1
|
Aggio JB, Vedam VV, Nisimura LM, da Silva RV, Lovo-Martins MI, Borges BS, Mörking PA, Batista M, Marchini FK, Yamada-Ogatta SF, Pinge-Filho P, Goldenberg S, Eger I, Wowk PF. Trypanosomatid Extracellular Vesicles as Potential Immunogens for Chagas Disease. Int J Mol Sci 2025; 26:1544. [PMID: 40004010 PMCID: PMC11855489 DOI: 10.3390/ijms26041544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease remains a significant public health concern, with limited treatment options and an urgent need for novel preventive strategies. Extracellular vesicles (EVs) from Trypanosoma cruzi have been shown to modulate host immune responses, often favoring parasite persistence. In this study, we characterized EVs derived from the non-pathogenic trypanosomatids Trypanosoma rangeli and Phytomonas serpens and evaluated their potential as immunogens capable of inducing cross-protection against T. cruzi infection. Isolated EVs were characterized by Nanoparticle Tracking Analysis (NTA) and electron microscopy. A comparative proteomic analysis of EVs was performed using Mass Spectrometry-Based Proteomic Analysis (LC-MS/MS). The effects of EVs on immunomodulation and T. cruzi infection were assessed through in vitro and in vivo assays, using peripheral blood mononuclear cells (PBMCs) and BALB/c mice. The proteomic analysis identified shared proteins between the EVs of T. rangeli, P. serpens, and T. cruzi, including immunogenic candidates such as calpain-like cysteine peptidase and elongation factor 2. In vitro, pre-stimulation with the T. rangeli EVs reduced infection rates of the host cells by T. cruzi. In vivo, immunization with the EVs from T. rangeli and P. serpens led to a significant reduction in parasitemia in the BALB/c mice challenged with T. cruzi, though this did not translate into improved survival compared to controls. Interestingly, the EVs from T. cruzi also reduced parasitemia but did not confer protection against mortality. These findings suggest that while non-pathogenic trypanosomatid EVs exhibit potential immunogenic properties and can reduce parasitic load, their efficacy in preventing disease progression remains limited. Further research is needed to explore the mechanisms underlying these effects and to optimize EV-based strategies for protective immunity against Chagas disease.
Collapse
Affiliation(s)
- Juliana Bernardi Aggio
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Verônica Vitória Vedam
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Laboratório de Biologia Celular e Protozoologia, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Líndice Mitie Nisimura
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Grupo de Imunologia Molecular, Celular e Inteligência Artificial, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil
| | - Rosiane Valeriano da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Laboratório de Imunopatologia Experimental, Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Maria Izabel Lovo-Martins
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Laboratório de Imunopatologia Experimental, Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Beatriz Santana Borges
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Patrícia Alves Mörking
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Michel Batista
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Fabricio Klerynton Marchini
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Sueli Fumie Yamada-Ogatta
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Iriane Eger
- Laboratório de Biologia Celular e Protozoologia, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Pryscilla Fanini Wowk
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Grupo de Imunologia Molecular, Celular e Inteligência Artificial, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil
| |
Collapse
|
2
|
Santos LF, Rocha FDS, Lorenzo MG, Guarneri AA. Revisiting the development of Trypanosoma rangeli in the vertebrate host. Mem Inst Oswaldo Cruz 2024; 119:e240138. [PMID: 39607130 PMCID: PMC11588388 DOI: 10.1590/0074-02760240138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Trypanosoma rangeli is a haemoflagellate parasite that infects triatomine bugs and mammals in South and Central America. Trypanosoma cruzi, the etiological agent of Chagas disease, has a partially overlapping geographical distribution with T. rangeli, that leads to mixed human infections and cross-reactivity in immunodiagnosis. Although T. rangeli can be detected long after mammal infection, its multiplicative forms have not yet been described. OBJECTIVES To enhance our understanding of T. rangeli development in mammals, this study assessed various infection parameters in mice over time. METHODS The parasitaemia, body temperature, and weight of Swiss Webster mice were monitored over 120 days after exposing them to the bites of Rhodnius prolixus nymphs containing metacyclic trypomastigotes in their salivary glands. On day 132 post-infection, spleens and mesenteric lymph nodes were analysed for T. rangeli DNA using polymerase chain reaction (PCR) and quantitative PCR (qPCR). FINDINGS Parasites were detectable in mice blood since day 2 post-infection, detection peaking on day 5 and becoming undetectable by day 120. PCR and qPCR detected T. rangeli DNA in the spleens and mesenteric lymph nodes of infected mice. Infected mice showed higher body temperatures and a slower weight gain over time compared to controls. MAIN CONCLUSIONS The study confirmed that T. rangeli establishes a persistent infection in mice, detectable in lymphoid organs long after parasites had disappeared from blood. In addition, infected mice exhibited physiological changes, suggesting potential subclinical effects. These findings highlight the need for further studies on the immune response and potential impacts of T. rangeli infection in mammalian hosts.
Collapse
Affiliation(s)
- Luan Felipe Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Comportamento de Vetores e Interação com Patógenos, Belo Horizonte, MG, Brasil
| | - Flávia de Souza Rocha
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Marcelo Gustavo Lorenzo
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Comportamento de Vetores e Interação com Patógenos, Belo Horizonte, MG, Brasil
- Instituto de Investigaciones en Biodiversidad y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Mar del Plata, Argentina
| | - Alessandra Aparecida Guarneri
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Comportamento de Vetores e Interação com Patógenos, Belo Horizonte, MG, Brasil
| |
Collapse
|
3
|
Ferreira LDL, de Araújo FF, Martinelli PM, Teixeira-Carvalho A, Alves-Silva J, Guarneri AA. New features on the survival of human-infective Trypanosoma rangeli in a murine model: Parasite accumulation is observed in lymphoid organs. PLoS Negl Trop Dis 2020; 14:e0009015. [PMID: 33370305 PMCID: PMC7793305 DOI: 10.1371/journal.pntd.0009015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/08/2021] [Accepted: 11/27/2020] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma rangeli is a non-pathogenic protozoan parasite that infects mammals, including humans, in Chagas disease-endemic areas of South and Central America. The parasite is transmitted to a mammalian host when an infected triatomine injects metacyclic trypomastigotes into the host's skin during a bloodmeal. Infected mammals behave as parasite reservoirs for several months and despite intensive research, some major aspects of T. rangeli-vertebrate interactions are still poorly understood. In particular, many questions still remain unanswered, e.g. parasite survival and development inside vertebrates, as no parasite multiplication sites have yet been identified. The present study used an insect bite transmission strategy to investigate whether the vector inoculation spot in the skin behave as a parasite-replication site. Histological data from the skin identified extracellular parasites in the dermis and hypodermis of infected mice in the first 24 hours post-infection, as well as the presence of inflammatory infiltrates in a period of up to 7 days. However, qPCR analyses demonstrated that T. rangeli is eliminated from the skin after 7 days of infection despite being still consistently found on circulating blood and secondary lymphoid tissues for up to 30 days post-infection. Interestingly, significant numbers of parasites were found in the spleen and mesenteric lymph nodes of infected mice during different periods of infection and steady basal numbers of flagellates are maintained in the host's bloodstream, which might behave as a transmission source to insect vectors. The presence of parasites in the spleen was confirmed by fluorescent photomicrography of free and cell-associated T. rangeli forms. Altogether our results suggest that this organ could possibly behave as a T. rangeli maintenance hotspot in vertebrates.
Collapse
Affiliation(s)
- Luciana de Lima Ferreira
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fortes de Araújo
- Integrated Research Group in Biomarkers, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Patricia Massara Martinelli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Teixeira-Carvalho
- Integrated Research Group in Biomarkers, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Alves-Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Bayão TDS, Cupertino MDC, Mayers NAJ, Siqueira-Batista R. A systematic review of the diagnostic aspects and use of Trypanosoma rangeli as an immunogen for Trypanosoma cruzi infection. Rev Soc Bras Med Trop 2020; 53:e20190608. [PMID: 32935777 PMCID: PMC7491552 DOI: 10.1590/0037-8682-0608-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Trypanosoma rangeli is a protozoan that infects several domestic and wild mammals and shows significant distribution in Latin American countries. T. rangeli infection is similar to Chagas disease, both in diagnostic and prophylactic terms. Thus, the objective of this work was to review the diagnostic aspects and use of T. rangeli as an immunogen for Trypanosoma cruzi infection. METHODS For this elaboration, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were adopted with descriptors derived from the Medical Subject Headings (MeSH) platform in the PubMed/MEDLINE and SciELO databases. The inclusion criteria were defined as original articles on "Trypanosoma rangeli" and diagnostic aspects of T. rangeli infection in humans and/or research on the possible vaccines developed using T. rangeli strains for T. cruzi infection. RESULTS After applying the inclusion and exclusion criteria, 18 articles were procured, of which 4 addressed research on the possible vaccines developed using T. rangeli for T. cruzi infection in vertebrates and the remaining 14 predominantly dealt with the diagnostic aspects of T. rangeli infection in humans. CONCLUSIONS In this study, we formulated a compilation of the essential literature on this subject, emphasizing the need for more accurate and accessible techniques for the differential diagnosis of infections caused by both protozoa, and underscored several prospects in the search for a vaccine for Chagas disease.
Collapse
Affiliation(s)
- Taciana de Souza Bayão
- Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Laboratório de Métodos Epidemiológicos e Computacionais em Saúde, Viçosa, MG, Brasil
| | - Marli do Carmo Cupertino
- Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Laboratório de Métodos Epidemiológicos e Computacionais em Saúde, Viçosa, MG, Brasil
- Faculdade Dinâmica do Vale do Piranga, Escola de Medicina, Ponte Nova, MG, Brasil
| | - Nicholas Alfred Joseph Mayers
- Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Laboratório de Métodos Epidemiológicos e Computacionais em Saúde, Viçosa, MG, Brasil
- Universidade Federal de Viçosa, Departamento de Medicina Veterinária, Viçosa, MG, Brasil
| | - Rodrigo Siqueira-Batista
- Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Laboratório de Métodos Epidemiológicos e Computacionais em Saúde, Viçosa, MG, Brasil
- Faculdade Dinâmica do Vale do Piranga, Escola de Medicina, Ponte Nova, MG, Brasil
| |
Collapse
|
5
|
Fellet MR, Lorenzo MG, Elliot SL, Carrasco D, Guarneri AA. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. PLoS One 2014; 9:e105255. [PMID: 25136800 PMCID: PMC4138117 DOI: 10.1371/journal.pone.0105255] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30°C) it did, at 25°C, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30°C, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival.
Collapse
Affiliation(s)
- Maria Raquel Fellet
- Vector Behaviour and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Simon Luke Elliot
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David Carrasco
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alessandra Aparecida Guarneri
- Vector Behaviour and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Clinical and Immunological Analysis of Cutaneous Leishmaniasis before and after Different Treatments. J Parasitol Res 2013; 2013:657016. [PMID: 23844278 PMCID: PMC3697410 DOI: 10.1155/2013/657016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/07/2013] [Accepted: 05/18/2013] [Indexed: 11/17/2022] Open
Abstract
Amastigotes from L. (L.)amazonensis (La), L. (L.)venezuelensis (Lv), L. (V.)brasiliensis (Lb), and L. (L.)chagasi (Lch) were cultured in a free cells liquid culture medium. Patients (n = 87) from a cutaneous leishmaniasis (CL) hyperendemic region receiving different treatments were followed up from January 1994 to August 2000. Time for remission of lesions were spontaneous remission (SR) 7 weeks; Glucantime (Glu) chemotherapy 9 weeks; immunotherapy with La, Lv, Lb, and Lch amastigotes Tosyl-Lysil Chloromethyl-ketone (TLCK) treated and Nonidet P-40(NP-40) extracted (VT) 7 weeks. Delayed type hypersensitivity (DTH) response with leishmanine intradermic reaction (IDR) was higher in CL patients than healthy controls (P < 0.05) and increased in active secondary versus primary infection (P < 0.001) with diagnostic value 1.74 for active infection and 1.81 postclinical remission. Antibodies to amastigotes characterized by Enzyme Linked Immunosorbent Assay (ELISA) decreased in sera postclinical remission versus active infections (P < 0.001), with a diagnostic value from 1.50 to 1.84. Immunoblottings antigenic bands frequency as well as Integral Optical Density (IOD) Area Densitometry decreased with sera from SR, after Glu or VT treatments in CL volunteers. Intracellular parasitism is due to normal antibodies recognizing parasite antigens after inoculation by vector. VT vaccine induced mainly cellular immunity, for remission of lesions and protection from CL infection.
Collapse
|
7
|
Ferreira LL, Lorenzo MG, Elliot SL, Guarneri AA. A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. J Invertebr Pathol 2010; 105:91-7. [PMID: 20546751 DOI: 10.1016/j.jip.2010.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/05/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Trypanosoma rangeli is a protozoan parasite that shares hosts - mammals and triatomines - with Trypanosoma cruzi, the etiological agent of Chagas disease. Although T. rangeli is customarily considered to be non-pathogenic to human hosts, it is able to produce pathologies in its invertebrate hosts. However, advances are hindered by a lack of standardization of infection procedures and these pathologies need documentation. To establish a suitable, and standardizable, infection protocol, the duration of the fourth instar was evaluated in nymphs infected by injection into the thorax with different concentrations of parasites, and compared with nymphs infected naturally (i.e. orally). We demonstrate that delays in moult were attributable to the presence of the parasite in the haemolymph (vs. the gut) and propose that the protocol presented here simulates closely natural infections. This methodology was then used for the evaluation of physiological parameters and several hitherto unreported effects of T. rangeli infection on Rhodnius prolixus were revealed. Haemolymph volume was greater in infected than uninfected nymphs but this alteration could not be attributed to water retention, since infected insects lost the same amount of water as controls. However, we found that lipid content and fat body weight were both increased in insects infected by T. rangeli. We propose that this is due to the parasite's sequestration of host blood lipids and carrier proteins. With these findings, we have taken a few first steps to unravelling physiological details of the host-parasite interaction. We suggest future directions towards a fuller understanding of mechanistic and adaptive aspects of triatomine-trypanosomatid interactions.
Collapse
|
8
|
Antigens from Leishmania amastigotes induced clinical remission of psoriasis. Arch Dermatol Res 2008; 301:1-13. [DOI: 10.1007/s00403-008-0883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
|
9
|
de Moraes MH, Guarneri AA, Girardi FP, Rodrigues JB, Eger I, Tyler KM, Steindel M, Grisard EC. Different serological cross-reactivity of Trypanosoma rangeli forms in Trypanosoma cruzi-infected patients sera. Parasit Vectors 2008; 1:20. [PMID: 18611261 PMCID: PMC2475519 DOI: 10.1186/1756-3305-1-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/08/2008] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED BACKGROUND American Trypanosomiasis or Chagas disease is caused by Trypanosoma cruzi which currently infects approximately 16 million people in the Americas causing high morbidity and mortality. Diagnosis of American trypanosomiasis relies on serology, primarily using indirect immunofluorescence assay (IFA) with T. cruzi epimastigote forms. The closely related but nonpathogenic Trypanosoma rangeli has a sympatric distribution with T. cruzi and is carried by the same vectors. As a result false positives are frequently generated. This confounding factor leads to increased diagnostic test costs and where false positives are not caught, endangers human health due to the toxicity of the drugs used to treat Chagas disease. RESULTS In the present study, serologic cross-reactivity between the two species was compared for the currently used epimastigote form and the more pathologically relevant trypomastigote form, using IFA and immunoblotting (IB) assays. Our results reveal an important decrease in cross reactivity when T. rangeli culture-derived trypomastigotes are used in IFA based diagnosis of Chagas disease. Western blot results using sera from both acute and chronic chagasic patients presenting with cardiac, indeterminate or digestive disease revealed similar, but not identical, antigenic profiles. CONCLUSION This is the first study addressing the serological cross-reactivity between distinct forms and strains of T. rangeli and T. cruzi using sera from distinct phases of the Chagasic infection. Several T. rangeli-specific proteins were detected, which may have potential as diagnostic tools.
Collapse
Affiliation(s)
- Milene H de Moraes
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alessandra A Guarneri
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
- Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana P Girardi
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Juliana B Rodrigues
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Iriane Eger
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
- Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Kevin M Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, UK
| | - Mário Steindel
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Edmundo C Grisard
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
10
|
Añez-Rojas N, García-Lugo P, Crisante G, Rojas A, Añez N. Isolation, purification and characterization of GPI-anchored membrane proteins from Trypanosoma rangeli and Trypanosoma cruzi. Acta Trop 2006; 97:140-5. [PMID: 16246288 DOI: 10.1016/j.actatropica.2005.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 09/08/2005] [Accepted: 09/22/2005] [Indexed: 11/26/2022]
Abstract
GPI-anchored proteins from plasma membrane of Trypanosoma rangeli and Trypanosoma cruzi epimastigotes were isolated and characterized using the partition Triton X-114 method. The detection by Western blot of specific proteins of 90, 85 and 56 kDa molecular mass in T. rangeli compared to those of 30, 70 and 100 kDa detected in T. cruzi demonstrates specific discrimination between these two species of Trypanosoma. The potential diagnostic value of the here reported proteins to differentiate mixed infections by T. cruzi and T. rangeli is evaluated and its potential for epidemiological studies of Chagas disease in endemic areas is also discussed.
Collapse
Affiliation(s)
- Néstor Añez-Rojas
- Universidad de Los Andes, Facultad de Ciencias, Departamento de Biología, Mérida 5101, Venezuela
| | | | | | | | | |
Collapse
|
11
|
Abstract
Trypanosoma rangeli, a parasite generally considered non-pathogenic for man, is the second species of human trypanosome to be reported from the New World. The geographical distribution of T. rangeli often overlaps with that of T. cruzi, the same vertebrate and invertebrate hosts being infected. Their differentiation thus becomes of real, practical importance, particularly as they share approximately half the antigenic determinants recognized by the humoral response. Little is known about the life cycle of T. rangeli in the vertebrate host, although thousands of human and wild animal infections have been reported. Recent studies have revealed 2 major phylogenetic lineages in T. rangeli having different characteristics, thus leading to better understanding of the epidemiology and interactions with this parasite's vertebrate hosts and triatomine vectors. Based on further genetic characterization analysis, the authors have proposed 2 alternative hypotheses and consider that T. rangeli could have had clonal evolution or have been subjected to speciation processes.
Collapse
Affiliation(s)
- Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|