1
|
Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 2014; 72:3-14. [PMID: 24389162 DOI: 10.1016/j.addr.2013.12.010] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/08/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022]
Abstract
Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents.
Collapse
Affiliation(s)
- Shashank R Sirsi
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
2
|
Tinkov S, Winter G, Coester C, Bekeredjian R. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization. J Control Release 2010; 143:143-50. [PMID: 20060861 DOI: 10.1016/j.jconrel.2009.12.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Despite high antitumor efficacy and a broad application spectrum, clinical treatment with anthracycline chemotherapeutics is often limited by severe adverse effects such as cardiotoxicity and myelosupression. In recent years, tumor drug targeting has evolved as a promising strategy to increase local drug concentration and reduce systemic side effects. One recent approach for targeting solid tumors is the application of microbubbles, loaded with chemotherapeutic drugs. These advanced drug carriers can be safely administered to the patient by intravenous infusion, and will circulate through the entire vasculature. Their drug load can be locally released by ultrasound targeted microbubble destruction. In addition, tumors can be precisely localized by diagnostic ultrasound since microbubbles act as contrast agents. In the present work a novel microbubble carrier for doxorubicin has been developed and characterized in-vitro. In contrast to many recent tumor-targeting MB designs the newly developed doxorubicin-loaded microbubbles possess a soft but stable phospholipid monolayer shell. Importantly, the active drug is embedded in the microbubble shell and is complexed to the phospholipids by both electrostatic and hydrophobic interactions. Despite their drug load, these novel microbubbles retained all important physical characteristics for ultrasound targeted microbubble destruction, comparable with the commercially available ultrasound contrast agents. In cell culture studies doxorubicin-loaded microbubbles in combination with ultrasound demonstrated an about 3 fold increase of the anti-proliferative activity compared to free doxorubicin and doxorubicin-loaded liposomes. For the first time in the literature the intracellular partition of free doxorubicin and phospholipid-complexed doxorubicin were compared. In conclusion, new doxorubicin-loaded microbubbles with ideal physical characteristics were developed. In-vitro studies show enhanced cytotoxic activity compared to free doxorubicin and doxorubicin-loaded liposomes.
Collapse
Affiliation(s)
- Steliyan Tinkov
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University - Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
3
|
Kagan VE, Wipf P, Stoyanovsky D, Greenberger JS, Borisenko G, Belikova NA, Yanamala N, Samhan Arias AK, Tungekar MA, Jiang J, Tyurina YY, Ji J, Klein-Seetharaman J, Pitt BR, Shvedova AA, Bayır H. Hydrogen sulfide is a reversible inhibitor of the NADH oxidase activity of synaptic plasma membranes. Adv Drug Deliv Rev 2009; 388:718-722. [PMID: 19695225 PMCID: PMC2784017 DOI: 10.1016/j.addr.2009.06.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Hydrogen sulfide is now accepted as a neuromodulator, which can be involved in neuronal defence against oxidative stress insults in the brain. In this work we show that concentrations of H(2)S within the physiological range reported in the brain produce a reversible inhibition of the NADH oxidase activity and coupled superoxide anion production by synaptic plasma membranes from rat brain. At physiological pH 7 the concentration of H(2)S needed for 50% inhibition of the NADH oxidase activity is 5+/-1 microM, which is within the low range of the reported physiological H(2)S concentrations. Thus, the NADH oxidase activity of the neuronal plasma membrane can act as a sensor of local H(2)S depletion in neurones. H(2)S inhibition of the NADH oxidase activity of the neuronal plasma membrane can be accounted for direct reduction by H(2)S of cytochrome b(5). However, H(2)S fails to afford a significant protection against the inhibition of this activity by peroxynitrite. In conclusion, our results point out that H(2)S is more potent as inhibitor of reactive oxygen species formation than as a sacrificial antioxidant.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Detcho Stoyanovsky
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | | | - Natalia A. Belikova
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Alejandro K. Samhan Arias
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Muhammad A. Tungekar
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jianfei Jiang
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jing Ji
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | | | - Bruce R. Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, and West Virginia University, Morgantown, WV, 26505, USA
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
4
|
Fernández-Botello A, Comelles F, Alsina MA, Cea P, Reig F. A monolayer study on interactions of docetaxel with model lipid membranes. J Phys Chem B 2008; 112:13834-41. [PMID: 18844394 DOI: 10.1021/jp806423k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.
Collapse
Affiliation(s)
- Alfonso Fernández-Botello
- Peptides Department and Surfactant Department, Institute for Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
5
|
Sennato S, Bordi F, Cametti C, Coluzza C, Desideri A, Rufini S. Evidence of domain formation in cardiolipin-glycerophospholipid mixed monolayers. A thermodynamic and AFM study. J Phys Chem B 2007; 109:15950-7. [PMID: 16853024 DOI: 10.1021/jp051893q] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of the three main components of the mitochondrial membrane, namely cardiolipin, phosphatidylcholine, and phosphatidylethanolamine, has been studied investigating mixed cardiolipin-phosphatidylcholine and cardiolipin-phosphatidylethanolamine monolayers at different cardiolipin molar fractions. The thermodynamic behavior of the mixed monolayers was investigated by means of surface pressure and surface potential measurements, and atomic force microscopy was employed to characterize the morphology of the monolayers. Langmuir isotherms and surface potential curves show a regular behavior with a progressive transition toward the isotherm of the pure component. Positive deviations from ideality in the excess Gibbs energies of mixing suggest the presence of repulsive interactions in both systems. Analysis of partial molecular dipole moment indicates a discontinuity at a definite cardiolipin/phosphatidylethanolamine molar fraction, suggesting the formation of a stoichiometric complex; as a consequence, in mixed cardiolipin-phosphatidylethanolamine monolayers, a phase separation is observed at phosphatidylethanolamine excess. AFM measurements indicate the presence of two domains: one made by phosphatidylethanolamine and the other by a regular arrangement of phosphatidylethanolamine and cardiolipin at a fixed molecular ratio.
Collapse
Affiliation(s)
- S Sennato
- Dipartimento di Fisica, Universita' di Roma La Sapienza, Piazzale A. Moro 5, I-00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Fischer H, Kansy M, Avdeef A, Senner F. Permeation of permanently positive charged molecules through artificial membranes--influence of physico-chemical properties. Eur J Pharm Sci 2007; 31:32-42. [PMID: 17416489 DOI: 10.1016/j.ejps.2007.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the permeation properties of 20 permanently positive charged molecules in the parallel artificial membrane permeability assay (PAMPA). Eight of them were derivatives of the N-alkyl-isoquinolinium salt and 12 were congeners of the dye rhodamine 110. Five out of 12 molecules from the rhodamine 110 series have one additional carboxylic group and two have two carboxylic acids. The experimentally derived effective permeability values (P(e)) cover a range of 3-4 log units. Ten compounds showed low permeabilities (P(e)<0.1x10(-6)cm/s), four medium permeabilities (0.1x10(-6)< or =P(e)<1x10(-6)cm/s) and six were highly permeable (P(e)> or =1x10(-6)cm/s). In addition, computational models were built with a number of calculated molecular descriptors and evaluated for their ability to predict membrane permeability. It turned out that the experimental P(e) values can be explained by electronic properties and parameters describing the shape of molecules. This work provides evidence that permanently charged molecules can have high passive membrane permeabilities provided that the charge can be spread over several aromatic ring systems.
Collapse
Affiliation(s)
- Holger Fischer
- Pharmaceutical Research, Discovery Chemistry-Molecular Properties, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland.
| | | | | | | |
Collapse
|
7
|
Pajeva I, Todorov DK, Seydel J. Membrane effects of the antitumor drugs doxorubicin and thaliblastine: comparison to multidrug resistance modulators verapamil and trans-flupentixol. Eur J Pharm Sci 2004; 21:243-50. [PMID: 14757496 DOI: 10.1016/j.ejps.2003.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The interactions of the antitumor drugs doxorubicin and thaliblastine with model membranes composed of neutral (phosphatidylcholine) and negatively charged (phosphatidylserine) phospholipids were studied by differential scanning calorimetry and nuclear magnetic resonance. The membrane activities of doxorubicin and thaliblastine were compared to those of the powerful multidrug resistance (MDR) modulators trans-flupentixol and verapamil. The results point out to the potential role of the drug-membrane interactions for the effects of doxorubicin and thaliblastine in resistant tumor cells. They direct also to the artificial membranes as a suitable tool for screening of compounds with potential ability to modulate MDR.
Collapse
Affiliation(s)
- Ilza Pajeva
- Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113, Sofia, Bulgaria.
| | | | | |
Collapse
|
8
|
Zhao L, Feng SS. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. J Colloid Interface Sci 2004; 274:55-68. [PMID: 15120278 DOI: 10.1016/j.jcis.2003.12.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
Molecular interactions between an anticancer drug, paclitaxel, and phosphatidylcholine (PC) of various chain lengths were investigated in the present work by the Langmuir film balance technique and differential scanning calorimetry (DSC). Both the lipid monolayer at the air-water interface and lipid bilayer vesicles (liposomes) were employed as model biological cell membranes. Measurement and analysis of the surface pressure versus molecular area curves of the mixed monolayers of phospholipids and paclitaxel under various molar ratio showed that phospholipids and paclitaxel formed a nonideal miscible system at the interface. Paclitaxel exerted an area-condensing effect on the lipid monolayer at small molecular surface areas and an area-expanding effect at large molecular areas, which could be explained by the intermolecular forces and geometric accommodation between the two components. Paclitaxel and phospholipids could form thermodynamically stable monolayer systems: the stability increased with the chain length in the order DMPC (C14:0)>DPPC (C16:0)>DSPC (C18:0). Investigation of paclitaxel penetration into the pure lipid monolayer showed that DMPC had a higher ability to incorporate paclitaxel and the critical surface pressure for paclitaxel penetration also increased with the chain length in the order DMPC>DPPC>DSPC. A similar trend was testified by DSC studies on vesicles of the mixed paclitaxel/phospholipids bilayer. Paclitaxel showed the greatest interaction with DMPC while little interaction could be measured in the paclitaxel/DSPC liposomes. Paclitaxel caused broadening of the main phase transition without significant change at the peak melting temperature of the phospholipid bilayers, which demonstrated that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer. The interaction between paclitaxel and phospholipid was nonspecific and the dominant factor in this interaction was the van der Waals force or hydrophobic force. As the result of the lower net van der Waals interaction between hydrocarbon chains for the shorter acyl chains, paclitaxel interacted more readily with phospholipids of shorter chain length, which also increased the bilayer intermolecular spacing.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
| | | |
Collapse
|
9
|
Coulon A, Berkane E, Sautereau AM, Urech K, Rouge P, Lopez A. Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:145-59. [PMID: 11853681 DOI: 10.1016/s0005-2736(01)00446-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among the very homologous family of alpha- and beta-thionins, known for their antimicrobial activity, the viscotoxin subfamily differs from other members because it is cytotoxic against tumoral cells but weakly hemolytic. We studied the interactions between the most active of these toxins, viscotoxin A3 (VA3), and model membranes made of phosphatidylcholine and phosphatidylserine (PS), the major zwitterionic and acidic phospholipids found in eukaryotic cells. Monolayer studies showed that electrostatic forces are essential for the interaction and are mainly involved in modulating the embedding of the toxin in the PS head group region. This in turn induces membrane stiffening, as shown by fluorescence polarization assays with 1,6-diphenyl-1,3,5-hexatriene and its derivatives. Moreover, vesicle permeabilization analyses showed that there are two modes of interaction, which are directly related to the stiffening effect and depend on the amount of VA3 bound to the surface of the vesicles. We propose an interaction model in which the embedding of VA3 in the membrane induces membrane defects leading to the gradual release of encapsulated dye. When the surfaces of the vesicles are saturated with the viscotoxin, complete vesicle destabilization is induced which leads to bilayer disruption, all-or-none encapsulated dye release and rearrangement of the vesicles.
Collapse
Affiliation(s)
- Alexandre Coulon
- Institut de Pharmacologie et de Biologie Structurale, UMR-CNRS 5089, Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
10
|
Banik BK, Becker FF. Polycyclic aromatic compounds as anticancer agents: structure-activity relationships of chrysene and pyrene derivatives. Bioorg Med Chem 2001; 9:593-605. [PMID: 11310593 DOI: 10.1016/s0968-0896(00)00297-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A large number of diamides and diamines were synthesized using 6-amino chrysene and 1-amino pyrene as starting materials. A structure activity study with cis-platinum as internal control against animal and human tumor lines was carried out in vitro. This study indicated that the in vitro cytotoxicity toward these lines depends on the functionality present in the molecules. The diamino compounds were found to be more potent than the diamides, and these were equally active irrespective of the end heterocyclic group, whereas the activity of the diamides was strongly dependent on the terminal unit. In general, the diamides containing chrysene as the chromophore were more active than those with a pyrene ring. The size of the end heterocyclic ring, along with the nature of the spacer connecting the polycyclic ring to the heterocyclic ring, seemed to affect the biological activity in certain cell lines. Hemolysis experiments on a lead compound established that it had activities similar to those described for membrane-stabilizing agents. This agent also demonstrated the capacity to produce differentiation in leukemia cell lines.
Collapse
Affiliation(s)
- B K Banik
- The University of Texas, M. D. Anderson Cancer Center, Department of Molecular Pathology, Houston 77030, USA.
| | | |
Collapse
|
11
|
Vergne I, Desbat B. Influence of the glycopeptidic moiety of mycobacterial glycopeptidolipids on their lateral organization in phospholipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:113-23. [PMID: 10930514 DOI: 10.1016/s0005-2736(00)00212-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycopeptidolipids (GPLs) from the cell wall of opportunistic pathogenic mycobacteria are potential factors of pathogenicity which can interact with biological membranes. GPL suspensions uncouple oxidative phosphorylation of mitochondria and increase membrane permeability of liposomes. Heavily glycosylated GPLs are less active than lightly glycosylated ones. GPL-phospholipid interactions into preformed mixed films at the air-water interface were investigated in order to understand the permeabilization efficiency differences among GPLs. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) was used to determine, in situ, the organization of GPL and of 1,2-di(perdeuteropalmitoyl)phosphatidylcholine (DPPC) molecules in mixed films. Compression isotherms of GPL alone or mixed with DPPC in various proportions showed that the less the GPL was glycosylated the higher its miscibility with DPPC. PMIRRAS studies indicated that low miscibility may result from large self-association of GPL molecules in beta-sheet structures. Low glycosylated GPL molecules increased disorder of DPPC acyl chains. Based on these results, an explanatory model is proposed for membrane permeabilization. Increase of passive permeability may arise from disruption of phospholipid packing induced by GPL molecules. GPL segregation is proposed as the cause of low activity of GPL with high sugar content, by decreasing the number of GPL molecules interacting with phospholipids.
Collapse
Affiliation(s)
- I Vergne
- Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier, Toulouse, France.
| | | |
Collapse
|
12
|
Bordi F, Cametti C, Motta A, Diociaiuti M, Molinari A. Interactions of anthracyclines with zwitterionic phospholipid monolayers at the air-water interface. BIOELECTROCHEMISTRY AND BIOENERGETICS (LAUSANNE, SWITZERLAND) 1999; 49:51-6. [PMID: 10619448 DOI: 10.1016/s0302-4598(99)00063-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present note describes the use of surface pressure measurements (Langmuir monolayer technique) for the analysis of interactions of two different anthracyclines (adriamycin and daunorubicin) with a non-ionic, zwitterionic phospholipid monolayer, at the air-water interface. Because the surface membrane of the cell is the first barrier encountered by the anthracyclines in the treatment of cancer, drug-membrane interactions studied in model (monolayers or bilayers) and natural systems play an important role in the understanding of the bioactivity properties of these molecules. We report here the rate constants of the adsorption process of adriamycin and daunorubicin in the presence of a zwitterionic phospholipid monolayer at the air-water interface. Because interactions with the lipid monolayer strongly depend on the molecular packing of the lipid, we investigated this process at a relatively low surface pressure (7 mN/m), the interactions being favoured by the gaseous and liquid expanded structure of the lipid monolayer. The apparent molecular area of these molecules during the insertion into the lipid film and their interactions with the phospholipid polar head groups was evaluated and the estimated percentage of anthracyclines at the interface after adsorption into the lipid monolayer is briefly discussed. The rate constants for the adsorption and desorption process at the water-monolayer interface have been calculated on the basis of a single-exponential model. The observed difference of these parameters for daunorubicin and adriamycin suggests a different interaction of these anthracyclines during the adsorption to and/or penetration across the phospholipid monolayer.
Collapse
Affiliation(s)
- F Bordi
- Dipartimento di Medicina Interna, Universita' di Roma Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
13
|
Söderlund T, Jutila A, Kinnunen PK. Binding of adriamycin to liposomes as a probe for membrane lateral organization. Biophys J 1999; 76:896-907. [PMID: 9929491 PMCID: PMC1300091 DOI: 10.1016/s0006-3495(99)77253-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A stopped-flow spectrofluorometer equipped with a rapid scanning emission monochromator was utilized to monitor the binding of adriamycin to phospholipid liposomes. The latter process is evident as a decrease in fluorescence emission from a trace amount of a pyrene-labeled phospholipid analog (PPDPG, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phospho-rac-++ +glyce rol) used as a donor for resonance energy transfer to adriamycin. For zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, fluorescence decay was slow, with a half-time t1/2 of approximately 2 s. When the mole fraction of the acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), was increased to XPG >/= 0.04, the decay of fluorescence became double exponential, and an additional, significantly faster process with t1/2 in the range between 2 and 4 ms was observed. Subsequently, as XPG was increased further, the amplitude of the fast process increased, whereas the slower process was attenuated, its t1/2 increasing to 20 s. Increasing [NaCl] above 50 mM or [CaCl2] above 150 microM abolished the fast component, thus confirming this interaction to be electrostatic. The critical dependence of the fast component on XPG allows the use of this process to probe the organization of acidic phospholipids in liposomes. This was demonstrated with 1, 2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes incorporating PPDPG (XPPDPG = 0.03), i.e., conditions where XPG in fluid bilayers is below the required threshold yielding the fast component. In keeping with the presence of clusters of PPDPG, the fast component was observed for gel-state liposomes. At approximately 34 degreesC (i.e., 6 degrees below Tm), the slower fluorescence decay also appeared, and it was seen throughout the main phase transition region as well as in the liquid-crystalline state. The fluorescence decay behavior at temperatures below, above, and at the main phase transition temperature is interpreted in terms of thermal density fluctuations and an intermediate state between gel and liquid-crystalline states being involved in the phospholipid main phase transition. This is the first observation of a cluster constituted by acidic phospholipids controlling the membrane association of a drug.
Collapse
Affiliation(s)
- T Söderlund
- Biomembrane Research Group, Department of Medical Chemistry, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
14
|
Heywang C, Saint-Pierre Chazalet M, Masson CM, Bolard J. Orientation of anthracyclines in lipid monolayers and planar asymmetrical bilayers: a surface-enhanced resonance Raman scattering study. Biophys J 1998; 75:2368-81. [PMID: 9788932 PMCID: PMC1299911 DOI: 10.1016/s0006-3495(98)77681-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The interaction of anthracyclines (daunorubicin and idarubicin) with monolayers of zwitterionic palmitoyloleoylphosphatidylcholine (POPC) and anionic dipalmitoylphosphatidic acid (POPC-DPPA 80-20 mol%) was studied by surface pressure measurements and compared with previous results obtained with other anthracyclines (pirarubicin and adriamycin). These anthracycline/phospholipid monolayers were next transferred by a Langmuir-Blodgett technique onto planar supports and studied by surface-enhanced resonance Raman scattering (SERRS), which gave information about the orientation of anthracycline in the monolayers. On the whole, the adsorption of anthracyclines in zwitterionic monolayers increases with the anthracycline hydrophobic/hydrophilic balance, which underlines the role of the hydrophobic component of the interaction. On the contrary, the anthracyclines remain adsorbed on the polar headgroups of the phospholipids in the presence of DPPA and form a screen that limits a deeper penetration of other anthracycline molecules. To study by SERRS measurements the crossing of pirarubicin through a phospholipid bilayer used as a membrane model, asymmetrical POPC-DPPA/POPC or POPC/POPC-DPPA bilayers were transferred by the Langmuir-Schäfer method, thanks to a laboratory-built set-up, and put in contact with a pirarubicin aqueous solution. It has been shown that the presence of anionic DPPA in the first monolayer in contact with pirarubicin would limit its crossing. This limiting effet is not observed if the first monolayer is zwitterionic.
Collapse
Affiliation(s)
- C Heywang
- Laboratoire de Physicochimie Biomoléculaire et Cellulaire, URA CNRS 2056, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
15
|
Gaber MH, Ghannam MM, Ali SA, Khalil WA. Interaction of Doxorubicin with phospholipid monolayer and liposomes. Biophys Chem 1998; 70:223-9. [PMID: 9546199 DOI: 10.1016/s0301-4622(97)00125-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of Doxorubicin which is (an anthracycline antibiotic with a broad spectrum of antitumor activity) on the monolayer and bilayer in the form of large Multilamellar Vesicles (MLV's) of Dipalmitoyl phosphatidylcholine (DPPC) were studied by means of monolayer techniques (surface pressure, penetration kinetics, and association constant) and light scattering technique. The monolayer technique showed that addition of DXR to a lipid film composed of (DPPC/CHOL/PEG-PE) at a molar ratio of (100:0:0) produced a less condensed Monolayer. In the (pie-A) curves, DXR induced shift towards larger area/molecule, where the area/molecule was shifted from 61 to 89 A2, and 116 A2 in the presence of 20 and 40 nM DXR, respectively. The three curves collapsed at a pressure pi = 45 mN/m. In penetration kinetics experiment (delta pi-t), the change in pressure with time was 8 and 14 mN/m for a DXR concentration of 20 and 40 nM, respectively, and the increase in surface pressure presented a plateau over a period of 30 min. The measured association constant (K) was found to be 5 x 10(5)/M. In the light scattering experiment, there was a shift of the transition temperature (Tm) of (MLV's) of the same composition of the monolayer towards a smaller value from 40.5 degrees to 34.5 degrees C. Incorporation of CHOL and PEG-PE as DPPC/CHOL/PEG-PE at a molar ratio of (100:20:0), (100:20:4) and (100:20:4) greatly counteracted the effect of DXR and made the lipid membrane more condense and rigid. Moreover, the penetration of DXR into the membrane was greatly reduced. There was a very small shift for the (pi-A) and (delta pi-t) curves, and the association constant of the drug for these different lipid compositions was greatly reduced down to 2.5 x 10(5)/M and the transition temperature (Tm) was increased up to (42.5 degrees C) in the presence of 40 nM DXR. Our results suggest that DXR has a great effect on the phospholipid membrane, and that addition of CHOL or PEG-PE to the phospholipid membrane causes stabilization for the membrane, and reduces the interaction with Doxorubicin.
Collapse
Affiliation(s)
- M H Gaber
- Cairo University, Faculty of Science, Biophysics Department, Giza, Egypt
| | | | | | | |
Collapse
|
16
|
Gonzalez-Christen J, Vergne I, Süssmuth R, Sidobre S, Prats M, Tocanne JF, Lanéelle G. Adjuvant lipopeptide interaction with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1368:97-107. [PMID: 9459588 DOI: 10.1016/s0005-2736(97)00178-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cationic lipohexapeptide Pam3Cys-Ser-(Lys)4 is a synthetic model for the triacylated N-terminal part of bacterial lipoproteins, and it is used as an adjuvant and macrophage activator. The amphiphilic lipopeptide was injected below a phosphatidylserine monolayer at the air-water interface. It interacted with the interface, as seen by a decrease in the surface potential (deltaV), and it was inserted in the monolayer, until surface charge neutralization was reached, as seen by the parallel increases of deltaV and of the surface pressure. No insertion occurred above 29 mN/m. The interaction kinetics was sensitive to ionic strength and to the nature of acidic phospholipids and of their acyl chains, but the final equilibrium was independent of these factors. Addition of the lipopeptide to large unilamellar vesicles (LUVs) induced their aggregation, and an exchange of lipids between fluorophor-labelled and non-labelled LUVs. However, no fusion was observed, just as reported for polylysine. The lipopeptide strongly inhibited calcium-induced fusion of PS LUVs, in contrast to the published effect of polylysine. This was probably due to inhibition of calcium fixation on liposomes, since it was observed that the lipopeptide efficiently displaced 45Ca2+ from a PS monolayer. In addition, a phospholipid segregation was observed in SUVs for a few ten micromolar of the lipopeptide.
Collapse
Affiliation(s)
- J Gonzalez-Christen
- Institut de Pharmacologie et de Biologie Structurale du CNRS and Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Vergne I, Prats M, Tocanne JF, Laneelle G. Mycobacterial glycopeptidolipid interactions with membranes: a monolayer study. FEBS Lett 1995; 375:254-8. [PMID: 7498511 DOI: 10.1016/0014-5793(95)01219-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterial glycopeptidolipid (GPL) interactions with membranes were analysed with monolayer experiment, using GPLs bearing 3, 1, or 0 carbohydrate residues (GPL3, GPL1, GPL0). Compression isotherms and surface potential determinations suggested that the glycopeptidic moiety of GPL3 permanently dipped in water, while those of GPL1 and GPL0 can lay in the interface. Insertion of GPL molecules into a preformed phospholipid monolayer was observed using GPL3 or GPL1 dispersions, but not from GPL0. It is postulated that the activity of GPL0 is low due to its failure to become inserted into membranes, as is that of GPL3 owing to its insertion only by its acyl chain. GPL1 is likely to disturb membranes by inserting its glycopeptidic moiety into the interface.
Collapse
Affiliation(s)
- I Vergne
- Laboratoire de Pharmacologie et Toxicologie Fondamentales du CNRS, Toulouse, France
| | | | | | | |
Collapse
|
18
|
Mingeot-Leclercq MP, Brasseur R, Schanck A. Molecular parameters involved in aminoglycoside nephrotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1995; 44:263-300. [PMID: 7897692 DOI: 10.1080/15287399509531960] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aminoglycoside antibiotics are hydrophilic molecules consisting of an animated cyclitol associated with amino sugar. They bind in vivo as well as in vitro to negatively charged membranes. Their use as chemotherapeutic agents is unfortunately accompanied by oto- and nephrotoxic reactions, and the purpose of this review is to examine the role of the molecular interactions between aminoglycosides and membranes in the development of nephrotoxicity. 31P Nuclear magnetic resonance (NMR) and fluorescence depolarization have been used to characterize the effect of aminoglycosides on phosphate heads and fatty acyl chains of phospholipids. 15N NMR has been used to obtain interesting information on regioselective interactions of amino groups of antibiotics with phospholipids. The binding of aminoglycosides with negatively charged membranes is associated with impairment of phospholipid catabolism, change in membrane permeability, and membrane aggregation. Biochemical analysis and 1H NMR spectroscopy have brought information on the molecular mechanism involved in the impairment of phospholipid catabolism. Nephrotoxic aminoglycosides could induce sequestration of phosphatidylinositol and therefore reduce the amount of negative charge available for optimal lysosomal phospholipase activity toward phosphatidylcholine included in liposomes that also contain cholesterol and sphingomyelin. Conformational analysis shows that aminoglycosides, which have a high potency to inhibit lysosomal phospholipase activity, adopt an orientation parallel to the lipid/water interface. This orientation of the aminoglycoside molecule at the interface is also critical to explain the marked increase of membrane permeability induced by less nephrotoxic aminoglycosides such as isepamicin and amikacin. This effect is indeed only observed with aminoglycosides oriented perpendicular to this interface, probably related to the creation of a local condition of disorder. The impairment of phospholipid catabolism, which is considered to be an early and significant step in the development of aminoglycoside toxicity, is therefore not related to the change in membrane permeability. However, the role of this latter phenomenon and of membrane aggregation for aminoglycoside nephrotoxicity could be further investigated.
Collapse
Affiliation(s)
- M P Mingeot-Leclercq
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
19
|
Arancia G, Bordi F, Calcabrini A, Cametti C, Diociaiuti M, Molinari A. Influence of anthracyclinic antibiotics on membranes of human erythrocytes: A combined radiowave electrical conductivity and electron microscopy study. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0302-4598(94)80008-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Affiliation(s)
- R A Demel
- Department of Biochemistry of Membranes, University of Utrecht, The Netherlands
| |
Collapse
|
21
|
de Wolf FA, Staffhorst RW, Smits HP, Onwezen MF, de Kruijff B. Role of anionic phospholipids in the interaction of doxorubicin and plasma membrane vesicles: drug binding and structural consequences in bacterial systems. Biochemistry 1993; 32:6688-95. [PMID: 8329395 DOI: 10.1021/bi00077a023] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Anthracycline-membrane interactions play a role in the transport, the cytoplasmic distribution, and possibly also the activity of anthracyclines. Previous work on model membranes has shown that the widely-applied anticancer drug doxorubicin interacts specifically with anionic phospholipids [de Wolf, F. A., et al. (1991) Biochim. Biophys. Acta 106, 67-80]. We have now been able to investigate these interactions, and their selectivity for anionic phospholipids, directly in plasma membranes. Because of the recent availability of Escherichia coli mutants in which the anionic phospholipid content ranges from only 10% to as much as 100% of the total phospholipid content, we used this bacterium as a source of plasma membranes. We compared the interactions of the cationic anthracycline doxorubicin with (1) plasma membranes of different mutant strains, (2) total lipid extracts of these membranes, and (3) synthetic phospholipid mixtures in which a comparable fraction of the phospholipids was negatively charged. The results show that anionic phospholipids are important determinants of doxorubicin binding, not only in model membranes but also in plasma membrane systems. Only in plasma membranes with a very low anionic lipid content was the binding to the anionic phospholipid masked by other factors. Using an unsaturated fatty acid auxotroph grown on [11,11-2H2]oleic acid, it appeared from 2H-NMR data that doxorubicin induces a disordering of acyl chains in bacterial plasma membranes and their total lipid extracts. This indicates that the binding is not purely electrostatic but involves the insertion of drug molecules into the lipid matrix, probably due to hydrophobic interactions.
Collapse
Affiliation(s)
- F A de Wolf
- Institute of Molecular Biology and Medical Biotechnology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Plosker GL, Faulds D. Epirubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs 1993; 45:788-856. [PMID: 7686469 DOI: 10.2165/00003495-199345050-00011] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Epirubicin is the 4' epimer of the anthracycline antibiotic doxorubicin, and has been used alone or in combination with other cytotoxic agents in the treatment of a variety of malignancies. Comparative and noncomparative clinical trials have demonstrated that regimens containing conventional doses of epirubicin achieved equivalent objective response rates and overall median survival as similar doxorubicin-containing regimens in the treatment of advanced and early breast cancer, non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), non-Hodgkin's lymphoma, ovarian cancer, gastric cancer and nonresectable primary hepatocellular carcinoma. Recently, dose-intensive regimens of epirubicin have achieved high response rates in a number of malignancies including early and advanced breast cancer and lung cancer. The major acute dose-limiting toxicity of anthracyclines is myelosuppression. In vitro and clinical studies have shown that, at equimolar doses, epirubicin is less myelotoxic than doxorubicin. The lower haematological toxicity of epirubicin, as well as the recent introduction of supportive measures such as colony-stimulating factors, has allowed dose-intensification of epirubicin-containing regimens, which is particularly significant because of the definite dose-response relationship of anthracyclines. Cardiotoxicity, which is manifested clinically as irreversible congestive heart failure and/or cardiomyopathy, is the most important chronic cumulative dose-limiting toxicity of anthracyclines. Epirubicin has a lower propensity to produce cardiotoxic effects than doxorubicin, and its recommended maximum cumulative dose is almost double that of doxorubicin, thus allowing for more treatment cycles and/or higher doses of epirubicin. In summary, dose-intensive epirubicin-containing regimens, which are feasible due to its lower myelosuppression and cardiotoxicity, have produced high response rates in early breast cancer, a potentially curable malignancy, as well as advanced breast, and lung cancers. Furthermore, there is evidence to suggest that improved response rates can improve quality of life in some clinical settings, but whether this leads to prolonged survival has not yet been determined. Recently implemented supportive measures such as colony-stimulating factors, prophylactic antimicrobials and peripheral blood stem cell support may help achieve other potential advantages of dose-intensive epirubicin-containing regimens such as reductions in morbidity and length of hospital admissions.
Collapse
Affiliation(s)
- G L Plosker
- Adis International Limited, Auckland, New Zealand
| | | |
Collapse
|
23
|
Cametti C, De Luca F, D'Ilario A, Macrì MA, Maraviglia B, Bordi F, Lenti L, Misasi R, Sorice M. Alteration of the passive electrical properties of lymphocyte membranes induced by GM1 and GM3 glycolipids. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1111:197-203. [PMID: 1420255 DOI: 10.1016/0005-2736(92)90311-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The electrical conductivity of normal human lymphocyte suspensions has been measured in the frequency range from 10 kHz to 100 MHz, where a well-pronounced conductivity dispersion occurs, caused by the surface polarization at the interface between the cell membrane and the extracellular solution. We have investigated the alteration of the passive electrical properties of the cytoplasmatic cell membrane induced by two different gangliosides (GM1 and GM3) inserted, at various concentrations, into the outer leaflet of membrane double layer. The alterations observed in the dielectric parameters (the membrane conductivity and the membrane permittivity) derived on the basis of a 'double-shell' model, result in an overall increase of the ion permeation across the membrane and an enhanced polarizability of its hydrophilic region for both gangliosides investigated. The relevance of these alterations is discussed.
Collapse
Affiliation(s)
- C Cametti
- Dipartimento di Fisica, Università La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Petit JM, Maftah A, Ratinaud MH, Julien R. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:267-73. [PMID: 1396703 DOI: 10.1111/j.1432-1033.1992.tb17285.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The acridine orange derivative, 10N-nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N-nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The stoichiometry has been found to be 2 mol 10N-nonyl acridine orange/mol cardiolipin and 1 mol dye/mol phosphatidylserine or phosphatidylinositol, while, with zwitterionic phospholipids, significant binding could not be detected. The affinity constants were 2 x 10(6) M-1 for cardiolipin-10N-nonyl-acridine-orange association and only 7 x 10(4) M-1 for that of phosphatidylserine and phosphatidylinositol association. The high affinity of the dye for cardiolipin may be explained by two essential interactions; firstly an electrostatic interaction between the quaternary ammonium of nonyl acridine orange and the ionized phosphate residues of cardiolipin and secondly, hydrophobic interactions between adjacent chromophores. A linear relationship was demonstrated between the cardiolipin content of model membranes and the incorporated dye. Consequently, a convenient and rapid method for cardiolipin quantification in membranes was established and applied to the cardiolipin-containing organelle, the mitochondrion.
Collapse
Affiliation(s)
- J M Petit
- Institut de Biotechnologie, Faculté des Sciences, Limoges, France
| | | | | | | |
Collapse
|
25
|
de Wolf FA, Nicolay K, de Kruijff B. Effect of doxorubicin on the order of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes: absence of drug-induced segregation of lipids into extended domains. Biochemistry 1992; 31:9252-62. [PMID: 1390711 DOI: 10.1021/bi00153a019] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or -phosphatidylethanolamine (DOPE). Previous 2H-NMR studies on bilayers consisting of a single species of di[11,11-2H2]oleoyl-labeled phospholipid showed that doxorubicin does not affect the acyl chain order of pure zwitterionic phospholipid but dramatically decreases the order of anionic phospholipid [de Wolf, F. A., et al. (1991) Biochim. Biophys. Acta 1096, 67-80]. In the present work, we studied mixed bilayers in which alternatively the anionic or the zwitterionic phospholipid component was 2H-labeled so as to monitor its individual acyl chain order. Doxorubicin decreased the order parameter of the mixed anionic and zwitterionic lipids by approximately the same amount and did not induce a clear segregation of the lipid components into extended, separate domains. The drug had a comparable disordering effect on mixed bilayers of unlabeled cardiolipin and 2H-labeled zwitterionic phospholipid, indicating the absence of extensive segregation also in that case. Upon addition of doxorubicin to bilayers consisting of 67 mol% DOPE and 33 mol% anionic phospholipid, a significant part of the lipid adopted the inverted hexagonal (HII) phase at 25 degrees C. This bilayer destabilization, which occurred only in mixtures of anionic phospholipid and sufficient amounts of DOPE, might be of physiological importance. Even upon formation of extended HII-phase domains, lipid segregation was not clearly detectable, since the relative distribution of 2H-labeled anionic phospholipid and [2H]DOPE between the bilayer phase and HII phase was very similar. Our findings argue against a role of extensive anionic/zwitterionic lipid segregation in the mechanism of action and toxicity of doxorubicin.
Collapse
Affiliation(s)
- F A de Wolf
- Institute of Molecular Biology and Medical Biotechnology, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
26
|
Duplaa H, Convert O, Sautereau AM, Tocanne JF, Chassaing G. Binding of substance P to monolayers and vesicles made of phosphatidylcholine and/or phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:12-22. [PMID: 1377491 DOI: 10.1016/0005-2736(92)90323-e] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analyses of interactions between substance P (SP) and phospholipids were performed by combined surface pressure and surface potential measurements in monolayers and by 13C-NMR experiments on liposomes. This study was carried out using synthetic SP molecules: [1-13C-Gly9]SP and [1-13C-Gly2]SP. Injection of SP into the aqueous subphase led to an expansion of phosphatidylcholine (PtdCho) or phosphatidylserine (PtdSer) monolayer surface area. An apparent association constant of SP for PtdSer was estimated to be around 10(6)-10(-7) M-1. The surface potential delta V/n varied linearly with the molecular area whereas the variation of surface pressure was biphasic, suggesting that at least two binding states contributed to the monolayer expansion. These two states Si (SP is inserted into the bilayer) and Ss (SP is stuck on the surface) were observed on vesicular membranes by 13C-NMR. The kinetic of interconversion between these two states can be estimated by NMR, the Ss state being the stablest one. No perpendicular insertion of SP into these vesicular preparations seemed to occur, as previously postulated. However, SP might form aggregates in contact with these model systems, leading to a loss of permeability of the lipid vesicles.
Collapse
Affiliation(s)
- H Duplaa
- Laboratoire de Chimie Organique Biologique, UA CNRS 493, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Ferrer-Montiel AV, Gonzalez-Ros JM, Ferragut JA. Different distribution of daunomycin in plasma membranes from drug-sensitive and drug-resistant P388 leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1104:111-6. [PMID: 1550837 DOI: 10.1016/0005-2736(92)90138-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When the anthracycline daunomycin (DNM) is incorporated into isolated plasma membranes from P388 murine leukemia cells, the drug partitions between 'deep' and 'surface' membrane domains. Such domains have been characterized on the basis of: (1) fluorescence resonance energy transfer between 1,6-diphenylhexa-1,3,5-triene or 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene as energy donors, which are well known in their positioning within the membrane, and daunomycin as the energy acceptor, and (2) quenching of the fluorescence of the membrane-associated drug by the water-soluble quencher iodide. The distribution of DNM between the two plasma membrane domains is different depending on the cellular phenotype. Thus, in membranes from drug-sensitive cells, DNM is preferentially confined to 'surface' domains, while in membranes from drug-resistant cells, the drug distributes more homogeneously between 'surface' and 'deep' domains. Experiments using artificial lipid vesicles suggest that differences in the relative levels of certain lipids in the plasma membranes from drug-sensitive and drug-resistant cells, namely phosphatidylserine and cholesterol, are partly responsible for the observed differences in the distribution of DNM. Since drug-membrane interactions are important in anthracycline cytotoxicity, it is possible that our observations on a different membrane distribution of daunomycin, may be related to the different sensitivity to the drug exhibited by these cells.
Collapse
|
28
|
Lakhdar-Ghazal F, Vigroux A, Willson M, Tocanne JF, Périé J, Faye JC. Interactions between trypanocidal drugs and membrane phospholipids. A surface pressure, surface potential and electrophoretic mobility study. Biochem Pharmacol 1991; 42:2099-105. [PMID: 1958228 DOI: 10.1016/0006-2952(91)90344-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphiphilic diphenyl methane derivatives exhibiting both antiproliferative and trypanocidal effects were studied with respect to their interactions with phospholipids, in monolayers and bilayers. These compounds, namely (4-benzyl)-phenoxy-2 trimethylammonium ethane iodide (D1), (4-tertiobutyl)-phenoxy-2 morpholinium ethane chloride (D2), and (4-benzyl)-phenoxy-2 morpholinium ethane chloride (D3), were shown to interact with phosphatidylcholine (PC) and phosphatidylserine (PS) in monolayers, as monitored by surface pressure and surface potential measurements. The film expansion of monolayers, on 10 mM NaCl subphase at pH 7.1, was more pronounced in the presence of D2 and D3 in the subphase before spreading of the lipids than with the injection of the drugs underneath a preformed film. Apparent binding constants of 10(4) M-1 were determined for both drugs from monolayer experiments. With D2 in the presence of PS, results of monolayer compressions and electrophoretic mobility measurements indicate binding of the drug to the lipid molecules only when the molecular area was large. D3 was shown to interact with PS, both in monolayers and bilayers, with a drug-to-lipid binding constant of about 2 x 10(4)M-1, as evaluated from electrophoretic mobility measurements on PS liposomes. These results, which indicate binding of these drugs to phospholipids in the order D2 less than D3, correlate with the biological activity of the drugs, and may account for the discrepancy observed between the drug concentrations required for biological and binding activities.
Collapse
Affiliation(s)
- F Lakhdar-Ghazal
- Centre de Recherches de Biochimie et de Génétique Cellulaires, CNRS, Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | |
Collapse
|
29
|
Diociaiuti M, Molinari A, Calcabrini A, Arancia G. Electron energy-loss spectroscopy analysis of adriamycin-plasma membrane interaction. J Microsc 1991; 164:95-106. [PMID: 1774784 DOI: 10.1111/j.1365-2818.1991.tb03196.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our previous studies on the mechanism of cytotoxic action of the anti-tumour drug adriamycin (ADR) indicated that this anthracyclinic antibiotic strongly modified the molecular architecture of the plasma membrane of human erythrocytes, presumably becoming incorporated within both lipid layers. In order to verify this hypothesis, electron energy-loss spectroscopy (EELS) has been used to compare the P content in control and ADR-treated erythrocyte ghosts. EELS measurements allowed us to reveal a significant reduction in the P/C ratio in erythrocyte ghosts after ADR treatment. This finding seems to reflect a phospholipid 'dilution' produced by the incorporation of the drug molecules in the membrane layers. A structural model of the ADR-membrane interaction is proposed.
Collapse
Affiliation(s)
- M Diociaiuti
- Department of Ultrastructures, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
30
|
Canaves JM, Ferragut JA, Gonzalez-Ros JM. Verapamil prevents the effects of daunomycin on the thermotropic phase transition of model lipid bilayers. Biochem J 1991; 279 ( Pt 2):413-8. [PMID: 1953639 PMCID: PMC1151620 DOI: 10.1042/bj2790413] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-sensitivity differential scanning calorimetry and fluorescence-depolarization techniques were used to study how the presence of daunomycin and/or verapamil affect the thermotropic behaviour of dipalmitoyl phosphatidylcholine (DPPC) vesicles. Daunomycin, a potent anti-cancer agent, perturbs the thermodynamic parameters associated with the lipid phase transition: it decreases the enthalpy change, lowers the transition temperature and reduces the co-operative behavior of the phospholipid molecules. Verapamil, on the other hand, produces smaller alterations in the lipid phase transition. However, when daunomycin and verapamil are present simultaneously in the DPPC vesicles, it is observed that verapamil prevents, in a concentration-dependent manner, the alteration in the phospholipid phase transition expected from the presence of daunomycin in the bilayer. Furthermore, drug-binding studies suggest that the observed interference of verapamil in the daunomycin/phospholipid interaction occurs without a decrease in the amount of daunomycin bound to the lipid bilayer and without the formation of a daunomycin-verapamil complex. Because of the importance of drug-membrane interactions in anthracycline cytotoxicity, we speculate that the lipid bilayer of biological membranes may provide appropriate sites at which the presence of verapamil influences the activity of daunomycin.
Collapse
Affiliation(s)
- J M Canaves
- Department of Neurochemistry, University of Alicante, Spain
| | | | | |
Collapse
|
31
|
de Wolf FA. Binding of doxorubicin to cardiolipin as compared to other anionic phospholipids--an evaluation of electrostatic effects. Biosci Rep 1991; 11:275-84. [PMID: 1790317 DOI: 10.1007/bf01127503] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The binding of doxorubicin to large unilamellar vesicles consisting of cardiolipin or other anionic phospholipids was analyzed in terms of the local drug concentration at the membrane surface, according to the Gouy-Chapman theory. The analysis suggests strong positive binding cooperativity. Part of the drug binds in the uncharged form. The affinity for cardiolipin and other anionic phospholipids is comparable. A binding level of 0.5 doxorubicin per lipid-phosphorus is reached when the local concentration of free doxorubicin monomer-equivalents at the membrane surface is about 0.2-0.7 mM. This contrasts with earlier findings indicating a 300-1000 fold higher affinity for cardiolipin. The present analysis provides an explanation for this apparent discrepancy.
Collapse
Affiliation(s)
- F A de Wolf
- Institute of Molecular Biology and Medical Biotechnology, State University of Utrecht, The Netherlands
| |
Collapse
|
32
|
de Wolf FA, Demel RA, Bets D, van Kats C, de Kruijff B. Characterization of the interaction of doxorubicin with (poly)phosphoinositides in model systems. Evidence for specific interaction with phosphatidylinositol-monophosphate and -diphosphate. FEBS Lett 1991; 288:237-40. [PMID: 1652476 DOI: 10.1016/0014-5793(91)81043-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anticancer drug doxorubicin penetrates into Langmuir monolayers containing phosphoinositides. Upon binding of doxorubicin to phosphoinositide-containing SUV, its fluorescence is self-quenched due to self-association. As compared to other anionic phospholipids, as much as 2- to 3-fold larger effects were obtained with PIP and PIP2, in mixtures of these lipids with DOPC. Doxorubicin competes efficiently with the non-penetrating antibiotic neomycin for binding to PIP2. According to its penetration, specific binding of doxorubicin was half-maximal at 5-15 microM. It is likely that also in biological membranes doxorubicin binds specifically to PIP and PIP2.
Collapse
Affiliation(s)
- F A de Wolf
- Institute of Molecular Biology and Medical Biotechnology, State University Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Abstract
Adriamycin has a vast range of reported actions on the structural and functional properties of cells. This review summarizes the literature on the ability of the drug to modulate the cell surface membrane and attempts to address the question of how such actions could be linked to cytotoxicity. In addition, we consider the use of polymer immobilization of adriamycin to separate intracellular from plasma membrane effects of the drug, and show how this approach has been helpful in interpreting the pharmacology of adriamycin. Finally, a range of biophysical and spectroscopic approaches to defining the molecular details of adriamycin-bilayer interactions is surveyed, and the results used to discuss a model for how this antineoplastic agent binds to membranes.
Collapse
Affiliation(s)
- T R Tritton
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405
| |
Collapse
|
34
|
Thomas PG, Verkleij AJ. The dissimilar interactions of the calcium antagonist flunarizine with different phospholipid classes and molecular species: a differential scanning calorimetry study. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1030:211-22. [PMID: 2261484 DOI: 10.1016/0005-2736(90)90297-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influence of the class IV calcium antagonist flunarizine on the phase behaviour of different species of the major phospholipid classes of mammalian plasma membranes has been examined using differential scanning calorimetry. We show that it has the ability to substantially influence the phase behaviour of phospholipids. Flunarizine significantly influences the gel to liquid-crystalline transition temperature of phosphatidylserines whilst having little effect on those of the phosphatidylethanolamines tested. The liquid-crystalline to inverted hexagonal phase transition of phosphatidylethanolamines is, however, strongly induced by the presence of flunarizine. Examination of the effect of flunarizine on the phase behaviour of different phosphatidylcholine species revealed an acyl-chain dependent influence. Dissimilar results with phosphatidylcholines, phosphatidylethanolamines and phosphatidylserines reveal different locations and ionization states for the drug in the different phospholipid bilayers. These results not only indicate an essential role for the ionization state of the drug in determining drug-phospholipid interactions but also the role of the phospholipid in determining the ionization state of the drug and have important implications for drug-membrane interactions demonstrating that drug interaction with one phospholipid may bear no relation whatsoever to its interaction with another.
Collapse
Affiliation(s)
- P G Thomas
- Institute of Molecular Biology and Medical Biotechnology, University of Utrecht, The Netherlands
| | | |
Collapse
|
35
|
de Wolf FA, Maliepaard M, van Dorsten F, Berghuis I, Nicolay K, de Kruijff B. Comparable interaction of doxorubicin with various acidic phospholipids results in changes of lipid order and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1096:67-80. [PMID: 2268686 DOI: 10.1016/0925-4439(90)90014-g] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have characterized the interaction of the antitumor drug doxorubicin with model membranes of the anionic phospholipids dioleoylphosphatidic acid (DOPA), dioleoylphosphatidylserine (DOPS), cardiolipin and dioleoylphosphatidylglycerol (DOPG) as compared to the zwitterionic dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylethanolamine (DOPE). The saturating binding levels were: 2.4 (DOPA), 1.3 (cardiolipin), 1.5 (DOPS, DOPG) and 0.02 (DOPC) doxorubicin per lipid phosphorus (mol/mol). The half-saturating free drug concentrations were comparable for DOPA, cardiolipin, DOPS and DOPG: 20, 16, 35 and 18 microM, respectively. Doxorubicin fluorescence revealed the simultaneous existence of at least two populations of bound drug in the various anionic phospholipids: (1) fluorescent molecules with chromophores that reside between the lipid molecules and (2) above 0.01-0.02 doxorubicin bound per lipid phosphorus: non-fluorescent drug-stacks that are closer to the aqueous phase than the fluorescent molecules. Small-angle X-ray scattering indicated that doxorubicin can reorganize anionic phospholipid dispersions into closely-packed multilamellar structures. Addition of the drug caused leakage of entrapped 6-carboxyfluorescein. Neither 2H-NMR on [2-2H]serine-labelled DOPS nor 31P-NMR revealed any significant effect of doxorubicin on headgroup conformation, but 2H-NMR on di[11,11-2H2]oleoyl-labelled phospholipids showed that the drug had a strong acyl chain-disordering effect on anionic phospholipids. 2H-NMR relaxation measurements indicated that the drug immobilized the headgroups and acyl chains of anionic phospholipids. The implications of these observations for the cellular activity of the drug are indicated.
Collapse
Affiliation(s)
- F A de Wolf
- Institute of Molecular Biology and Medical Biotechnology, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
In conclusion, charged membrane together with their adjacent electrolyte solution form a thermodynamic and physico-chemical entity. Their surfaces represent an exceptionally complicated interfacial system owing to intrinsic membrane complexity, as well as to the polarity and often large thickness of the interfacial region. Despite this, charged membranes can be described reasonably accurately within the framework of available theoretical models, provided that the latter are chosen on the basis of suitable criteria, which are briefly discussed in Section A. Interion correlations are likely to be important for the regular and/or rigid, thin membrane-solution interfaces. Lateral distribution of the structural membrane charge is seldom and charge distribution perpendicular to the membranes is nearly always electrostatically important. So is the interfacial hydration, which to a large extent determines the properties of the innermost part of the interfacial region, with a thickness of 2-3 nm. Fine structure of the ion double-layer and the interfacial smearing of the structural membrane charge decrease whilst the surface hydration increases the calculated value of the electrostatic membrane potential relative to the result of common Gouy-Chapman approximation. In some cases these effects partly cancel-out; simple electrostatic models are then fairly accurate. Notwithstanding this, it is at present difficult to draw detailed molecular conclusions from a large part of the published data, mainly owing to the lack of really stringent controls or calibrations. Ion binding to the membrane surface is a complicated process which involves charge-charge as well as charge-solvent interactions. Its efficiency normally increases with the ion valency and with the membrane charge density, but it is also strongly dependent on the physico-chemical and thermodynamic state of the membrane. Except in the case of the stereospecific ion binding to a membrane, the relatively easily accessible phosphate and carboxylic groups on lipids and integral membrane proteins are the main cation binding sites. Anions bind preferentially to the amine groups, even on zwitterionic molecules. Membrane structure is apt to change upon ion binding but not always in the same direction: membranes with bound ions can either expand or become more condensed, depending on the final hydrophilicity (polarity) of the membrane surface. The more polar membranes, as a rule, are less tightly packed and more fluid. Diffusive ion flow across a membrane depends on the transmembrane potential and concentration gradients, but also on the coulombic and hydration potentials at the membrane surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Cevc
- Medizinische Biophysik, Technischen Universität München, F.R.G
| |
Collapse
|
37
|
Gribble GW. Chapter 7 Synthesis and Antitumor Activity of Ellipticine Alkaloids and Related Compounds. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0099-9598(08)60169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
38
|
Abstract
In the concluding Discussion session, emphasis focussed on the potential for interfering selectively with cell membranes and cell signalling in tumour as against normal tissues. There could be no doubt that tremendous advances are being made in our understanding of the molecular changes associated with malignancy and that the information available for the rational design of inhibitors of particular signalling pathways is increasingly sophisticated. There was a consensus that we need more information on the qualitative and quantitative differences in the structure and function of membranes and the signalling machinery in various normal tissues as compared to their cancerous counterparts. Ideally we will develop drug against, for example, specific forms of, let us say, protein kinase C or tyrosine kinase which are found to be predominantly active in neoplastic cells. This may well prove possible, at least in some instances, in which case a safe therapeutic margin will be assured. But differences may in other situations turn out to be in the level of expression rather than purely qualitative in nature, and the scale of the disparate expression may not always be great. Even in such situations, adequate therapeutic selectivity may still be achieved. This may derive from a "damping down" of signalling in the hyperactive tumour. Although there are legitimate concerns regarding the possible toxic effects of administering signal-wrecking molecules in man, we should not be pessimistic as there are clear precedents elsewhere in medicine for drugs acting on membrane signals proving to be safe and effective against expectation informed by hindsight. There may also be concerns about new forms of drug resistance. But this will be so for any new agent or novel target. And with mechanism of action clearly to the fore we should be able to predict resistance pathways in advance and devise appropriate circumvention strategies or targeted second line therapies. There was a palpable buzz at the meeting that this is a valid, different and above all rational approach. Not only that, but the new therapeutic molecules which we discover will themselves prove to be valuable tools with which to probe further into the mechanisms of malignancy and signal transduction. We had expected to see a bewildering amount of new information from the basic sciences of molecularbiology and cell physiology, and we got it. But it was also impressive to witness the number of new compounds coming through which look like real drugs or at least exciting lead compounds. The membrane-active ether lipids are in clinical trial. Bryostatin 1 will shortly join them.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Workman
- MRC Clinical Oncology Unit, Medical Research Council Centre, Cambridge, UK
| |
Collapse
|
39
|
Voltammetric determination of Celiptium with carbon paste and lipid-modified carbon paste electrodes. Anal Chim Acta 1990. [DOI: 10.1016/s0003-2670(00)83326-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Storm G, van Bloois L, Steerenberg P, van Etten E, de Groot G, Crommelin D. Liposome encapsulation of doxorubicin: Pharmaceutical and therapeutic aspects. J Control Release 1989. [DOI: 10.1016/0168-3659(89)90090-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Dupou-Cézanne L, Sautereau AM, Tocanne JF. Localization of adriamycin in model and natural membranes. Influence of lipid molecular packing. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:695-702. [PMID: 2731543 DOI: 10.1111/j.1432-1033.1989.tb14779.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.
Collapse
Affiliation(s)
- L Dupou-Cézanne
- Centre de Recherche de Biologie et de Génétique Cellulaires du Centre National de Recherche Scientifique, Toulouse, France
| | | | | |
Collapse
|
42
|
Sautereau AM, Betermier M, Altibelli A, Tocanne JF. Adsorption of the cationic antitumoral drug celiptium to phosphatidylglycerol in membrane model systems. Effect on membrane electrical properties. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 978:276-82. [PMID: 2914142 DOI: 10.1016/0005-2736(89)90125-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The binding of the cationic antitumoral drug Celiptium to the anionic phospholipid phosphatidylglycerol was studied by measuring surface potentials and surface pressures in monolayers, and by determination of electrophoretic mobility on liposomes. Surface potential and zeta potential data were interpreted in terms of the Gouy-Chapman-Stern theory of the diffuse electrical double layer. A unique drug-to-lipid adsorption constant KaD, could not be calculated. KaD was observed to increase rapidly from 10(4) M-1 to 10(6) M-1 with an increase in drug concentration from 5 x 10(-7) M to 7 x 10(-6) M. This was accompanied by a marked decrease (in absolute value) in the corresponding electrophoretic mobilities which, from negative at low drug concentrations, became positive at drug concentrations of 10(-5) M and above. This indicates that the drug-to-lipid binding cannot be accounted for by a simple Langmuir adsorption isotherm, but corresponds to a more complex process, probably of a cooperative nature. Comparison of delta V and zeta potential data shows that adsorption of Celiptium to phosphatidylglycerol not only lowers the electrical surface potential, psi 0 (in absolute value) but also markedly reduces the polarization potential, delta Vp. These observations suggest that Celiptium destabilizes the electrical properties of cell plasma membranes.
Collapse
Affiliation(s)
- A M Sautereau
- Centre de Recherches de Biochimie et de Génétique Cellulaires du CNRS and Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|