1
|
Peng Z, Jia Q, Mao J, Luo X, Huang A, Zheng H, Jiang S, Ma Q, Ma C, Yi Q. Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction. Front Psychiatry 2025; 15:1439727. [PMID: 39876994 PMCID: PMC11773674 DOI: 10.3389/fpsyt.2024.1439727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex. These brain regions form networks that communicate through neurotransmitter signaling, leading to neurobiological changes in individuals with behavioral addictions. While dopamine has long been associated with the reward process, recent research highlights the role of other key neurotransmitters like serotonin, glutamate, and endorphins in BADs' development. These neurotransmitters interact within the reward circuitry, creating potential targets for therapeutic intervention. This improved understanding of neurotransmitter systems provides a foundation for developing targeted treatments and helps clinicians select personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhenlei Peng
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junxiong Mao
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiao Luo
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Anqi Huang
- Child Mental Health Research Center, Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
| | - Shijie Jiang
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qi Ma
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Metabolic Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qizhong Yi
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Koning SM, Kessler CL, Canli T, Duman EA, Adam EK, Zinbarg R, Craske MG, Stephens JE, Vrshek-Schallhorn S. Early-life adversity severity, timing, and context type are associated with SLC6A4 methylation in emerging adults: Results from a prospective cohort study. Psychoneuroendocrinology 2024; 170:107181. [PMID: 39298801 DOI: 10.1016/j.psyneuen.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), can play a role in the biological embedding of early-life adversity (ELA) through serotonergic mechanisms. The current study examines methylation of the CpG island in the promoter region of the stress-responsive serotonin transporter gene (SLC6A4) and is the first to jointly assess how it is influenced by ELA severity, timing, and type-specifically, deprivation and threat. METHODS We use data from 627 Youth Emotion Project study participants, recruited from two US high schools. Using adjusted linear regressions, we analyze DNA collected in early adulthood from 410 participants and ELA based on interviewer-rated responses from concurrent Childhood Trauma Interviews, adjusting for survey-measured covariates. RESULTS ELA robustly predicted mean CpG island SLC6A4 DNAm percent across 71 CpG sites. Each additional major-severity ELA event was associated with a 0.121-percentage-point increase (p<0.001), equating to a 0.177 standard deviation (sd) higher DNAm level (95 % CI: 0.080, 0.274) with each 1-sd higher adversity score. When modeled separately, both childhood and adolescent ELA predicted SLC6A4 DNAm. When modeled jointly, adolescent ELA was most strongly predictive, and child adversity remained significantly associated with DNAm through indirect associations via adolescent adversity. Additionally, the ELA-SLC6A4 DNAm association may vary by adversity type. Across separate models for childhood and adolescent exposures, deprivation coefficients are positive and statistically significant. Meanwhile, threat coefficients are positive and not significantly significant but do not statistically differ from deprivation coefficients. In models including all ELA dimensions, one major adolescent deprivation event is associated with a 0.222-percentage-point increased SLC6A4 DNAm (p<0.05), or a 1-sd higher deprivation score with a 0.157-sd increased DNAm. CONCLUSION Results further implicate epigenetic modification on serotonergic neurotransmission via DNAm in the downstream sequelae of ELA-particularly adolescent deprivation-and support preventive interventions in adolescence to mitigate biological embedding.
Collapse
Affiliation(s)
- Stephanie M Koning
- University of Nevada, Reno, School of Public Health, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | | | | | - Elif A Duman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey; Institute of Natural and Applied Sciences, Acibadem University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
3
|
Kilic F. The Coordinated Changes in Platelet Glycan Patterns with Blood Serotonin and Exosomes. Int J Mol Sci 2024; 25:11940. [PMID: 39596010 PMCID: PMC11593536 DOI: 10.3390/ijms252211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of the most profound influencers in remodeling the platelet's surface N-glycans. Proteomic analysis of the membrane vesicles identified enzymes, specifically glycosyltransferases, only on the surface of the platelets isolated from the supraphysiological level of 5-HT-containing blood plasma. However, these enzymes can only be effective on the cell surface under certain biological conditions, such as the level of their substrates, temperature, and pH of the environment. We hypothesize that exosomes released from various cells coordinate the required criteria for the enzymatic reaction on the platelet surface. The elevated plasma 5-HT level also accelerates the release of exosomes from various cells, as reported. This review summarizes the findings from a wide range of literature and proposes mechanisms to coordinate the exosomes and plasma 5-HT in remodeling the structures of N-glycans to make platelets more prone to aggregation.
Collapse
Affiliation(s)
- Fusun Kilic
- Retired Professor of Biochemistry and Molecular Cellular Biology
| |
Collapse
|
4
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024; 16:841-858. [PMID: 39254383 PMCID: PMC11964421 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aananya P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Sun P, Zhao W. Control list of high-priority chemicals based on 5-HT-RI functionality and the human health interference effects selective CNN-GRU deep learning model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169699. [PMID: 38181943 DOI: 10.1016/j.scitotenv.2023.169699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
The antidepressant drug known as 5-HT reuptake inhibitor (5-HT-RI) was commonly detected in biological tissues and result in significant adverse health effects. Homology modeling was used to characterize the functionalities (efficacy and resistance), and the adverse outcome pathway was used to characterize its human health interferences (olfactory toxicity, neurotoxicity, and gut microbial interference). The convolutional neural network coupled with the gated recurrent unit (CNN-GRU) deep learning method was used to construct a comprehensive model of 5-HT-RI functionality and human health interference effects selectivity with small sample data. The architecture with 2 SE, 320 neuronal nodes and 6-folds cross-validation showed the best applicability. The results showed that the confidence interval of the constructed model reached 90 % indicating that the model had reliable prediction ability and generalization ability. Based on the CNN-GRU deep learning model, seven high-priority chemicals with a weak comprehensive effect, including D-VEN, (1R,4S)-SER, S-FLX, CTP, S-CTP, NEF, and VEN, were screened. Based on the molecular three-dimensional structure information, a comprehensive-effect three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed to confirm the reliability of the constructed control list of 5-HT-RI high-priority chemicals. Analysis with the ranking of calculated values based on the molecular dynamics method and predicted values based on the CNN-GRU deep learning model, we found that the consistency of the three methods was above 85 %. Additionally, by analyzing the sensitivity, molecular electrostatic potential, polar surface area of the comprehensive-effect CNN-GRU deep learning model, and the electrostatic field of the 3D-QSAR models, we found that the significant effects of five key characteristics (DM, Qyy, Qxz, I, and BP), molecular electronegativity, and polarity significantly affected the high-priority degree of 5-HT-RI. In this study, we provided reasonable and reliable prediction tools and discussed theoretical methods for the risk assessment of functionality and human health interference of emerging pollutants such as 5-HT-RI.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Gonzalez-Suarez AD, Thorn CF, Whirl-Carrillo M, Klein TE. PharmGKB summary: disulfiram pathway. Pharmacogenet Genomics 2023; 33:207-216. [PMID: 37728645 PMCID: PMC10627108 DOI: 10.1097/fpc.0000000000000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
| | | | | | - Teri E. Klein
- Department of Biomedical Data Science, Stanford, CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
McNealy KR, Weyrich L, Bevins RA. The co-use of nicotine and prescription psychostimulants: A review of their behavioral and neuropharmacological interactions. Drug Alcohol Depend 2023; 248:109906. [PMID: 37216808 PMCID: PMC10361216 DOI: 10.1016/j.drugalcdep.2023.109906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Nicotine is commonly co-used with other psychostimulants. These high co-use rates have prompted much research on interactions between nicotine and psychostimulant drugs. These studies range from examination of illicitly used psychostimulants such as cocaine and methamphetamine to prescription psychostimulants used to treat attention deficit hyperactivity disorder (ADHD) such as methylphenidate (Ritalin™) and d-amphetamine (active ingredient of Adderall™). However, previous reviews largely focus on nicotine interactions with illicitly used psychostimulants with sparse mention of prescription psychostimulants. The currently available epidemiological and laboratory research, however, suggests high co-use between nicotine and prescription psychostimulants, and that these drugs interact to modulate use liability of either drug. The present review synthesizes epidemiological and experimental human and pre-clinical research assessing the behavioral and neuropharmacological interactions between nicotine and prescription psychostimulants that may contribute to high nicotine-prescription psychostimulant co-use. METHODS We searched databases for literature investigating acute and chronic nicotine and prescription psychostimulant interactions. Inclusion criteria were that participants/subjects had to experience nicotine and a prescription psychostimulant compound at least once in the study, in addition to assessment of their interaction. RESULTS AND CONCLUSIONS Nicotine clearly interacts with d-amphetamine and methylphenidate in a variety of behavioral tasks and neurochemical assays assessing co-use liability across preclinical, clinical, and epidemiological research. The currently available research suggests research gaps examining these interactions in women/female rodents, in consideration of ADHD symptoms, and how prescription psychostimulant exposure influences later nicotine-related outcomes. Nicotine has been less widely studied with alternative ADHD pharmacotherapy bupropion, but we also discuss this research.
Collapse
Affiliation(s)
- Kathleen R McNealy
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE68588-0308, USA.
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE68010, USA; Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE687178, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE68588-0308, USA
| |
Collapse
|
8
|
The Influence of Prenatal Exposure to Methamphetamine on the Development of Dopaminergic Neurons in the Ventral Midbrain. Int J Mol Sci 2023; 24:ijms24065668. [PMID: 36982742 PMCID: PMC10056332 DOI: 10.3390/ijms24065668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.
Collapse
|
9
|
Determining Ligand and Ion-Induced Conformational Changes in Serotonin Transporter with Its Fluorescent Substrates. Int J Mol Sci 2022; 23:ijms231810919. [PMID: 36142837 PMCID: PMC9503009 DOI: 10.3390/ijms231810919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/22/2023] Open
Abstract
Conformational changes are fundamental events in the transport mechanism. The serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin after its release by serotonergic neurons and is the molecular target for antidepressant drugs and psychostimulants. Despite significant progress in characterizing the structure-function relationship of SERT, its conformational mechanism has not been fully understood. We present here a cell-based method for determining conformational changes in SERT with its fluorescent substrates by fluorescence imaging analysis. This method fluorometrically measures accessibility of strategically positioned cysteine residues in the substrate permeation pathway to calculate the rate constants of reactivity with MTS reagents in live or permeabilized cells. We validated this method by investigating ligand and ion-induced conformational changes in both the extracellular and cytoplasmic pathways of SERT. Furthermore, we applied this method for examining the influence of Cl- binding and vilazodone inhibition on SERT conformation. Our results showed that Cl- ion, in the presence of Na+, facilitates the conformational conversion from outward to inward open states, and that vilazodone binding stabilizes SERT in an outward open and inward-closed conformation. The present work provided insights into the conformational mechanism of SERT and also indicated that the cell-based fluorometric method is robust, straightforward to perform, and potentially applicable to any monoamine transporters in exploring the transport mechanism and mechanism of action of therapeutic agents for the treatment of several psychiatric disorders.
Collapse
|
10
|
Huang B, Liu H, Wu Y, Li C, Tang Q, Zhang YW. Two Lignan Glycosides from Albizia julibrissin Durazz. Noncompetitively Inhibit Serotonin Transporter. Pharmaceuticals (Basel) 2022; 15:ph15030344. [PMID: 35337141 PMCID: PMC8954383 DOI: 10.3390/ph15030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Albizia julibrissin Durazz. is one of the most common herbs used for depression and anxiety treatment, but its molecular basis and mechanism of action as an antidepressant or anxiolytic drug are not understood. In this study, we separated and identified two lignan glycosides that inhibit serotonin transporter (SERT) noncompetitively by decreasing Vmax with little change in Km for its fluorescence substrate. In addition, treatment with lignan glycosides did not alter total and cell surface expression levels of the transporter protein. The two compounds decreased the accessibility of a cysteine residue placed in the extracellular substrate permeation pathway by inducing a conformational shift toward an outward-closed state of SERT. These results are consistent with molecular docking for the association of the lignan glycosides to the allosteric site in SERT. The present work supports the proposal that these compounds act on SERT by a novel underlying mechanism of action different from that of conventional antidepressant drugs.
Collapse
Affiliation(s)
- Bishan Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Hanhe Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Yingyao Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China;
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
- Correspondence:
| |
Collapse
|
11
|
Meinke C, Quinlan MA, Paffenroth KC, Harrison FE, Fenollar-Ferrer C, Katamish RM, Stillman I, Ramamoorthy S, Blakely RD. Serotonin Transporter Ala276 Mouse: Novel Model to Assess the Neurochemical and Behavioral Impact of Thr276 Phosphorylation In Vivo. Neurochem Res 2022; 47:37-60. [PMID: 33830406 PMCID: PMC11574550 DOI: 10.1007/s11064-021-03299-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
The serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressants and psychostimulants. Human SERT coding variants have been identified in subjects with obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) that impact transporter phosphorylation, cell surface trafficking and/or conformational dynamics. Prior to an initial description of a novel mouse line expressing the non-phosphorylatable SERT substitution Thr276Ala, we review efforts made to elucidate the structure and conformational dynamics of SERT with a focus on research implicating phosphorylation at Thr276 as a determinant of SERT conformational dynamics. Using the high-resolution structure of human SERT in inward- and outward-open conformations, we explore the conformation dependence of SERT Thr276 exposure, with results suggesting that phosphorylation is likely restricted to an inward-open conformation, consistent with prior biochemical studies. Assessment of genotypes from SERT/Ala276 heterozygous matings revealed a deviation from Mendelian expectations, with reduced numbers of Ala276 offspring, though no genotype differences were seen in growth or physical appearance. Similarly, no genotype differences were evident in midbrain or hippocampal 5-HT levels, midbrain and hippocampal SERT mRNA or midbrain protein levels, nor in midbrain synaptosomal 5-HT uptake kinetics. Behaviorally, SERT Ala276 homozygotes appeared normal in measures of anxiety and antidepressant-sensitive stress coping behavior. However, these mice displayed sex-dependent alterations in repetitive and social interactions, consistent with circuit-dependent requirements for Thr276 phosphorylation underlying these behaviors. Our findings indicate the utility of SERT Ala276 mice in evaluation of developmental, functional and behavioral consequences of regulatory SERT phosphorylation in vivo.
Collapse
Affiliation(s)
- Carina Meinke
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Fiona E Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cristina Fenollar-Ferrer
- Laboratories of Molecular Genetics and Molecular Biology, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rania M Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Isabel Stillman
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | | | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA.
- Florida Atlantic University Brain Institute, Rm 109, MC-17, 5353 Parkside Dr, Jupiter, FL, 35348, USA.
| |
Collapse
|
12
|
Sonobe T, Akiyama T, Pearson JT. Carrier-mediated serotonin efflux induced by pharmacological anoxia in the rat heart in vivo. Clin Exp Pharmacol Physiol 2021; 48:1685-1692. [PMID: 34411314 DOI: 10.1111/1440-1681.13576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Serotonin (5-HT) accumulates in the heart during myocardial ischaemia and induces deleterious effects on the cardiomyocytes. We aimed to investigate whether carrier-mediated 5-HT efflux contributed to the increase in interstitial 5-HT level during ischaemia. Using microdialysis technique applied to the heart of anaesthetised Wistar rats, myocardial interstitial concentration of 5-HT was measured by electro-chemical detection coupled with high-performance liquid chromatography (HPLC-ECD) while simultaneously various pharmacological agents, which create a similar condition to ischaemia, were locally administered by reverse-microdialysis. Sodium cyanide-induced chemical anoxia increased dialysate 5-HT concentration. A similar increase in dialysate 5-HT concentration was induced by ouabain, an inhibitor of sodium-potassium ATPase and reserpine, an inhibitor of vesicular monoamine transporter. Fluoxetine, a selective serotonin reuptake inhibitor raised the baseline level of 5-HT, and neither sodium cyanide nor the combination of ouabain and reserpine induced further increase in 5-HT in the presence of fluoxetine. The results indicate that reverse transport of 5-HT via SERT, which is caused by an impaired ion gradient, contributes to the rise in interstitial level of 5-HT during ischaemia suggesting carrier-mediated 5-HT efflux occurs in the heart in vivo.
Collapse
Affiliation(s)
- Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
13
|
Oeri HE. Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy. J Psychopharmacol 2021; 35:512-536. [PMID: 32909493 PMCID: PMC8155739 DOI: 10.1177/0269881120920420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The last two decades have seen a revival of interest in the entactogen 3,4-methylenedioxy-N-methylamphetamine (MDMA) as an adjunct to psychotherapy, particularly for the treatment of post-traumatic stress disorder. While clinical results are highly promising, and MDMA is expected to be approved as a treatment in the near future, it is currently the only compound in its class of action that is being actively investigated as a medicine. This lack of alternatives to MDMA may prove detrimental to patients who do not respond well to the particular mechanism of action of MDMA or whose treatment calls for a modification of MDMA's effects. For instance, patients with existing cardiovascular conditions or with a prolonged history of stimulant drug use may not fit into the current model of MDMA-assisted psychotherapy, and could benefit from alternative drugs. This review examines the existing literature on a host of entactogenic drugs, which may prove to be useful alternatives in the future, paying particularly close attention to any neurotoxic risks, neuropharmacological mechanism of action and entactogenic commonalities with MDMA. The substances examined derive from the 1,3-benzodioxole, cathinone, benzofuran, aminoindane, indole and amphetamine classes. Several compounds from these classes are identified as potential alternatives to MDMA.
Collapse
Affiliation(s)
- Hans Emanuel Oeri
- Hans Emanuel Oeri, University of Victoria,
3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
14
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Genetic Variation Associated With Depressive Symptoms in Breast Cancer Patients: A Systematic Review. Cancer Nurs 2020; 45:E197-E205. [PMID: 33156013 DOI: 10.1097/ncc.0000000000000903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Depressive symptoms are highly prevalent in breast cancer patients. These symptoms can contribute to lower treatment adherence, increased healthcare charges, and higher mortality rates. Growing evidence suggests that genetic variations may be associated with depressive symptom susceptibility. OBJECTIVE To comprehensively review current findings on the association of genetic variations with depressive symptoms in breast cancer patients. METHODS A literature search was conducted using keywords such as gene variation, single-nucleotide polymorphism, depression/depressive symptoms, and breast cancer. Four hundred articles were retrieved from PubMed, Web of Science, CINAHL, and PsycINFO, yielding 9 full-text, data-based articles. The study quality was assessed using the STrengthening the REporting of Genetic Association studies guideline. RESULTS Genetic polymorphisms in brain-derived neurotrophic factor (BDNF), interferon γ receptor 1 (IFNGR1), interleukin-6 (IL-6), tumor necrosis factor α (TNFA), and IL-1B were found to be associated with depressive symptoms among breast cancer patients. The role of serotonin transporter gene linked promotor region (5-HTTLPR) functional polymorphisms on depressive symptoms was inconclusive. The overall quality of reporting results and methods was medium. CONCLUSIONS This is the first review of genetic variations related to differences in levels of depressive symptoms among breast cancer patients. Genetic polymorphisms in inflammatory, neuronal system, and signal transduction pathways can influence the susceptibility. However, more research regarding this topic is needed to further clarify genetic risk factors. IMPLICATIONS FOR PRACTICE Healthcare providers may determine patients at higher risk of developing depression and symptom outcomes if genetic biomarkers with good sensitivity/specificity are provided. This knowledge can potentially help the development of personalized treatment and decision making for those patients.
Collapse
|
16
|
Kumar A, Kumar P. Construction of pioneering quantitative structure activity relationship screening models for abuse potential of designer drugs using index of ideality of correlation in monte carlo optimization. Arch Toxicol 2020; 94:3069-3086. [DOI: 10.1007/s00204-020-02828-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
|
17
|
Shiref H, Bergman S, Clivio S, Sahai MA. The fine art of preparing membrane transport proteins for biomolecular simulations: Concepts and practical considerations. Methods 2020; 185:3-14. [PMID: 32081744 PMCID: PMC10062712 DOI: 10.1016/j.ymeth.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular research, due to the capability of the method in capturing molecular events and structural transitions that describe the function as well as the physiochemical properties of biomolecular systems. Due to the progressive development of more efficient algorithms, expansion of the available computational resources, as well as the emergence of more advanced methodologies, the scope of computational studies has increased vastly over time. We now have access to a multitude of online databases, software packages, larger molecular systems and novel ligands due to the phenomenon of emerging novel psychoactive substances (NPS). With so many advances in the field, it is understandable that novices will no doubt find it challenging setting up a protein-ligand system even before they run their first MD simulation. These initial steps, such as homology modelling, ligand docking, parameterization, protein preparation and membrane setup have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular sciences benefit from the applications provided by these technologies. However, there still remains no standard on their usage. Therefore, our aim within this review is to provide a clear overview of a variety of concepts and methodologies to consider, providing a workflow for a case study of a membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with different stimulants, where MD simulations have recently been applied successfully.
Collapse
Affiliation(s)
- Hana Shiref
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Shana Bergman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, NY 10065, USA
| | | | - Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
18
|
Rodrigues AVSL, Almeida FJ, Vieira-Coelho MA. Dimethyltryptamine: Endogenous Role and Therapeutic Potential. J Psychoactive Drugs 2019; 51:299-310. [DOI: 10.1080/02791072.2019.1602291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandra VSL Rodrigues
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Jcg Almeida
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry and Mental Health Clinic, Hospital de São João, Porto, Portugal
| |
Collapse
|
19
|
The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes. Psychopharmacology (Berl) 2019; 236:915-924. [PMID: 30341459 PMCID: PMC6475490 DOI: 10.1007/s00213-018-5063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
RATIONALE Novel synthetic "bath salt" cathinones continue to appear on the street as abused and addictive drugs. The range of subjective experiences produced by different cathinones suggests that some compounds have primarily dopaminergic activity (possible stimulants) while others have primarily serotonergic activity (possible empathogenics). An understanding of the structure activity relationships (SARs) of these compounds will help in assessing the likely behavioral effects of future novel structures, and to define potential therapeutic strategies to reverse any reinforcing effects. OBJECTIVES A series of methcathinone analogs was systematically studied for their activity at the dopamine and serotonin transporters. Compound structures varied at the aromatic group, either by substituent or by replacement of the phenyl ring with a naphthalene or indole ring. METHODS A novel, high-yielding synthesis of methcathinone hydrochlorides was developed which avoids isolation of the unstable free bases. Neurotransmitter transporter release activity was determined in rat brain synaptosomes as previously reported. Compounds were also screened for activity at the norepinephrine transporter. RESULTS Twenty-eight methcathinone analogs were analyzed and fully characterized in dopamine and serotonin transporter release assays. Compounds substituted at the 2-position (ortho) were primarily dopaminergic. Compounds substituted at the 3-position (meta) were found to be much less dopaminergic, with some substituents favoring serotonergic activity. Compounds substituted at the 4-position (para) were found to be far more serotonergic, as were disubstituted compounds and other large aromatic groups. One exception was the fluoro-substituted analogs which seem to favor the dopamine transporter. CONCLUSIONS The dopaminergic to serotonergic ratio can be manipulated by choice of substituent and location on the aromatic ring. It is therefore likely possible to tweak the subjective and reinforcing effects of these compounds by adjusting their structure. Certain substituents like a fluoro group tend to favor the dopamine transporter, while others like a trifluoromethyl group favor the serotonin transporter.
Collapse
|
20
|
Halberstadt AL, Brandt SD, Walther D, Baumann MH. 2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α 2-adrenergic receptors. Psychopharmacology (Berl) 2019; 236:989-999. [PMID: 30904940 PMCID: PMC6848746 DOI: 10.1007/s00213-019-05207-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Over the last decade, many new psychostimulant analogues have appeared on the recreational drug market and most are derivatives of amphetamine or cathinone. Another class of designer drugs is derived from the 2-aminoindan structural template. Several members of this class, including the parent compound 2-aminoindan (2-AI), have been sold as designer drugs. Another aminoindan derivative, 5-methoxy-2-aminoindan (5-MeO-AI or MEAI), is the active ingredient in a product marketed online as an alcohol substitute. METHODS Here, we tested 2-AI and its ring-substituted derivatives 5-MeO-AI, 5-methoxy-6-methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-aminoindan (MDAI) for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We also compared the binding affinities of the aminoindans at 29 receptor and transporter binding sites. RESULTS 2-AI was a selective substrate for NET and DAT. Ring substitution increased potency at SERT while reducing potency at DAT and NET. MDAI was moderately selective for SERT and NET, with tenfold weaker effects on DAT. 5-MeO-AI exhibited some selectivity for SERT, having sixfold lower potency at NET and 20-fold lower potency at DAT. MMAI was highly selective for SERT, with 100-fold lower potency at NET and DAT. The aminoindans had relatively high affinity for α2-adrenoceptor subtypes. 2-AI had particularly high affinity for α2C receptors (Ki = 41 nM) and slightly lower affinity for the α2A (Ki = 134 nM) and α2B (Ki = 211 nM) subtypes. 5-MeO-AI and MMAI also had moderate affinity for the 5-HT2B receptor. CONCLUSIONS 2-AI is predicted to have (+)-amphetamine-like effects and abuse potential whereas the ring-substituted derivatives may produce 3,4-methylenedioxymethamphetamine (MDMA)-like effects but with less abuse liability.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA, 92161, USA.
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
21
|
Murthi P, Vaillancourt C. RETRACTED: Placental serotonin systems in pregnancy metabolic complications associated with maternal obesity and gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165391. [PMID: 30738809 DOI: 10.1016/j.bbadis.2019.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
The publication was retracted by request of the authors following an investigation by Monash University performed following its Procedures for Investigating Code Breaches and in accordance with the Australian Code for the Responsible Conduct of Research.
The University concluded on the balance of probability that a significant part of the text in the paper was included without knowledge, without consent and without correct attribution of the original author who, at the time, was a student at the University. The results discussed in the review article are still scientifically valid.
☆
This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Medicine, School of Clinical Sciences, Department of Physiology, Monash University, Clayton, Victoria, Australia; Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Université du Québec and Biomed Research Center, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
22
|
Post-translational modifications of serotonin transporter. Pharmacol Res 2019; 140:7-13. [PMID: 30394319 DOI: 10.1016/j.phrs.2018.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. Studies using in vivo and in vitro model systems demonstrated that diverse post-translational modifications, including phosphorylation, glycosylation, serotonylation, and disulfide bond formation, all favorably influences SERT conformation and allows the transporter to function most efficiently. This review discusses the post-translational modifications and their importance on the structure, maturation, and serotonin (5-HT) uptake ability of SERT. Finally, we discuss how these modifications are altered in diabetes mellitus and subsequently impairs the 5-HT uptake ability of SERT.
Collapse
|
23
|
Fanelli G, Serretti A. The influence of the serotonin transporter gene 5-HTTLPR polymorphism on suicidal behaviors: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:375-387. [PMID: 30125622 DOI: 10.1016/j.pnpbp.2018.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Suicidal Behavior (SB) is the second leading cause of death among youths worldwide and the tenth among all age groups. Inherited genetic differences have a role in suicidality with heritability ranging from 30 to 55%. The SLC6A4 5-HTTLPR gene variant has been largely investigated for association with SB, with controversial results. In this work, we sought to determine whether the results of previous meta-analyses were confirmed or modified subsequent to the inclusion of more recent literature data. An electronic literature search was performed to identify relevant studies published until July 2018. Data were analysed through RevMan v5.3. Subgroup and sensitivity meta-analyses were performed considering different SB sub-phenotypes, ethnicity, gender and psychiatric diagnostic categories. Our literature search yielded 1186 articles; among these, we identified 45 pertinent case-control studies (15,341 subjects). No association was found between low-expressing alleles or genotypes (S + LG alleles or S' carrier genotypes) and SB in the primary analyses. However, low-expressing alleles (S + LG) were associated with an increased risk of Violent Suicide Attempt (OR = 1.44, C.I. 1.17-1.78, p = .0007). An effect of the same alleles on SB was found in a subpopulation of substance abusers, but this result was not confirmed after the exclusion of healthy subjects from the control group. The other sensitivity meta-analyses did not show any significant effect. Our findings contribute to clarify the conflicting previous evidence by suggesting an association between the 5-HTTLPR and Violent SB. Nonetheless, many other modulators, including environmental factors and epigenetic mechanisms may act to further increase the level of complexity.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
24
|
Baldinger-Melich P, Gryglewski G, Philippe C, James GM, Vraka C, Silberbauer L, Balber T, Vanicek T, Pichler V, Unterholzner J, Kranz GS, Hahn A, Winkler D, Mitterhauser M, Wadsak W, Hacker M, Kasper S, Frey R, Lanzenberger R. The effect of electroconvulsive therapy on cerebral monoamine oxidase A expression in treatment-resistant depression investigated using positron emission tomography. Brain Stimul 2019; 12:714-723. [PMID: 30635228 DOI: 10.1016/j.brs.2018.12.976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) constitutes one of the most effective antidepressant treatment strategies in major depression (MDD). Despite its common use and uncontested efficacy, its mechanism of action is still insufficiently understood. Previously, we showed that ECT is accompanied by a global decrease of serotonin-1A receptors in MDD; however, further studies to investigate the involvement of the serotonergic system in the mechanism of action of ECT are warranted. The monoamine oxidase A (MAO-A) represents an important target for antidepressant treatments and was found to be increased in MDD. Here, we investigated whether ECT impacts on MAO-A levels in treatment-resistant patients (TRD). METHODS 16 TRD patients (12 female, age 45.94 ± 9.68 years, HAMD 25.12 ± 3.16) with unipolar depression according to DSM-IV were scanned twice before (PET1 and PET2, to assess test-retest variability under constant psychopharmacotherapy) and once after (PET3) completing a minimum of eight unilateral ECT sessions using positron emission tomography and the radioligand [11C]harmine to assess cerebral MAO-A distribution volumes (VT). Age- and sex-matched healthy subjects (HC) were measured once. RESULTS Response rate to ECT was 87.5%. MAO-A VT was found to be significantly reduced after ECT in TRD patients (-3.8%) when assessed in 27 a priori defined ROIs (p < 0.001). Test-retest variability between PET1 and PET2 was 3.1%. MAO-A VT did not significantly differ between TRD patients and HC at baseline. CONCLUSIONS The small effect size of the significant reduction of MAO-A VT after ECT in the range of test-retest variability does not support the hypothesis of a clinically relevant mechanism of action of ECT based on MAO-A. Furthermore, in contrast to studies reporting elevated MAO-A VT in unmedicated depressed patients, MAO-A levels were found to be similar in TRD patients and HC which might be attributed to the continuous antidepressant pharmacotherapy in the present sample.
Collapse
Affiliation(s)
- Pia Baldinger-Melich
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Gregory M James
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Leo Silberbauer
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Jakob Unterholzner
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Georg S Kranz
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Andreas Hahn
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Dietmar Winkler
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Richard Frey
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Neuroimaging Labs (NIL) PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
25
|
Abstract
There is a plethora of amphetamine derivatives exerting stimulant, euphoric, anti-fatigue, and hallucinogenic effects; all structural properties allowing these effects are contained within the amphetamine structure. In the first part of this review, the interaction of amphetamine with the dopamine transporter (DAT), crucially involved in its behavioral effects, is covered, as well as the role of dopamine synthesis, the vesicular monoamine transporter VMAT2, and organic cation 3 transporter (OCT3). The second part deals with requirements in amphetamine's effect on the kinases PKC, CaMKII, and ERK, whereas the third part focuses on where we are in developing anti-amphetamine therapeutics. Thus, treatments are discussed that target DAT, VMAT2, PKC, CaMKII, and OCT3. As is generally true for the development of therapeutics for substance use disorder, there are multiple preclinically promising specific compounds against (meth)amphetamine, for which further development and clinical trials are badly needed.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Margaret E Gnegy
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Jayaraman K, Morley AN, Szöllősi D, Wassenaar TA, Sitte HH, Stockner T. Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. PLoS Comput Biol 2018; 14:e1006229. [PMID: 29874235 PMCID: PMC6005636 DOI: 10.1371/journal.pcbi.1006229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/18/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
The human dopamine transporter (hDAT) is located on presynaptic neurons, where it plays an essential role in limiting dopaminergic signaling by temporarily curtailing high neurotransmitter concentration through rapid re-uptake. Transport by hDAT is energized by transmembrane ionic gradients. Dysfunction of this transporter leads to disease states, such as Parkinson’s disease, bipolar disorder or depression. It has been shown that hDAT and other members of the monoamine transporter family exist in oligomeric forms at the plasma membrane. Several residues are known to be involved in oligomerization, but interaction interfaces, oligomer orientation and the quarternary arrangement in the plasma membrane remain poorly understood. Here we examine oligomeric forms of hDAT using a direct approach, by following dimerization of two randomly-oriented hDAT transporters in 512 independent simulations, each being 2 μs in length. We employed the DAFT (docking assay for transmembrane components) approach, which is an unbiased molecular dynamics simulation method to identify oligomers, their conformations and populations. The overall ensemble of a total of >1 ms simulation time revealed a limited number of symmetric and asymmetric dimers. The identified dimer interfaces include all residues known to be involved in dimerization. Importantly, we find that the surface of the bundle domain is largely excluded from engaging in dimeric interfaces. Such an interaction would typically lead to inhibition by stabilization of one conformation, while substrate transport relies on a large scale rotation between the inward-facing and the outward-facing state. The human dopamine transporter efficiently removes the neurotransmitter dopamine from the synaptic cleft. Alteration of dopamine transporter function is associated with several neurological diseases, including mood disorders or attention-deficit hyperactivity disorder, but is also a major player in addiction and drug abuse. Functional studies have revealed that not only is transporter oligomerization involved in surface expression and endocytosis, but, more importantly, in reverse transport (efflux) of dopamine that is triggered by amphetamine-like drugs of abuse. Structural knowledge of transporter oligomerization is largely missing. We performed a large scale comprehensive computational study on transporter oligomerization to reveal dimer geometries and the residues involved in the interfaces. The dimer conformations we find in our dataset are fully consistent with all available experimental data in the literature, but also show novel interfaces. We further verified all dimer geometries by free energy calculations. Our results identified an unpredicted—but for the mechanism of substrate transport essential—property: the bundle domain, which moves during the transport cycle, is excluded from contributing to dimer interfaces, thereby allowing for unrestrained movements necessary to translocate substrates through the membrane.
Collapse
Affiliation(s)
- Kumaresan Jayaraman
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Alex N. Morley
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Daniel Szöllősi
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Tsjerk A. Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Harald H. Sitte
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
- * E-mail:
| |
Collapse
|
27
|
Development of norepinephrine transporter reuptake inhibition assays using SK-N-BE(2)C cells. Heliyon 2018; 4:e00633. [PMID: 29872766 PMCID: PMC5986547 DOI: 10.1016/j.heliyon.2018.e00633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
This report describes efforts to develop and validate novel norepinephrine transporter reuptake inhibition assays using human neuroblastoma SK-N-BE(2)C cells in 24-well format. Before conducting the assays, the SK-N-BE(2)C cells were first evaluated for their ability to uptake [3H]norepinephrine and were shown to have a saturable uptake with a KM value of 416 nM. Using this determined KM value, reuptake inhibition assays were then conducted with a variety of ligands including antidepressants, as well as piperazine and phenyltropane derivatives. The results obtained with the SK-N-BE(2)C cells indicate that this model system can detect a range of ligand potencies, which compare well with other established transporter assays. Our data suggest that SK-N-BE(2)C cells have potential utility to serve as another model system to detect norepinephrine reuptake inhibition activity.
Collapse
|
28
|
Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain Behav Immun 2018; 70:21-35. [PMID: 29551693 PMCID: PMC5953824 DOI: 10.1016/j.bbi.2018.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
The second-most common neurodegenerative disease, Parkinson's Disease (PD) has three hallmarks: dysfunctional dopamine transmission due, at least in part, to dopamine neuron degeneration; intracellular inclusions of α-synuclein aggregates; and neuroinflammation. The origin and interplay of these features remains a puzzle, as does the underlying mechanism of PD pathogenesis and progression. When viewed in the context of neuroimmunology, dopamine also plays a role in regulating peripheral immune cells. Intriguingly, plasma dopamine levels are altered in PD, suggesting collateral dysregulation of peripheral dopamine transmission. The dopamine transporter (DAT), the main regulator of dopaminergic tone in the CNS, is known to exist in lymphocytes and monocytes/macrophages, but little is known about peripheral DAT biology or how DAT regulates the dopaminergic tone, much less how peripheral DAT alters immune function. Our review is guided by the hypothesis that dysfunctional peripheral dopamine signaling might be linked to the dysfunctional immune responses in PD and thereby suggests a potential bidirectional communication between central and peripheral dopamine systems. This review seeks to foster new perspectives concerning PD pathogenesis and progression.
Collapse
Affiliation(s)
- Phillip Mackie
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joe Lebowitz
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Leila Saadatpour
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Emily Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Peter Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Habibeh Khoshbouei
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
29
|
Sahai MA, Davidson C, Dutta N, Opacka-Juffry J. Mechanistic Insights into the Stimulant Properties of Novel Psychoactive Substances (NPS) and Their Discrimination by the Dopamine Transporter-In Silico and In Vitro Exploration of Dissociative Diarylethylamines. Brain Sci 2018; 8:brainsci8040063. [PMID: 29642450 PMCID: PMC5924399 DOI: 10.3390/brainsci8040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Novel psychoactive substances (NPS) may have unsuspected addiction potential through possessing stimulant properties. Stimulants normally act at the dopamine transporter (DAT) and thus increase dopamine (DA) availability in the brain, including nucleus accumbens, within the reward and addiction pathway. This paper aims to assess DAT responses to dissociative diarylethylamine NPS by means of in vitro and in silico approaches. We compared diphenidine (DPH) and 2-methoxydiphenidine (methoxphenidine, 2-MXP/MXP) for their binding to rat DAT, using autoradiography assessment of [125I]RTI-121 displacement in rat striatal sections. The drugs' effects on electrically-evoked DA efflux were measured by means of fast cyclic voltammetry in rat accumbens slices. Computational modeling, molecular dynamics and alchemical free energy simulations were used to analyse the atomistic changes within DAT in response to each of the five dissociatives: DPH, 2-MXP, 3-MXP, 4-MXP and 2-Cl-DPH, and to calculate their relative binding free energy. DPH increased DA efflux as a result of its binding to DAT, whereas MXP had no significant effect on either DAT binding or evoked DA efflux. Our computational findings corroborate the above and explain the conformational responses and atomistic processes within DAT during its interactions with the dissociative NPS. We suggest DPH can have addictive liability, unlike MXP, despite the chemical similarities of these two NPS.
Collapse
Affiliation(s)
- Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| | - Colin Davidson
- St George's, University of London, London SW17 0RE, UK.
- Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | | | | |
Collapse
|
30
|
Decker AM, Blough BE. Development of serotonin transporter reuptake inhibition assays using JAR cells. J Pharmacol Toxicol Methods 2018; 92:52-56. [PMID: 29555537 DOI: 10.1016/j.vascn.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The development and validation of serotonin transporter reuptake inhibition assays in 96-well format using commercially available human placental choriocarcinoma JAR cells is described. METHODS JAR cells were first shown to uptake [3H]serotonin in a saturable fashion with a KM value of 1 μM as determined by a Michaelis-Menten kinetic analysis. The cells were then utilized to determine the reuptake inhibition potencies of known ligands and the results were compared with results previously generated in the two most commonly used transporter assays (rat brain synaptosomes and transfected HEK293 cells). RESULTS Examination of a variety of ligands including selective serotonin reuptake inhibitors, tricyclic antidepressants, piperazine derivatives, and phenyltropane derivatives demonstrated that JAR cells are capable of detecting reuptake inhibition activity of a variety of ligands with potencies that correlate with one or both of the other assays. DISCUSSION This study demonstrates a novel pharmacological method of assessing human serotonin transporter reuptake inhibition activity using commercially available JAR cells. Our results show that JAR cells provide an easily available and good alternative to using rat brain tissue and HEK293 cells, with the advantage of studying serotonin transporter reuptake inhibition in a human background.
Collapse
Affiliation(s)
- Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
31
|
Nagler J, Schriever SC, De Angelis M, Pfluger PT, Schramm KW. Comprehensive analysis of nine monoamines and metabolites in small amounts of peripheral murine (C57Bl/6 J) tissues. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Joachim Nagler
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
| | - Sonja C. Schriever
- Helmholtz Center Munich-German Research Center for Environmental Health, NeuroBioloy of Diabetes, Business Campus Garching; Garching Germany
| | - Meri De Angelis
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
| | - Paul T. Pfluger
- Helmholtz Center Munich-German Research Center for Environmental Health, NeuroBioloy of Diabetes, Business Campus Garching; Garching Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
- Department für Biowissenschaftliche Grundlagen; TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt; Freising Germany
| |
Collapse
|
32
|
Mayer FP, Luf A, Nagy C, Holy M, Schmid R, Freissmuth M, Sitte HH. Application of a Combined Approach to Identify New Psychoactive Street Drugs and Decipher Their Mechanisms at Monoamine Transporters. Curr Top Behav Neurosci 2017; 32:333-350. [PMID: 28025810 DOI: 10.1007/7854_2016_63] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychoactive compounds can cause acute and long-term health problems and lead to addiction. In addition to well-studied and legally controlled compounds like cocaine, new psychoactive substances (NPS) are appearing in street drug markets as replacement strategies and legal alternatives. NPS are effectively marketed as "designer drugs" or "research chemicals" without any knowledge of their underlying pharmacological mode of action and their potential toxicological effects and obviously devoid of any registration process. As of 2016, the knowledge of structure-activity relationships for most NPS is scarce, and predicting detailed pharmacological activity of newly emerging drugs is a challenging task. Therefore, it is important to combine different approaches and employ biological test systems that are superior to mere chemical analysis in recognizing novel and potentially harmful street drugs. In this chapter, we provide a detailed description of techniques to decipher the molecular mechanism of action of NPS that target the high-affinity transporters for dopamine, norepinephrine, and serotonin. In addition, this chapter provides insights into a combined approach to identify and characterize new psychoactive street drugs of unknown content in a collaboration with the Austrian prevention project "checkit!."
Collapse
Affiliation(s)
- Felix P Mayer
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090, Vienna, Austria
| | - Anton Luf
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 10-20, 1090, Vienna, Austria
| | - Constanze Nagy
- checkit! - Suchthilfe Wien GmbH, Gumpendorfer Gürtel 8, 1060, Vienna, Austria
| | - Marion Holy
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090, Vienna, Austria
| | - Rainer Schmid
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 10-20, 1090, Vienna, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090, Vienna, Austria
| | - Harald H Sitte
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090, Vienna, Austria.
- Center for Addiction Research and Science - Medical University Vienna, Waehringerstrasse 13A, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Abstract
The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells.
Collapse
Affiliation(s)
- Laura Stransky
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Kristina Cotter
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Michael Forgac
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
34
|
Hadden C, Fahmi T, Cooper A, Savenka AV, Lupashin VV, Roberts DJ, Maroteaux L, Hauguel-de Mouzon S, Kilic F. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway. J Cell Physiol 2017; 232:3520-3529. [PMID: 28109119 DOI: 10.1002/jcp.25812] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022]
Abstract
Serotonin (5-HT) and its specific transporter, SERT play important roles in pregnancy. Using placentas dissected from 18d gestational SERT-knock out (KO), peripheral 5-HT (TPH1)-KO, and wild-type (WT) mice, we explored the role of 5-HT and SERT in placental functions in detail. An abnormal thick band of fibrosis and necrosis under the giant cell layer in SERT-KO placentas appeared only moderately in TPH1-KO and minimally present in WT placentas. The majority of the changes were located at the junctional zone of the placentas in SERT. The etiology of these findings was tested with TUNEL assays. The placentas from SERT-KO and TPH1-KO showed 49- and 8-fold increase in TUNEL-positive cells without a concurrent change in the DNA repair or cell proliferation compared to WT placentas. While the proliferation rate in the embryos of TPH1-KO mice was 16-fold lower than the rate in gestational age matched embryos of WT or SERT-KO mice. These findings highlight an important role of continuous 5-HT signaling on trophoblast cell viability. SERT may contribute to protecting trophoblast cells against cell death via terminating the 5-HT signaling which changes cell death ratio in trophoblast as well as proliferation rate in embryos. However, the cell death in SERT-KO placentas is in caspase 3-independent pathway.
Collapse
Affiliation(s)
- Coedy Hadden
- Departments of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Tariq Fahmi
- Department of Pharmacology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Anthonya Cooper
- Departments of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Alena V Savenka
- Department of Pharmacology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Vladimir V Lupashin
- Department of Physiology College of Medicine, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Luc Maroteaux
- Institut du Fer a' Moulin, UMR-S839 INSERM, Université Pierre et Marie Curie, Paris, France
| | | | - Fusun Kilic
- Departments of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| |
Collapse
|
35
|
Iurescia S, Seripa D, Rinaldi M. Looking Beyond the 5-HTTLPR Polymorphism: Genetic and Epigenetic Layers of Regulation Affecting the Serotonin Transporter Gene Expression. Mol Neurobiol 2016; 54:8386-8403. [DOI: 10.1007/s12035-016-0304-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
36
|
Alsufyani HA, Docherty JR. Investigation of gender differences in the cardiovascular actions of direct and indirect sympathomimetic stimulants including cathinone in the anaesthetized rat. ACTA ACUST UNITED AC 2016; 36:14-9. [DOI: 10.1111/aap.12043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Affiliation(s)
- H. A. Alsufyani
- Department of Physiology; Royal College of Surgeons in Ireland; Dublin Ireland
- Department of Physiology; King Abdulaziz University; Jeddah Kingdom of Saudi Arabia
| | - J. R. Docherty
- Department of Physiology; Royal College of Surgeons in Ireland; Dublin Ireland
| |
Collapse
|
37
|
Wu HH, Choi S, Levitt P. Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta 2016; 42:74-83. [PMID: 27238716 PMCID: PMC4886340 DOI: 10.1016/j.placenta.2016.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/10/2016] [Accepted: 03/26/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Serotonin (5-HT) is an important neuromodulator, but recently has been shown to be involved in neurodevelopment. Although previous studies have demonstrated that the placenta is a major source of forebrain 5-HT during early forebrain development, the processes of how 5-HT production, metabolism, and transport from placenta to fetus are regulated are unknown. As an initial step in determining the mechanisms involved, we investigated the expression patterns of genes critical for 5-HT system function in mouse extraembryonic tissues. METHODS Mid-through late gestation expression of 5-HT system-related enzymes, Tph1, Ddc, Maoa, and 5-HT transporters, Sert/Slc6a4, Oct3/Slc22a3, Vmat2/Slc18a2, and 5-HT in placenta and yolk sac were examined, with cell type-specific resolution, using multiplex fluorescent in situ hybridization to co-localize transcripts and immunocytochemistry to co-localize the corresponding proteins and neurotransmitter. RESULTS Tph1 and Ddc are found in the syncytiotrophoblast I (SynT-I) and sinusoidal trophoblast giant cells (S-TGC), whereas Maoa is expressed in SynT-I, syncytiotrophoblast II (SynT-II) and S-TGC. Oct3 expression is observed in the SynT-II only, while Vmat2 is mainly expressed in S-TGC. Surprisingly, there were comparatively high expression of Tph1, Ddc, and Maoa in the yolk sac visceral endoderm. DISCUSSION In addition to trophoblast cells, visceral endoderm cells in the yolk sac may contribute to fetal 5-HT production. The findings raise the possibility of a more complex regulation of 5-HT access to the fetus through the differential roles of trophoblasts that surround maternal and fetal blood space and of yolk sac endoderm prior to normal degeneration.
Collapse
Affiliation(s)
- Hsiao-Huei Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sera Choi
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Stehouwer JS, Goodman MM. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine. PET Clin 2016; 4:101-28. [PMID: 20216936 DOI: 10.1016/j.cpet.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary.
Collapse
|
39
|
Li Y, Cooper A, Odibo IN, Ahmed A, Murphy P, Koonce R, Dajani NK, Lowery CL, Roberts DJ, Maroteaux L, Kilic F. Discrepancy in Insulin Regulation between Gestational Diabetes Mellitus (GDM) Platelets and Placenta. J Biol Chem 2016; 291:9657-65. [PMID: 26921319 DOI: 10.1074/jbc.m116.713693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 11/06/2022] Open
Abstract
Earlier findings have identified the requirement of insulin signaling on maturation and the translocation of serotonin (5-HT) transporter, SERT to the plasma membrane of the trophoblast in placenta. Because of the defect on insulin receptor (IR) in the trophoblast of the gestational diabetes mellitus (GDM)-associated placenta, SERT is found entrapped in the cytoplasm of the GDM-trophoblast. SERT is encoded by the same gene expressed in trophoblast and platelets. Additionally, alteration in plasma 5-HT levels and the 5-HT uptake rates are associated with the aggregation rates of platelets. Therefore, here, we investigated a novel hypothesis that GDM-associated defects in platelet IR should change their 5-HT uptake rates, and this should be a leading factor for thrombosis in GDM maternal blood. The maternal blood and the placentas were obtained at the time of cesarean section from the GDM and non-diabetic subjects (n = 6 for each group), and the platelets and trophoblasts were isolated to determine the IR activity, surface level of SERT, and their 5-HT uptake rates.Interestingly, no significant differences were evident in IR tyrosine phosphorylation or the downstream elements, AKT and S6K in platelets and their aggregation rates in both groups. Furthermore, insulin stimulation up-regulated 5-HT uptake rates of GDM-platelets as it does in the control group. However, the phosphorylation of IR and the downstream elements were significantly lower in GDM-trophoblast and showed no response to the insulin stimulation while they showed 4-fold increase to insulin stimulation in control group. Similarly, the 5-HT uptake rates of GDM-trophoblast and the SERT expression on their surface were severalfold lower compared with control subjects. IR is expressed in all tissues, but it is not known if diabetes affects IR in all tissues equally. Here, for the first time, our findings with clinical samples show that in GDM-associated defect on IR is tissue type-dependent. While IR is impaired in GDM-placenta, it is unaffected in GDM-platelet.
Collapse
Affiliation(s)
- Yicong Li
- From the Departments of Biochemistry and Molecular Biology, and
| | - Anthonya Cooper
- From the Departments of Biochemistry and Molecular Biology, and
| | - Imelda N Odibo
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Asli Ahmed
- From the Departments of Biochemistry and Molecular Biology, and
| | - Pamela Murphy
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ruston Koonce
- From the Departments of Biochemistry and Molecular Biology, and
| | - Nafisa K Dajani
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Curtis L Lowery
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - Luc Maroteaux
- UMR-S839 INSERM, Université Pierre et Marie Curie, Institut du Fer a' Moulin, 75005 Paris, France
| | - Fusun Kilic
- From the Departments of Biochemistry and Molecular Biology, and
| |
Collapse
|
40
|
Kohno M, Nurmi EL, Laughlin CP, Morales AM, Gail EH, Hellemann GS, London ED. Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making. Neuropsychopharmacology 2016; 41:695-703. [PMID: 26119471 PMCID: PMC4707816 DOI: 10.1038/npp.2015.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher P Laughlin
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Angelica M Morales
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Emma H Gail
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Gerhard S Hellemann
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA, Tel: +310 825 0606, Fax: +310 825 0812, E-mail:
| |
Collapse
|
41
|
Decker AM, Partilla JS, Baumann MH, Rothman RB, Blough BE. The biogenic amine transporter activity of vinylogous amphetamine analogs. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00245e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinylogous amphetamine analog S-6 is a potent dual dopamine/serotonin (DA/5-HT) releaser with no activity at 5-HT2 receptors.
Collapse
Affiliation(s)
| | - John S. Partilla
- Medicinal Chemistry Section
- Intramural Research Program
- National Institute on Drug Abuse
- National Institutes of Health
- Baltimore
| | - Michael H. Baumann
- Medicinal Chemistry Section
- Intramural Research Program
- National Institute on Drug Abuse
- National Institutes of Health
- Baltimore
| | - Richard B. Rothman
- Medicinal Chemistry Section
- Intramural Research Program
- National Institute on Drug Abuse
- National Institutes of Health
- Baltimore
| | | |
Collapse
|
42
|
Tracer Flux Measurements to Study Outward Transport by Monoamine Neurotransmitter Transporters. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3765-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Thermostabilization of the Human Serotonin Transporter in an Antidepressant-Bound Conformation. PLoS One 2015; 10:e0145688. [PMID: 26695939 PMCID: PMC4687910 DOI: 10.1371/journal.pone.0145688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022] Open
Abstract
Serotonin is a ubiquitous chemical transmitter with particularly important roles in the gastrointestinal, cardiovascular and central nervous systems. Modulation of serotonergic signaling occurs, in part, by uptake of the transmitter by the serotonin transporter (SERT). In the brain, SERT is the target for numerous antidepressants including tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs). Despite the importance of SERT in human physiology, biochemical, biophysical and high-resolution structural studies have been hampered due to the instability of SERT in detergent micelles. To identify a human SERT (hSERT) construct suitable for detailed biochemical and structural studies, we developed an efficient thermostability screening protocol and rapidly screened 219 mutations for thermostabilization of hSERT in complex with the SSRI paroxetine. We discovered three mutations—Y110A, I291A and T439S –that, when combined into a single construct, deemed TS3, yielded a hSERT variant with an apparent melting temperature (Tm) 19°C greater than that of the wild-type transporter, albeit with a loss of transport activity. Further investigation yielded a double mutant—I291A and T439S—defined as TS2, with a 12°C increase in Tm and retention of robust transport activity. Both TS2 and TS3 were more stable in short-chain detergents in comparison to the wild-type transporter. This thermostability screening protocol, as well as the specific hSERT variants, will prove useful in studies of other integral membrane receptors and transporters and in the investigation of structure and function relationships in hSERT.
Collapse
|
44
|
Kalogiannis M, Delikatny EJ, Jeitner TM. Serotonin as a putative scavenger of hypohalous acid in the brain. Biochim Biophys Acta Mol Basis Dis 2015; 1862:651-661. [PMID: 26699077 DOI: 10.1016/j.bbadis.2015.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders represent the culmination of numerous insults including oxidative stress. The long etiology of most of these disorders suggests that lessening the effects of one or more of the insults could significantly delay disease onset. Antioxidants have been tested as possible therapeutics for neurodegenerative disorders, but with little success. Here we report that serotonin acts as a scavenger of hypochlorous acid (HOCl) in the brain. Serotonin was shown to prevent the oxidation of 2-thio-5-nitrobenzoate by HOCl in a biphasic manner. The first phase was a partial scavenging that occurred at concentrations of serotonin that exceeded those of HOCl. (1)H-NMR studies indicated that HOCl chlorinates both the aryl and akyl nitrogen atoms of serotonin. Thus, the oxidation of 2-thio-5-nitrobenzoate that occurred during the first phase of scavenging is likely due to the formation of serotonergic chloramines. A second phase of scavenging occurred at concentrations of HOCl that exceeded those of serotonin. Under these conditions, the chlorinated serotonin polymerized and formed inert aggregates. Serotonin was further shown to prevent the loss of cells and cellular α-ketoglutarate dehydrogenase complex activity caused by HOCl. Extracellular concentrations of serotonin in the brain can be elevated with selective serotonin reuptake inhibitors and suggests that such compounds could be used to increase the cerebral antioxidant capacity. Acute administration of selective serotonin reuptake inhibitors to mice treated with endotoxin partially mitigated sickness behavior and protein chlorination in the brain. These observations suggest that serotonin may act to suppress chlorinative stress in the brain.
Collapse
Affiliation(s)
- Mike Kalogiannis
- Department of Neurosciences, Winthrop University Hospital, 222 Station Plaza, Mineola, NY 11501, USA.
| | - E James Delikatny
- Department of Radiology, University of Pennsylvania, 317 Anatomy Chemistry Building, 3620 Hamilton Walk, Pennsylvania, PA 19104, USA.
| | - Thomas M Jeitner
- Department of Neurosciences, Winthrop University Hospital, 222 Station Plaza, Mineola, NY 11501, USA; Department of Biochemistry and Molecular Biology, New York Medical College, Basic Sciences, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
45
|
Role of the 5-HTTLPR and SNP Promoter Polymorphisms on Serotonin Transporter Gene Expression: a Closer Look at Genetic Architecture and In Vitro Functional Studies of Common and Uncommon Allelic Variants. Mol Neurobiol 2015; 53:5510-26. [DOI: 10.1007/s12035-015-9409-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022]
|
46
|
Koldsø H, Grouleff J, Schiøtt B. Insights to ligand binding to the monoamine transporters-from homology modeling to LeuBAT and dDAT. Front Pharmacol 2015; 6:208. [PMID: 26441663 PMCID: PMC4585151 DOI: 10.3389/fphar.2015.00208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022] Open
Abstract
Understanding of drug binding to the human biogenic amine transporters (BATs) is essential to explain the mechanism of action of these pharmaceuticals but more importantly to be able to develop new and improved compounds to be used in the treatment of depression or drug addiction. Until recently no high resolution structure was available of the BATs and homology modeling was a necessity. Various studies have revealed experimentally validated binding modes of numerous ligands to the BATs using homology modeling. Here we examine and discuss the similarities between the binding models of substrates, antidepressants, psychostimulants, and mazindol in homology models of the human BATs and the recently published crystal structures of the Drosophila dopamine transporter and the engineered protein, LeuBAT. The comparison reveals that careful computational modeling combined with experimental data can be utilized to predict binding of molecules to proteins that agree very well with crystal structures.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford , Oxford, UK ; inSPIN and iNANO Centers, Department of Chemistry, Aarhus University , Aarhus C, Denmark
| | - Julie Grouleff
- inSPIN and iNANO Centers, Department of Chemistry, Aarhus University , Aarhus C, Denmark
| | - Birgit Schiøtt
- inSPIN and iNANO Centers, Department of Chemistry, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
47
|
Histone deacetylase HDAC1 downregulates transcription of the serotonin transporter (5-HTT) gene in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:909-18. [DOI: 10.1016/j.bbagrm.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/01/2015] [Accepted: 05/23/2015] [Indexed: 12/27/2022]
|
48
|
Alsufyani HA, Docherty JR. Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat. Eur J Pharmacol 2015; 758:142-6. [DOI: 10.1016/j.ejphar.2015.03.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
49
|
Abstract
INTRODUCTION Methamphetamine (MA) is one of the most commonly used illicit drugs in pregnancy, yet studies on MA-exposed pregnancy outcomes have been limited because of retrospective measures of drug use; lack of control for confounding factors; other drug use, including tobacco; poverty; poor diet; and lack of prenatal care. This study presents prospective collected data on MA use and birth outcomes, controlling for most confounders. MATERIALS AND METHODS This is a retrospective cohort study of women obtaining prenatal care from a clinic treating women with substance use disorders, on whom there are prospectively obtained data on MA and other drug use, including tobacco. Methamphetamine-exposed pregnancies were compared with non-MA exposed pregnancies and non-drug-exposed pregnancies, using univariate and multivariate analysis to control for confounders. RESULTS One hundred forty-four infants were exposed to MA during pregnancy, 50 had first trimester exposure only, 45 had continuous use until the second trimester, 29 had continuous use until the third trimester, but were negative at delivery, and 20 had positive toxicology at delivery. There were 107 non-MA-exposed infants and 59 infants with no drug exposure. Mean birth weights were the same for MA-exposed and nonexposed infants (3159 g vs 3168 g; P = 0.9), although smaller than those without any drug exposure (3159 vs 3321; P = 0.04), infants with positive toxicology at birth (meconium or urine) were smaller than infants with first trimester exposure only (2932 g vs 3300 g; P = 0.01). Gestation was significantly shorter among the MA-exposed infants than that among nonexposed infants (38.5 vs 39.1 weeks; P = 0.045), and those with no drug exposure (38.5 vs 39.5; P = 0.0011), the infants with positive toxicology at birth had a clinically relevant shortening of gestation (37.3 weeks vs 39.1; P = 0.0002). CONCLUSIONS Methamphetamine use during pregnancy is associated with shorter gestational ages and lower birth weight, especially if used continuously during pregnancy. Stopping MA use at any time during pregnancy improves birth outcomes, thus resources should be directed toward providing treatment and prenatal care.
Collapse
Affiliation(s)
- Tricia E. Wright
- Department of Obstetrics, Gynecology and Women’s Health, University of Hawaii John A. Burns School of Medicine, 1319 Punahou St. Ste 824, Honolulu, HI 96826, 808-203-6540, 808-955-2174 fax
| | - Renee Schuetter
- Path Clinic, Waikiki Health, Honolulu, Hawaii, 845 22nd Ave., Honolulu, HI 96816
| | - Jacqueline Tellei
- Path Clinic, Waikiki Health, Honolulu, Hawaii, 845 22nd Ave., Honolulu, HI 96816
| | - Lynnae Sauvage
- Department of Obstetrics, Gynecology and Women’s Health, University of Hawaii John A. Burns School of Medicine, 1319 Punahou St. Ste 824, Honolulu, HI 96826, 808-203-6540, 808-955-2174 fax
| |
Collapse
|
50
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|