1
|
Pudlak M. Impact of the unrelaxed vibrational modes on hot-electron transfer. J Chem Phys 2023; 159:244105. [PMID: 38146828 DOI: 10.1063/5.0174141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023] Open
Abstract
The ultrafast photoinduced electron or exciton transfer was investigated theoretically. The charge separation on the ultrafast time scale results in the unrelaxed vibrational modes that appear in the initial terms of the generalized master equations. Here, the impact of these initial terms on the electron transfer directionality in the open system was evaluated. Moreover, the role of unrelaxed vibrational modes in electron-hole separation was also examined. It was shown that the unrelaxed vibrational modes significantly increase the efficiency of electron-hole separation. This could play a crucial role in the remarkable efficiency of charge separation in biological systems.
Collapse
Affiliation(s)
- Michal Pudlak
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovak Republic
| |
Collapse
|
2
|
Pudlák M, Pinčák R. Exciton transfer between LH1 antenna complex and photosynthetic reaction center dimer. J Biol Phys 2021; 47:271-286. [PMID: 34215962 DOI: 10.1007/s10867-021-09576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
The exciton transfer between light-harvesting complex 1(LH1) and photosynthetic reaction center dimer is investigated theoretically. We assume a ring shape structure of the LH1 complex with dimer in the ring centre. The kinetic equations which describe the energy transfer between the antenna complex and reaction center dimer were derived. It was shown that the dimer does not act as a photon trap. There is a weak localization of the exciton on the dimer and there is relatively rapid back exciton transfer from dimer to antenna complex which depends on the number of the pigment molecules in the antenna ring. The relation between the rates of the exciton transfer from the antenna complex to dimer and back transfer from dimer to antenna complex has been derived.
Collapse
Affiliation(s)
- Michal Pudlák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Richard Pinčák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic.
| |
Collapse
|
3
|
Maróti P, Kovács IA, Kis M, Smart JL, Iglói F. Correlated clusters of closed reaction centers during induction of intact cells of photosynthetic bacteria. Sci Rep 2020; 10:14012. [PMID: 32814810 PMCID: PMC7438532 DOI: 10.1038/s41598-020-70966-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
Antenna systems serve to absorb light and to transmit excitation energy to the reaction center (RC) in photosynthetic organisms. As the emitted (bacterio)chlorophyll fluorescence competes with the photochemical utilization of the excitation, the measured fluorescence yield is informed by the migration of the excitation in the antenna. In this work, the fluorescence yield concomitant with the oxidized dimer (P+) of the RC were measured during light excitation (induction) and relaxation (in the dark) for whole cells of photosynthetic bacterium Rhodobacter sphaeroides lacking cytochrome c2 as natural electron donor to P+ (mutant cycA). The relationship between the fluorescence yield and P+ (fraction of closed RC) showed deviations from the standard Joliot-Lavergne-Trissl model: (1) the hyperbola is not symmetric and (2) exhibits hysteresis. These phenomena originate from the difference between the delays of fluorescence relative to P+ kinetics during induction and relaxation, and in structural terms from the non-random distribution of the closed RCs during induction. The experimental findings are supported by Monte Carlo simulations and by results from statistical physics based on random walk approximations of the excitation in the antenna. The applied mathematical treatment demonstrates the generalization of the standard theory and sets the stage for a more adequate description of the long-debated kinetics of fluorescence and of the delicate control and balance between efficient light harvest and photoprotection in photosynthetic organisms.
Collapse
Affiliation(s)
- Péter Maróti
- Department of Medical Physics and Informatics, Szeged University, Rerrich Béla tér 1., 6720, Szeged, Hungary.
| | - István A Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208-3112, USA
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, P.O. Box 49, 1525, Budapest, Hungary
- Department of Network and Data Science, Central European University, Budapest, 1051, Hungary
| | - Mariann Kis
- Department of Medical Physics and Informatics, Szeged University, Rerrich Béla tér 1., 6720, Szeged, Hungary
| | - James L Smart
- Department of Biological Sciences, University of Tennessee at Martin, Martin, TN, 38238, USA
| | - Ferenc Iglói
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, P.O. Box 49, 1525, Budapest, Hungary
- Institute of Theoretical Physics, Szeged University, 6720, Szeged, Hungary
| |
Collapse
|
4
|
Caycedo-Soler F, Schroeder CA, Autenrieth C, Pick A, Ghosh R, Huelga SF, Plenio MB. Quantum Redirection of Antenna Absorption to Photosynthetic Reaction Centers. J Phys Chem Lett 2017; 8:6015-6021. [PMID: 29185757 DOI: 10.1021/acs.jpclett.7b02714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The early steps of photosynthesis involve the photoexcitation of reaction centers (RCs) and light-harvesting (LH) units. Here, we show that the historically overlooked excitonic delocalization across RC and LH pigments results in a redistribution of absorption amplitudes that benefits the absorption cross section of the optical bands associated with the RC of several species. While we prove that this redistribution is robust to the microscopic details of the dephasing between these units in the purple bacterium Rhodospirillum rubrum, we are able to show that the redistribution witnesses a more fragile, but persistent, coherent population dynamics which directs excitations from the LH toward the RC units under incoherent illumination and physiological conditions. Even though the redirection does not seem to affect importantly the overall efficiency in photosynthesis, stochastic optimization allows us to delineate clear guidelines and develop simple analytic expressions in order to amplify the coherent redirection in artificial nanostructures.
Collapse
Affiliation(s)
- Felipe Caycedo-Soler
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Christopher A Schroeder
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
- Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | - Caroline Autenrieth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart , Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Arne Pick
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart , Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Susana F Huelga
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
5
|
Rätsep M, Timpmann K, Kawakami T, Wang-Otomo ZY, Freiberg A. Spectrally Selective Spectroscopy of Native Ca-Containing and Ba-Substituted LH1-RC Core Complexes from Thermochromatium tepidum. J Phys Chem B 2017; 121:10318-10326. [PMID: 29058423 DOI: 10.1021/acs.jpcb.7b07841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The LH1-RC core complex from the thermophilic photosynthetic purple sulfur bacterium Thermochromatium tepidum has recently attracted interest of many researchers because of its several unique properties, such as increased robustness against environmental hardships and the much red-shifted near-infrared absorption spectrum of the LH1 antenna exciton polarons. The known near-atomic-resolution crystal structure of the complex well supported this attention. Yet several mechanistic aspects of the complex prominence remained to be understood. In this work, samples of the native, Ca2+-containing core complexes were investigated along with those destabilized by Ba2+ substitution, using various spectrally selective steady-state and picosecond time-resolved spectroscopic techniques at physiological and cryogenic temperatures. As a result, the current interpretation of exciton spectra of the complex was significantly clarified. Specifically, by evaluating the homogeneous and inhomogeneous compositions of the spectra, we showed that there is little to no effect of cation substitution on the dynamic or kinetic properties of antenna excitons. Reasons of the extra red shift of absorption/fluorescence spectra observed in the Ca-LH1-RC and not in the Ba-LH1-RC complex should thus be searched in subtle structural differences following the inclusion of different cations into the core complex scaffold.
Collapse
Affiliation(s)
- Margus Rätsep
- Institute of Physics, University of Tartu , W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Kõu Timpmann
- Institute of Physics, University of Tartu , W. Ostwald Str. 1, 50411 Tartu, Estonia
| | | | | | - Arvi Freiberg
- Institute of Physics, University of Tartu , W. Ostwald Str. 1, 50411 Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu , Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
6
|
Ma F, Yu LJ, Hendrikx R, Wang-Otomo ZY, van Grondelle R. Direct Observation of Energy Detrapping in LH1-RC Complex by Two-Dimensional Electronic Spectroscopy. J Am Chem Soc 2017; 139:591-594. [DOI: 10.1021/jacs.6b11017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fei Ma
- Department
of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Long-Jiang Yu
- Faculty
of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
- Research
Institute for Interdisciplinary, Okayama University, Tsushima
Naka 3-1-1, Okayama 700-8530, Japan
| | - Ruud Hendrikx
- Department
of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | - Rienk van Grondelle
- Department
of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Chenchiliyan M, Timpmann K, Jalviste E, Adams PG, Hunter CN, Freiberg A. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:634-42. [DOI: 10.1016/j.bbabio.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
|
8
|
Beyer SR, Müller L, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The open, the closed, and the empty: time-resolved fluorescence spectroscopy and computational analysis of RC-LH1 complexes from Rhodopseudomonas palustris. J Phys Chem B 2015; 119:1362-73. [PMID: 25526393 DOI: 10.1021/jp510822k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the time-resolved fluorescence of isolated RC-LH1 complexes from Rhodopseudomonas palustris as a function of the photon fluence and the repetition rate of the excitation laser. Both parameters were varied systematically over 3 orders of magnitude. On the basis of a microstate description we developed a quantitative model for RC-LH1 and obtained very good agreement between experiments and elaborate simulations based on a global master equation approach. The model allows us to predict the relative population of RC-LH1 complexes with the special pair in the neutral state or in the oxidized state P(+) and those complexes that lack a reaction center.
Collapse
Affiliation(s)
- Sebastian R Beyer
- Experimental Physics IV and Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth , 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Ferretti M, Duquesne K, Sturgis JN, van Grondelle R. Ultrafast excited state processes in Roseobacter denitrificans antennae: comparison of isolated complexes and native membranes. Phys Chem Chem Phys 2014; 16:26059-66. [DOI: 10.1039/c4cp02986k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Timpmann K, Chenchiliyan M, Jalviste E, Timney JA, Hunter CN, Freiberg A. Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1835-46. [DOI: 10.1016/j.bbabio.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
11
|
Pishchalnikov RY, Razjivin AP. From localized excited States to excitons: changing of conceptions of primary photosynthetic processes in the twentieth century. BIOCHEMISTRY (MOSCOW) 2014; 79:242-50. [PMID: 24821451 DOI: 10.1134/s0006297914030109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A short description of two theories of the primary photosynthetic processes is given. Generally accepted in 1950s-1990s, the localized excited states theory has been changed to the modern exciton theory. Appearance of the new experimental data and the light-harvesting complex crystal structure are reasons why the exciton theory has become important. The bulk of data for the old theory and outstanding experiments that have been the driving force for a new theory are discussed in detail.
Collapse
Affiliation(s)
- R Y Pishchalnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia.
| | | |
Collapse
|
12
|
Johnson N, Zhao G, Caycedo F, Manrique P, Qi H, Rodriguez F, Quiroga L. Extreme alien light allows survival of terrestrial bacteria. Sci Rep 2013; 3:2198. [PMID: 23852157 PMCID: PMC3711049 DOI: 10.1038/srep02198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/24/2013] [Indexed: 11/23/2022] Open
Abstract
Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.
Collapse
Affiliation(s)
- Neil Johnson
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | - Guannan Zhao
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | | | - Pedro Manrique
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | - Hong Qi
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | - Ferney Rodriguez
- Departamento de Fisica, Universidad de Los Andes, Bogota, Colombia
| | - Luis Quiroga
- Departamento de Fisica, Universidad de Los Andes, Bogota, Colombia
| |
Collapse
|
13
|
Strümpfer J, Schulten K. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1. J Chem Phys 2012; 137:065101. [PMID: 22897312 DOI: 10.1063/1.4738953] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.
Collapse
Affiliation(s)
- Johan Strümpfer
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
14
|
Woronowicz K, Ahmed S, Biradar AA, Biradar AV, Birnie DP, Asefa T, Niederman RA. Near-IR Absorbing Solar Cell Sensitized With Bacterial Photosynthetic Membranes. Photochem Photobiol 2012; 88:1467-72. [DOI: 10.1111/j.1751-1097.2012.01190.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Pan J, Lin S, Woodbury NW. Bacteriochlorophyll Excited-State Quenching Pathways in Bacterial Reaction Centers with the Primary Donor Oxidized. J Phys Chem B 2012; 116:2014-22. [DOI: 10.1021/jp212441b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Pan
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Su Lin
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| | - Neal W. Woodbury
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| |
Collapse
|
16
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Yang F, Yu LJ, Wang P, Ai XC, Wang ZY, Zhang JP. Effects of Aggregation on the Excitation Dynamics of LH2 from Thermochromatium tepidum in Aqueous Phase and in Chromatophores. J Phys Chem B 2011; 115:7906-13. [DOI: 10.1021/jp1097537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fan Yang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Repulic of China
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Long-Jiang Yu
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Repulic of China
| | - Xi-Cheng Ai
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Repulic of China
| | - Zheng-Yu Wang
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Repulic of China
| |
Collapse
|
18
|
Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis. Biophys J 2010; 97:2464-73. [PMID: 19883589 DOI: 10.1016/j.bpj.2009.08.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/21/2022] Open
Abstract
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.
Collapse
|
19
|
Brust T, Draxler S, Rauh A, Silber MV, Braun P, Zinth W, Braun M. Mutations of the peripheral antenna complex LH2 – correlations of energy transfer time with other functional properties. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Freiberg A, Trinkunas G. Unraveling the Hidden Nature of Antenna Excitations. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
|
22
|
Abstract
Functions of biologically active molecules are frequently initiated by elementary chemical reactions such as energy and electron transfer, cis-trans isomerizations, and proton transfer. The nature of these reactions generally makes them very fast and efficient, occurring on picosecond and femtosecond timescales. Ultrafast spectroscopy has played an important role in the study of a number of biological processes and has provided unique information about several of nature's responses to light. Here I review the current understanding of light-energy collection and conversion in photosynthesis, the function of carotenoid molecules in photosynthesis, and the primary light-initiated reactions of the photoreceptors rhodopsin, bacteriorhodopsin, photoactive yellow protein, phytochrome, and a new type of blue-light receptor based on flavin chromophores.
Collapse
Affiliation(s)
- Villy Sundström
- Department of Chemical Physics, Lund University, S-221 00 Lund, Sweden.
| |
Collapse
|
23
|
Borisov AY, Trushkin NA. A new methodical approach to determine the quantum yield of the conversion of electronic excitation in the reaction centers of purple bacteria. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Novoderezhkin VI, Razjivin AP. THEORETICAL STUDY OF CIRCULAR DICHROISM OF THE LIGHT-HARVESTING ANTENNA OF PHOTOSYNTHETIC PURPLE BACTERIA: A CONSIDERATION OF EXCITON INTERACTIONS and ENERGY DISORDER. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1995.tb02405.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Katiliene Z, Katilius E, Woodbury NW. Energy trapping and detrapping in reaction center mutants from Rhodobacter sphaeroides. Biophys J 2003; 84:3240-51. [PMID: 12719253 PMCID: PMC1302884 DOI: 10.1016/s0006-3495(03)70048-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved fluorescence of chromatophores isolated from strains of Rhodobacter sphaeroides containing light harvesting complex I (LHI) and reaction center (RC) (no light harvesting complex II) was measured at several temperatures between 295 K and 10 K. Measurements were performed to investigate energy trapping from LHI to the RC in RC mutants that have a P/P(+) midpoint potential either above or below wild-type (WT). Six different strains were investigated: WT + LHI, four mutants with altered RC P/P(+) midpoint potentials, and an LHI-only strain. In the mutants with the highest P/P(+) midpoint potentials, the electron transfer rate decreases significantly, and at low temperatures it is possible to directly observe energy transfer from LHI to the RC by detecting the fluorescence kinetics from both complexes. In all mutants, fluorescence kinetics are multiexponential. To explain this, RC + LHI fluorescence kinetics were analyzed using target analysis in which specific kinetic models were compared. The kinetics at all temperatures can be well described with a model which accounts for the energy transfer between LHI and the RC and also includes the relaxation of the charge separated state P(+)H(A)(-), created in the RC as a result of the primary charge separation.
Collapse
Affiliation(s)
- Zivile Katiliene
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.
| | | | | |
Collapse
|
26
|
Borisov AY, Sidorin YM. The revision of the model of primary energy conversion in purple bacteria. Bioelectrochemistry 2003; 59:113-9. [PMID: 12699827 DOI: 10.1016/s1567-5394(03)00017-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A simulation method is suggested which enables one to check whether a model for excitation energy exchange in an ensemble of dye molecules fits available experimental data. In particular, this method may deal with photosynthetic units (PSUs) in which excitation migration in antenna chlorophylls and their substantial trapping in reaction centers (RCs) take place. Its application to the purple bacteria has proved that the model, which was generally accepted during the last 20-30 years, is in contradiction with recent experimental facts and thus requires modernization. Two physical mechanisms are discussed: femtosecond polarization of mobile hydrogen atoms near the reaction center special pair ("water latch"), and the presence of excitons delocalized over several core-bacteriochlorophylls (BChls). Our considerations give evidence that neither of these mechanisms alone can resolve the conflict, but their cumulative action appears to be sufficient. Unfortunately, these mechanisms were as yet only partially addressed experimentally.
Collapse
Affiliation(s)
- A Y Borisov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University 119899, Moscow, Russia.
| | | |
Collapse
|
27
|
|
28
|
Ritz T, Park S, Schulten K. Kinetics of Excitation Migration and Trapping in the Photosynthetic Unit of Purple Bacteria. J Phys Chem B 2001. [DOI: 10.1021/jp011032r] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thorsten Ritz
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| | - Sanghyun Park
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
29
|
Timpmann K, Woodbury NW, Freiberg A. Unraveling Exciton Relaxation and Energy Transfer in LH2 Photosynthetic Antennas. J Phys Chem B 2000. [DOI: 10.1021/jp001993q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kõu Timpmann
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, 51014 Tartu, Estonia
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, 51014 Tartu, Estonia
| | - Arvi Freiberg
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, 51014 Tartu, Estonia
| |
Collapse
|
30
|
Bernhardt K, Trissl H. Escape probability and trapping mechanism in purple bacteria: revisited. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:1-17. [PMID: 10692545 DOI: 10.1016/s0005-2728(99)00103-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite intensive research for decades, the trapping mechanism in the core complex of purple bacteria is still under discussion. In this article, it is attempted to derive a conceptionally simple model that is consistent with all basic experimental observations and that allows definite conclusions on the trapping mechanism. Some experimental data reported in the literature are conflicting or incomplete. Therefore we repeated two already published experiments like the time-resolved fluorescence decay in LH1-only purple bacteria Rhodospirillum rubrum and Rhodopseudomonas viridis chromatophores with open and closed (Q(A)(-)) reaction centers. Furthermore, we measured fluorescence excitation spectra for both species under the two redox-conditions. These data, all measured at room temperature, were analyzed by a target analysis based on a three-state model (antenna, primary donor, and radical pair). All states were allowed to react reversibly and their decay channels were taken into consideration. This leads to seven rate constants to be determined. It turns out that a unique set of numerical values of these rate constants can be found, when further experimental constraints are met simultaneously, i.e. the ratio of the fluorescence yields in the open and closed (Q(A)(-)) states F(m)/F(o) approximately 2 and the P(+)H(-)-recombination kinetics of 3-6 ns. The model allows to define and to quantify escape probabilities and the transfer equilibrium. We conclude that trapping in LH1-only purple bacteria is largely transfer-to-the-trap-limited. Furthermore, the model predicts properties of the reaction center (RC) in its native LH1-environment. Within the framework of our model, the predicted P(+)H(-)-recombination kinetics are nearly indistinguishable for a hypothetically isolated RC and an antenna-RC complex, which is in contrast to published experimental data for physically isolated RCs. Therefore RC preparations may display modified kinetic properties.
Collapse
Affiliation(s)
- K Bernhardt
- Abteilung Biophysik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastr. 11, D-49069, Osnabrück, Germany
| | | |
Collapse
|
31
|
Uphill energy transfer in LH2-containing purple bacteria at room temperature. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:149-72. [PMID: 10393258 DOI: 10.1016/s0005-2728(99)00056-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Uphill energy transfer in the LH2-containing purple bacteria Rhodopseudomonas acidophila, Rhodopseudomonas palustris, Rhodobacter sphaeroides, Chromatium vinosum and Chromatium purpuratum was studied by stationary fluorescence spectroscopy at room temperature upon selective excitation of the B800 pigments of LH2 and the B880 pigments of LH1 at 803 nm and 900 nm, respectively. The resulting fluorescence spectra differed significantly at wavelengths shorter than the fluorescence maximum but agreed at longer wavelengths. The absorption spectra of the species studied were decomposed into five bands at approx. 800, 820, 830, 850 and 880 nm using the shapes of the absorption spectra of the LH1-RC only species Rhodospirillum rubrum and the isolated B800-850 complex from Rps. acidophila strain 10050 as guide spectra. This allowed a quantification of the number of pigments in each pigment group and, consequently, the antenna size of the photosynthetic unit assuming 36 bacteriochlorophyll a molecules in an LH1-RC complex. In most of the LH2-containing purple bacterial strains the number of LH2 rings per LH1-RC was less than the idealized number of eight (Papiz et al., Trends Plant Sci. 1 (1996) 198-206), which was achieved only by C. purpuratum. Uphill energy transfer was assayed by comparing the theoretical fluorescence spectrum obtained from a Boltzmann equilibrium with the measured fluorescence spectrum obtained by 900 nm excitation. The good match of both spectra in all the purple bacteria studied indicates that uphill energy transfer occurs practically up to its thermodynamically maximal possible extent. All strains studied contained a small fraction of either poorly connected or unconnected LH2 complexes as indicated by higher fluorescence yields from the peripheral complexes than predicted by thermal equilibration or kinetic modeling. This impedes generally the quantitative analysis of blue-excited fluorescence spectra.
Collapse
|
32
|
Sundström V, Pullerits T, van Grondelle R. Photosynthetic Light-Harvesting: Reconciling Dynamics and Structure of Purple Bacterial LH2 Reveals Function of Photosynthetic Unit. J Phys Chem B 1999. [DOI: 10.1021/jp983722+] [Citation(s) in RCA: 672] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Laible PD, Greenfield SR, Wasielewski MR, Hansen DK, Pearlstein RM. Antenna excited state decay kinetics establish primary electron transfer in reaction centers as heterogeneous. Biochemistry 1997; 36:8677-85. [PMID: 9289013 DOI: 10.1021/bi970672a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The decay of the excited primary electron donor P* in bacterial photosynthetic reaction centers (both membrane-bound and detergent-isolated) has been observed to be nonexponential on a time scale of some tens of picoseconds. Although the multipicosecond nonexponentiality of P* has been ascribed to heterogeneity in teh rate of primary electron transfer (PET), the decay kinetics can be interpreted equally well using homogeneous models. To address this ambiguity, we studied the decay of excited bacteriochlorophyll (Bchl) in the membrane-bound core antenna/reaction center complexes of wild-type and mutant reaction center strains of Rhodobacter capsulatus. Reaction centers isolated from these same strains display a range of multiexponentiality in primary charge separation. The mutant strains carry substitutions of amino acids residing near the monomeric Bchl on the active and/or inactive sides of the reaction center. Transient absorption measurements monitoring the Qy bleach of antenna Bchls require at least two exponential components to fit all decays. The wild type was fitted with equal-amplitude components whose lifetimes are 24 and 65 ps. The shortest-lived component is relatively insensitive to mutation, in contrast to the longer-lived component(s) whose amplitude and magnitude were dramatically perturbed by amino acid substitutions. Unlike the situation with isolated reaction centers, here the only kinetic models consistent with the data are those in which the primary electron-transfer rate constant is heterogeneous, suggesting at least two structural populations of RCs. PET in the population with the shortest-lived antenna decay causes the kinetics to be transfer-to-trap-limited, whereas the kinetics in the other population(s)--having longer-lived antenna decays--are limited by the rate of PET. Observation of both types of kinetic limitation within a single light-harvesting system is unexpected and complicates any discussion of the rate-limiting step of light energy utilization in photosynthesis.
Collapse
Affiliation(s)
- P D Laible
- Center for Mechanistic Biology, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | |
Collapse
|
34
|
Pearlstein RM. Antenna exciton trapping kinetics as a probe of primary electron transfer heterogeneity in the photosynthetic reaction center. Chem Phys Lett 1996. [DOI: 10.1016/0009-2614(96)01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
The theory of Forster-type migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria. Chem Phys 1996. [DOI: 10.1016/0301-0104(96)00130-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Pullerits T, Sundström V. Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why. Acc Chem Res 1996. [DOI: 10.1021/ar950110o] [Citation(s) in RCA: 472] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tõnu Pullerits
- Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
37
|
Pearlstein RM. Coupling of exciton motion in the core antenna and primary charge separation in the reaction center. PHOTOSYNTHESIS RESEARCH 1996; 48:75-82. [PMID: 24271288 DOI: 10.1007/bf00040998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/1996] [Accepted: 04/03/1996] [Indexed: 06/02/2023]
Abstract
The relation between exciton motion in the LH1 antenna and primary charge separation in the reaction center of purple bacteria is briefly reviewed. It is argued that in models based on hopping excitons described strictly by Förster theory, transfer-to-trap-limited kinetics is quite unlikely according to the relation between the exciton trapping kinetics and 'N', the size of the photosynthetic unit in such models. Because the results of several recent experiments have been interpreted in terms of transfer-to-trap limited kinetics, this presents a conflict between these experimental interpretations and strictly Förster-based theoretical models. Two possible resolutions are proposed. One arises from the random phase-redistribution trapping kinetics of partially coherent excitons, a kinetics uniquely independent of both N and the rate constant for primary charge separation in the reaction center. The other comes from multiple-pathways models of the multipicosecond nonexponentiality of the decay of P(*), the electronically excited primary electron donor in the reaction center. In these models, because it depends only on a certain averaged electron-transfer time constant, the exciton lifetime may be relatively insensivive to variations of individual electrontransfer rate constants-thereby undercutting the argument appearing in recent literature that by default the exciton kinetics must be transfer-to-trap limited.
Collapse
Affiliation(s)
- R M Pearlstein
- Chemistry Division, Argonne National Laboratory, 60439-4831, Argonne, IL, USA
| |
Collapse
|
38
|
Freiberg A, Allen JP, Williams JC, Woodbury NW. Energy trapping and detrapping by wild type and mutant reaction centers of purple non-sulfur bacteria. PHOTOSYNTHESIS RESEARCH 1996; 48:309-19. [PMID: 24271312 DOI: 10.1007/bf00041022] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/1995] [Accepted: 04/01/1996] [Indexed: 05/09/2023]
Abstract
Time-correlated single photon counting was used to study energy trapping and detrapping kinetics at 295 K in Rhodobacter sphaeroides chromatophore membranes containing mutant reaction centers. The mutant reaction centers were expressed in a background strain of Rb. sphaeroides which contained only B880 antenna complexes and no B800-850 antenna complexes. The excited state decay times in the isolated reaction centers from these strains were previously shown to vary by roughly 15-fold, from 3.4 to 52 ps, due to differences in the charge separation rates in the different mutants (Allen and Williams (1995) J Bioenerg Biomembr 27: 275-283). In this study, measurements were also performed on wild type Rhodospirillum rubrum and Rb. sphaeroides B880 antenna-only mutant chromatophores for comparison. The emission kinetics in membranes containing mutant reaction centers was complex. The experimental data were analyzed in terms of a kinetic model that involved fast excitation migration between antenna complexes followed by reversible energy transfer to the reaction center and charge separation. Three emission time constants were identified by fitting the data to a sum of exponential decay components. They were assigned to trapping/quenching of antenna excitations by the reaction center, recombination of the P(+)H(-) charge-separated state of the reaction center reforming an emitting state, and emission from uncoupled antenna pigment-protein complexes. The first varied from 60 to 160 ps, depending on the reaction center mutation; the second was 200-300 ps, and the third was about 700 ps. The observed weak linear dependence of the trapping time on the primary charge separation time, together with the known sub-picosecond exciton migration time within the antenna, supports the concept that it is energy transfer from the antenna to the reaction center, rather than charge separation, that limits the overall energy trapping time in wild type chromatophores. The component due to charge recombination reforming the excited state is minor in wild type membranes, but increases substantially in mutants due to the decreasing free energy gap between the states P(*) and P(+)H(-).
Collapse
Affiliation(s)
- A Freiberg
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, 85287-1604, Tempe, AZ, USA
| | | | | | | |
Collapse
|
39
|
Visser HM, Somsen OJG, van Mourik F, van Grondelle R. Excited-State Energy Equilibration via Subpicosecond Energy Transfer within the Inhomogeneously Broadened Light-Harvesting Antenna of LH-1-OnlyRhodobacter sphaeroidesMutants M2192 at Room Temperature and 4.2 K. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp960883+] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Stys D, Stancek M, Cheng L, Allen JF. Complex formation in plant thylakoid membranes. Competition studies on membrane protein interactions using synthetic peptide fragments. PHOTOSYNTHESIS RESEARCH 1995; 44:277-285. [PMID: 24307098 DOI: 10.1007/bf00048601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/1994] [Accepted: 04/27/1995] [Indexed: 06/02/2023]
Abstract
Thylakoid membranes of pea were used to study competition between extra-membrane fragments and their parental membrane-bound proteins. Phosphorylated and unphosphorylated fragments of light harvesting complex II (LHC II) from higher plants were used to compete with LHC II for interactions with itself and with other thylakoid protein complexes. Effects of these peptide fragments of LHC II and of control peptides were followed by 80 K chlorophyll fluorescence spectroscopy of isolated thylakoids. The phosphorylated LHC II fragment competes with membrane-bound phosphoproteins in the phosphatase reaction. The same fragment accelerates the process of dark-to-light adaptation and decreases the rate of the light-to-dark adaptation when these are followed by fluorescence spectroscopy. In contrast, the non-phosphorylated LHC II peptide does not affect the rate of adaptation but produces results consistent with inhibition of formation of a quenching complex. In this quenching complex we propose that LHC II remains inaccessible to the LHC II kinase, explaining an observed decrease in LHC II phosphorylation in the later stages of the time-course of phosphorylation. The most conspicuous protein which is steadily phosphorylated during the time-course of phosphorylation is the 9 kDa (psbH) protein. The participation of the phosphorylated form of psbH in the quenching complex, where it is inaccessible to the phosphatase, may explain its anomalously slow dephosphorylation. The significance of the proposed complex of LHC II with phospho-psbH is discussed.
Collapse
Affiliation(s)
- D Stys
- Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden
| | | | | | | |
Collapse
|
41
|
Timpmann K, Freiberg A, Sundström V. Energy trapping and detrapping in the photosynthetic bacterium Rhodopseudomonas viridis: transfer-to-trap-limited dynamics. Chem Phys 1995. [DOI: 10.1016/0301-0104(95)00072-v] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Dracheva T, Novoderezhkin V, Razjivin A. Excition theory of spectra and energy transfer in photosynthesis: spectral hole burning in the antenna of purple bacteria. Chem Phys 1995. [DOI: 10.1016/0301-0104(95)00038-p] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Kinetics of Excitation Transfer and Trapping in Purple Bacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 1995. [DOI: 10.1007/0-306-47954-0_17] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Kennis JT, Aartsma TJ, Amesz J. Energy trapping in the purple sulfur bacteria Chromatium vinosum and Chromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90046-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Novoderezhkin VI, Razjivin AP. Exciton states of the antenna and energy trapping by the reaction center. PHOTOSYNTHESIS RESEARCH 1994; 42:9-15. [PMID: 24307463 DOI: 10.1007/bf00019053] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1993] [Accepted: 05/06/1994] [Indexed: 06/02/2023]
Abstract
Forward and back energy transfer between antenna and RC in the photosynthetic apparatus of purple bacteria was studied taking into account the exciton states of the antenna. The exciton states were calculated for core antenna configuration in the form of a circular aggregate of N identical BChl molecules with the CN-symmetry. The influence of pigment inhomogeneity on the proposed exciton description of the antenna and its interaction with RC was investigated. The ratio between the rate constants of forward and back energy transfer between the exciton levels of the antenna and RC was obtained as a function of the temperature, the number of antenna BChls and the antenna exciton level position with respect to BChl special pair level of RC. A versatile analytical expression for this ratio which is independent of the BChl special pair level position and its dipole orientation was derived. The proposed model results in an irreversible excitation trapping by RC even at room temperature.
Collapse
Affiliation(s)
- V I Novoderezhkin
- International Laser Center of Moscow State University, Russian Academy of Science, 142092, Troitsk, Moscow Region, Russia
| | | |
Collapse
|
46
|
|
47
|
Pullerits T, Chachisvilis M, Jones M, Hunter C, Sundström V. Exciton dynamics in the light-harvesting complexes of Rhodobacter sphaeroides. Chem Phys Lett 1994. [DOI: 10.1016/0009-2614(94)00561-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|