1
|
Martinho N, Marquês JMT, Todoriko I, Prieto M, de Almeida RF, Silva LC. Effect of Cisplatin and Its Cationic Analogues in the Phase Behavior and Permeability of Model Lipid Bilayers. Mol Pharm 2023; 20:918-928. [PMID: 36700695 PMCID: PMC9906771 DOI: 10.1021/acs.molpharmaceut.2c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing evidence suggests a critical role of lipids in both the mechanisms of toxicity and resistance of cells to platinum(II) complexes. In particular, cisplatin and other analogues were reported to interact with lipids and transiently promote lipid phase changes both in the bulk membranes and in specific membrane domains. However, these processes are complex and not fully understood. In this work, cisplatin and its cationic species formed at pH 7.4 in low chloride concentrations were tested for their ability to induce phase changes in model membranes with different lipid compositions. Fluorescent probes that partition to different lipid phases were used to report on the fluidity of the membrane, and a leakage assay was performed to evaluate the effect of cisplatin in the permeability of these vesicles. The results showed that platinum(II) complex effects on membrane fluidity depend on membrane lipid composition and properties, promoting a stronger decrease in the fluidity of membranes containing gel phase. Moreover, at high concentration, these complexes were prone to alter the permeability of lipid membranes without inducing their collapse or aggregation.
Collapse
Affiliation(s)
- Nuno Martinho
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003Lisboa, Portugal,iBB—Institute
for Bioengineering and Biosciences and Department of Bioengineering,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, 1649-003Lisboa, Portugal,Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1649-003Lisboa, Portugal
| | - Joaquim M. T. Marquês
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1649-003Lisboa, Portugal
| | - Iryna Todoriko
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1649-003Lisboa, Portugal
| | - Manuel Prieto
- iBB—Institute
for Bioengineering and Biosciences and Department of Bioengineering,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, 1649-003Lisboa, Portugal,Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1649-003Lisboa, Portugal
| | - Rodrigo F.M. de Almeida
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1649-003Lisboa, Portugal
| | - Liana C. Silva
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003Lisboa, Portugal,
| |
Collapse
|
2
|
Martinho N, Santos TCB, Florindo HF, Silva LC. Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Front Physiol 2019; 9:1898. [PMID: 30687116 PMCID: PMC6336831 DOI: 10.3389/fphys.2018.01898] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
Cisplatin and other platinum(II) analogs are widely used in clinical practice as anti-cancer drugs for a wide range of tumors. The primary mechanism by which they exert their action is through the formation of adducts with genomic DNA. However, multiple cellular targets by platinum(II) complexes have been described. In particular, the early events occurring at the plasma membrane (PM), i.e., platinum-membrane interactions seem to be involved in the uptake, cytotoxicity and cell-resistance to cisplatin. In fact, PM influences signaling events, and cisplatin-induced changes on membrane organization and fluidity were shown to activate apoptotic pathways. This review critically discusses the sequence of events caused by lipid membrane-platinum interactions, with emphasis on the mechanisms that lead to changes in the biophysical properties of the membranes (e.g., fluidity and permeability), and how these correlate with sensitivity and resistance phenotypes of cells to platinum(II) complexes.
Collapse
Affiliation(s)
- Nuno Martinho
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia C B Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Helena F Florindo
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Kada G, Falk H, Gruber HJ. Accurate measurement of avidin and streptavidin in crude biofluids with a new, optimized biotin-fluorescein conjugate. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:33-43. [PMID: 10082985 DOI: 10.1016/s0304-4165(98)00178-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new biotin-fluorescein conjugate with an ethylene diamine spacer was found to be the first fluorescent biotin derivative which truly mimicked d-biotin in terms of high affinity, fast association, and non-cooperative binding to avidin and streptavidin tetramers. These exceptional properties were attributed to the small size/length of the new ligand since all larger/longer biotin derivatives are known for their mutual steric hindrance and anti-cooperative binding in 4:1 complexes with avidin and streptavidin tetramers. Specific binding of the new biotin-fluorescein conjugate towards avidin and streptavidin was accompanied by 84-88% quenching of ligand fluorescence. In the accompanying study this effect was used for rapid estimation of avidin and streptavidin in a new 'single tube assay'. In the present study the strong quenching effect was utilized to accurately monitor stoichiometric titration of biotin-binding sites in samples with >/=200 pM avidin or streptavidin. The concentration was calculated from the consumption of fluorescent ligand up to the distinct breakpoint in the fluorescence titration profile which was marked by the abrupt appearance of strongly fluorescent ligands which were in excess. Due to this protocol the assay was not perturbed by background fluorescence or coloration in the unknown samples. The new fluorescence titration assay is particularly suited for quick checks on short notice because getting started only means to thaw an aliquot of a standardized stock solution of fluorescent ligand. No calibration is required for the individual assay and the ligand stock solution needs to be restandardized once per week (or once per year) when stored at -25 degrees C (or at -70 degrees C, respectively).
Collapse
Affiliation(s)
- G Kada
- Institute of Biophysics, J. Kepler University, Altenberger Str. 69, A-4040, Linz, Austria
| | | | | |
Collapse
|
4
|
Stekhoven FM, Tijmes J, Umeda M, Inoue K, De Pont JJ. Monoclonal antibody to phosphatidylserine inhibits Na+/K(+)-ATPase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1194:155-65. [PMID: 8075130 DOI: 10.1016/0005-2736(94)90215-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A monoclonal IgG, directed to phosphatidylserine (PS1G3), partially (40-50%) inhibited Na+/K(+)-ATPase activity (forward running reaction cycle) without affecting the K0.5 values for Na+,K+ and MgATP. The Hill or interaction coefficients (nH) for Na+ and K+ for this reaction were reduced from 3.0 to 1.6 and from 1.6 to 0.8, respectively. The K(+)-stimulated p-nitrophenylphosphatase activity (p-NPPase), which is a partial reaction sequence of the Na+/K(+)-ATPase system (but in the backward running mode), was inhibited more strongly (about 70%) due to an increase in K+/substrate antagonism. In this system K0.5 and nH values for both p-nitrophenyl phosphate (p-NPP) and K+ were increased by the mAb. At the maximally inhibitory concentration of PS1G3 the Vmax of the p-NPPase was also reduced. Partial reactions, which were inhibited by PS1G3, are: (1) the Na(+)-activated phosphorylation (non-competitive vs. Na+), (2) the Rb+ occlusion (competitive vs. Rb+). Partial reactions not harmed by PS1G3 are: (3) the K(+)-dependent dephosphorylation, (4) the K(+)-dependent E1 + K+<-->E2K transition. We conclude that PtdSer is involved in cation occlusion, possibly by forming part of the access gate.
Collapse
Affiliation(s)
- F M Stekhoven
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|