37674259 PMCID: PMC11032635 DOI: 10.1177/17470218231201476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 09/08/2023]
Abstract
Although the relation between congruent and incongruent conditions in conflict tasks has been the primary focus of cognitive control studies, the neutral condition is often set as a baseline directly between the two conditions. However, empirical evidence suggests that the average neutral reaction time (RT) is not placed evenly between the two opposing conditions. This article set out to establish two things: First, to reinforce the informative nature of the neutral condition and second, to highlight how it can be useful for modelling. We explored how RT in the neutral condition of conflict tasks (Stroop, Flanker, and Simon Tasks) deviated from the predictions of current diffusion models. Current diffusion models of conflict tasks predict a neutral RT that is the average of the congruent and incongruent RT, called the midpoint assumption. To investigate this, we first conducted a cursory limited search that recorded the average RT's of conflict tasks with neutral conditions. Upon finding evidence of a midpoint assumption violation which showed a larger disparity between average neutral and incongruent RT, we tested the previously mentioned conflict tasks with two different sets of stimuli to establish the robustness of the effect. The midpoint assumption violation is sometimes inconsistent with the prediction of diffusion models of conflict processing (e.g., the Diffusion Model of Conflict), suggesting possible elaborations of such models.
Collapse
Affiliation(s)
- Parker Smith
- Fachbereich Psychologie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Rolf Ulrich
- Fachbereich Psychologie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Zohdi H, Märki J, Scholkmann F, Wolf U. Cerebral, systemic physiological and behavioral responses to colored light exposure during a cognitive task: A SPA-fNIRS study. Behav Brain Res 2024; 462:114884. [PMID: 38296201 DOI: 10.1016/j.bbr.2024.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Colored light has important implications for human health and well-being, as well as for the aesthetics and function of various environments. In addition to its effects on visual function, colored light has significant effects on cognitive performance, behavior and systemic physiology. The aim of the current study was to comprehensively investigate how colored light exposure (CLE) combined with a cognitive task (2-back) affects performance, cerebral hemodynamics, oxygenation, and systemic physiology as assessed by systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). 36 healthy subjects (22 female, 14 male, age 26.3 ± 5.7 years) were measured twice on two different days. They were exposed to the sequence of blue and red light or vice versa in a randomized crossover design. During the CLE, the subjects were asked to perform a 2-back task. The 2-back task performance was correlated with changes in the concentration of oxygenated hemoglobin in the prefrontal cortex (red: r = -0.37, p = 0.001; blue: r = -0.33, p = 0.004) and the high-frequency component of the heart rate variability (red: r = 0.35, p = 0.003; blue: r = 0.25, p = 0.04). These changes were independent of the CLE. Sequence-dependent effects were observed for fNIRS signals at the visual cortex (VC) and for electrodermal activity (EDA). While both colors caused relatively similar changes in the VC and EDA at the position of the first exposure, blue and red light caused greater changes in the VC and EDA, respectively, in the second exposure. There was no significant difference in the subjects' 2-back task performance between the CLE (p = 0.46). The results of this study provide new insights into how human physiology and behavior respond to colored light exposure. Our findings are important for understanding the impact of colored light in our daily lives and its potential applications in a variety of settings, including education, the workplace and healthcare.
Collapse
Affiliation(s)
- Hamoon Zohdi
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Josefa Märki
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Hou D, Lin C, Lin Y. Diurnal Circadian Lighting Accumulation Model: A Predictor of the Human Circadian Phase Shift Phenotype. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:50-63. [PMID: 36939753 PMCID: PMC9590583 DOI: 10.1007/s43657-021-00039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/15/2022]
Abstract
Light is an important external factor that affects human circadian rhythms. This study aimed to explore the effects of different dimensions of diurnal light exposure on the physiological circadian phase shift (CPS) of the human body. A strict light exposure experiment with different timing schemes (8:00-12:00, 13:00-17:00, 18:00-22:00), durations (4 h, 8 h) and effective circadian stimulus levels (circadian stimulus: 0.35, 0.55) was performed in an enclosed laboratory. Fourteen participants, including seven males and seven females, with a mean age of 24.29 ± 2.43 (mean ± standard deviation), participated in this experiment and experienced all six lighting schemes. The results showed that both time factor (F 3,40 = 29.079, p < 0.001, the power of the sample size = 0.98) and circadian stimulus levels (T 20 = - 2.415, p = 0.025, the power of sample size = 0.76) significantly affect the CPS. On this basis, a diurnal circadian lighting accumulation (DCLA)-CPS model was proposed in the form of the Boltzmann function, and was validated by experimental data with high correlation (R 2 = 0.9320, RSS = 0.1184), which provides strong support for rationally arranging the light level at different times of the day.
Collapse
Affiliation(s)
- Dandan Hou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438 China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| | - Caixin Lin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438 China
| | - Yandan Lin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| |
Collapse
|