1
|
Favela-Rosales F, Hernández-Cobos J, Galván-Hernández A, Hernández-Villanueva O, Ortega-Blake I. Effect of ergosterol or cholesterol on the morphology and dynamics of the POPC/sphingomyelin bilayer. Biophys Chem 2025; 320-321:107408. [PMID: 39978121 DOI: 10.1016/j.bpc.2025.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Phase segregation and domain formation in cell membranes and model lipid bilayers have become a relevant topic in the last decades due to their role in important cell functions such as signaling and molecule-membrane interactions. To date, the most accepted explanation for the formation of these domains in mammalian cells is that cholesterol-enriched sphingomyelin patches of membrane form because of the preferential interaction between them. However, detailed information on molecular interactions within cholesterol-containing bilayers and their comparison with other sterol-containing bilayers, such as those containing ergosterol, is needed to understand the role these molecules have. Recent experimental findings have shown sterol-dependent differences in the morphology of supported lipid bilayers, but the molecular basis for these differences remains unclear. This work provides a molecular explanation for these differences using atomistic Molecular Dynamics simulations of lipid bilayers composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM) with 20 mol% of cholesterol or ergosterol. Atomic force microscopy was used to validate the simulation. The simulation ran for 11 μs and revealed that both sterols affect the morphology of the membrane. Key findings include: ergosterol induces greater order in PSM domains compared to cholesterol, lipid diffusion constants are lower in ergosterol-containing membranes, sterol flip-flop rates are significantly reduced in ergosterol-containing membranes and ergosterol leads to greater PSM-sterol enrichment. These molecular-level differences provide insight into the experimentally observed variations in domain formation and membrane properties between cholesterol and ergosterol-containing bilayers. Our findings contribute to the understanding of sterol-specific effects on membrane organization and dynamics, with potential implications for cellular processes and drug interactions in different organisms. STATEMENT OF SIGNIFICANCE: This study advances our understanding of how different sterols influence membrane properties through molecular dynamics simulations of three-component lipid membranes. Specifically, we investigate the effects of two major sterols: ergosterol, predominantly found in plants and fungi, and cholesterol, characteristic of mammalian cells. While extensive research has elucidated cholesterol's impact on lipid bilayers, studies on ergosterol's effects are comparatively limited. Our work provides a comprehensive comparison of these sterols, highlighting their similarities and differences. These insights not only enhance our knowledge of cell membrane structure and function, but also contribute to our understanding of selective drug permeability across membranes. This research has potential implications for both fundamental cell biology and pharmaceutical applications.
Collapse
Affiliation(s)
- Fernando Favela-Rosales
- Tecnológico Nacional de México / ITS Zacatecas Occidente, Ave. Tecnológico No. 2000, Col. Loma la Perla, Sombrerete, Zacatecas 99102, Mexico
| | - Jorge Hernández-Cobos
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Omar Hernández-Villanueva
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Edificio 43 Col, Chamilpa, 62210 Cuernavaca, Mor, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
2
|
Perera D, Lishchuk V, Moghaddam AH, Mylläri J, Wiedmer SK. Differences in the distribution of steroids in sterol-containing liposomes: A study by liposome electrokinetic chromatography. J Chromatogr A 2025; 1743:465688. [PMID: 39837185 DOI: 10.1016/j.chroma.2025.465688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
This study was conducted to investigate possible differences in the interactions of some selected steroids based on their distribution coefficients with cholesterol- or ergosterol-rich liposomes. Structurally cholesterol and ergosterol have very close resemblance to each other and generally it is thought that they behave in a similar manner. In this work we will show that this is not the case. Liposome electrokinetic chromatography (LEKC) was selected as the methodology for estimating the interactions between the steroids and the liposomes and for calculating the distribution coefficients. Apart from the distribution coefficients, the interactions were also studied with a response surface methodology and exploratory regression analysis. Both graphical and statistical analysis confirmed that there is an obvious difference in the interactions between the studies steroids and the cholesterol- or ergosterol-rich liposomes, and even a minute change in the sterol content had a significant impact on the interactions. The study demonstrates the flexibility and efficacy of LEKC for studying analyte-lipid membrane interactions, and for investigating taylor-made liposome systems.
Collapse
Affiliation(s)
- Dumidu Perera
- Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland
| | - Valeriia Lishchuk
- Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Juha Mylläri
- Department of Computer Science, Faculty of Science, POB 68 (Pietari Kalmin katu 5), 00014 University of Helsinki, Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Li Y, Liu Y, Yang B, Li G, Chu H. Polarizable atomic multipole-based force field for cholesterol. J Biomol Struct Dyn 2024; 42:7747-7757. [PMID: 37565356 DOI: 10.1080/07391102.2023.2245045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Cholesterol is one of the essential component of lipid in membrane. We present a polarizable atomic multipole force field (FF) for the molecular dynamic simulation of cholesterol. The FF building process follows the computational framework as the atomic multipole optimized energetics for biomolecular applications (AMOEBA) model. In this framework, the electronics parameters, including atomic monopole moments, dipole moments, and quadrupole moments calculated from ab initio calculations in the gas phase, are applied to represent the charge distribution. Furthermore, the many-body polarization is modeled by following the same pattern of distributed atomic polarizabilities. Then, the bilayers composed of two typical phospholipid molecules, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in a range of different cholesterol concentrations are built and implemented by molecular dynamics (MD) simulations based on the proposed polarizable FF. The simulation results are statistically analyzed to validate the feasibility of the proposed FF. The structural properties of the bilayers are calculated to compare with the related experimental values. The MD values show the same trend of experimental values changes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | - Boya Yang
- Dalian Municipal Central Hospital, Liaoning, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| |
Collapse
|
4
|
Jaikishan S, Lavainne M, Ravald HK, Scobbie K, Dusa F, Maheswari R, Turpeinen J, Eikemans I, Chen R, Rantala J, Aseyev V, Maier NN, Wiedmer SK. Fragment-based approach to study fungicide-biomimetic membrane interactions. SOFT MATTER 2024. [PMID: 39012330 DOI: 10.1039/d4sm00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, the molecular interactions of the allylamine-type fungicide butenafine and a set of substructures ("fragments") with liposomes mimicking biological membranes were studied to gain a better understanding of the structural factors governing membrane affinity and perturbation. Specifically, drug/fragment-membrane interactions were investigated using an interdisciplinary approach involving micro differential scanning calorimetry, open-tubular capillary electrochromatography, nanoplasmonic sensing, and quartz crystal microbalance. By incubating the drug and the fragment compounds with liposomes with varying lipid composition or by externally adding the compounds to preformed liposomes, a detailed mechanistic picture on the underlying drug/fragment-membrane interactions was obtained. The nature and the degree of ionisation of polar head groups of the lipids had a major influence on the nature of drug-membrane interactions, and so had the presence and relative concentration of cholesterol within the membranes. The in-depth understanding of drug/fragment-membranes interactions established by the presented interdisciplinary fragment-based approach may be useful in guiding the design and early-stage evaluation of prospective antifungal drug candidates, and the discovery of agents with improved membrane penetrating characteristics in general.
Collapse
Affiliation(s)
- Shishir Jaikishan
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Marine Lavainne
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Henri K Ravald
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Kieran Scobbie
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Filip Dusa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, Brno 60200, Czech Republic
| | - Rekha Maheswari
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Jenni Turpeinen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Ian Eikemans
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Rui Chen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Julia Rantala
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Vladimir Aseyev
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Norbert N Maier
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
5
|
Nguyen HNA, Sharp L, Lyman E, Saenz JP. Varying the position of phospholipid acyl chain unsaturation modulates hopanoid and sterol ordering. Biophys J 2024; 123:1896-1902. [PMID: 38850024 PMCID: PMC11267422 DOI: 10.1016/j.bpj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the ordering of hydrocarbon chains and the packing of lipids. Many eukaryotes synthesize sterols, which are uniquely capable of modulating the lipid order to decouple membrane stability from fluidity. Ancient sterol analogs known as hopanoids are found in many bacteria and proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. In this work, simulations, monolayer experiments, and cellular assays show that hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest that cholesterol's broader lipid-ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.
Collapse
Affiliation(s)
- Ha Ngoc Anh Nguyen
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; College of Arts and Sciences, Fairfield University, Fairfield, Connecticut
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany; Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Okayama A, Hoshino T, Wada K, Takahashi H. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers. Chem Phys Lipids 2024; 259:105376. [PMID: 38325710 DOI: 10.1016/j.chemphyslip.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Membrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H2O and D2O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/cholesterol bilayer has a better barrier property than the other two systems. Compared to cholesterol, the effects of lanosterol and 7β-hydroxycholesterol on lipid bilayer properties can be interpreted as suboptimal for the function of mammalian biomembranes.
Collapse
Affiliation(s)
- Ayumi Okayama
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuya Hoshino
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Kohei Wada
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan.
| |
Collapse
|
8
|
Nguyen HNA, Sharp L, Lyman E, Saenz JP. Varying the position of phospholipid acyl chain unsaturation modulates hopanoid and sterol ordering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.06.556521. [PMID: 38370701 PMCID: PMC10871177 DOI: 10.1101/2023.09.06.556521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the thermodynamic ordering of lipids. Most Eukaryotes employ sterols, which are uniquely capable of modulating lipid order to decouple membrane stability from fluidity. Ancient sterol analogues known as hopanoids are found in many bacteria and are proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. We reveal that both hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid's acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest cholesterol's broader lipid ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.
Collapse
Affiliation(s)
- Ha-Ngoc-Anh Nguyen
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark DE 19716
- College of Arts and Sciences, Fairfield University, Fairfield, CT 06824
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark DE 19716
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
- Medical Faculty, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
9
|
Liu WX, Zhang M, Zhang YJ, Zhao P. Two new triterpenoids from the stems of Euphorbia royleana. Nat Prod Res 2024:1-7. [PMID: 38189345 DOI: 10.1080/14786419.2023.2300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Two new triterpenoids, namely 24-methylene-5,24-dien-19(10→9)-abeo-8α,9β,10α-eupha-3β-ol (1) and 24-methyl-5,23-dien-19(10→9)-abeo-8α,9β,10α-eupha-3β-ol (2) were isolated from the stems of Euphorbia royleana, together with three known analogs. The structures of the new compounds were elucidated by extensive 1H NMR,13C NMR, HSQC, HMBC, 1H-1H COSY, ROESY and HR-MS spectroscopic analyses.
Collapse
Affiliation(s)
- Wen-Xing Liu
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ping Zhao
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| |
Collapse
|
10
|
Albright JM, Sydor MJ, Shannahan J, Ferreira CR, Holian A. Imipramine Treatment Alters Sphingomyelin, Cholesterol, and Glycerophospholipid Metabolism in Isolated Macrophage Lysosomes. Biomolecules 2023; 13:1732. [PMID: 38136603 PMCID: PMC10742328 DOI: 10.3390/biom13121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.
Collapse
Affiliation(s)
- Jacob M. Albright
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences (CEHS), University of Montana, Missoula, MT 59812, USA
| | - Matthew J. Sydor
- Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Christina R. Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA;
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences (CEHS), University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
11
|
Reinhard J, Leveille CL, Cornell CE, Merz AJ, Klose C, Ernst R, Keller SL. Remodeling of yeast vacuole membrane lipidomes from the log (one phase) to stationary stage (two phases). Biophys J 2023; 122:1043-1057. [PMID: 36635960 PMCID: PMC10111276 DOI: 10.1016/j.bpj.2023.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Upon nutrient limitation, budding yeast of Saccharomyces cerevisiae shift from fast growth (the log stage) to quiescence (the stationary stage). This shift is accompanied by liquid-liquid phase separation in the membrane of the vacuole, an endosomal organelle. Recent work indicates that the resulting micrometer-scale domains in vacuole membranes enable yeast to survive periods of stress. An outstanding question is which molecular changes might cause this membrane phase separation. Here, we conduct lipidomics of vacuole membranes in both the log and stationary stages. Isolation of pure vacuole membranes is challenging in the stationary stage, when lipid droplets are in close contact with vacuoles. Immuno-isolation has previously been shown to successfully purify log-stage vacuole membranes with high organelle specificity, but it was not previously possible to immuno-isolate stationary-stage vacuole membranes. Here, we develop Mam3 as a bait protein for vacuole immuno-isolation, and demonstrate low contamination by non-vacuolar membranes. We find that stationary-stage vacuole membranes contain surprisingly high fractions of phosphatidylcholine lipids (∼40%), roughly twice as much as log-stage membranes. Moreover, in the stationary stage, these lipids have higher melting temperatures, due to longer and more saturated acyl chains. Another surprise is that no significant change in sterol content is observed. These lipidomic changes, which are largely reflected on the whole-cell level, fit within the predominant view that phase separation in membranes requires at least three types of molecules to be present: lipids with high melting temperatures, lipids with low melting temperatures, and sterols.
Collapse
Affiliation(s)
- John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | | | | | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, WA.
| |
Collapse
|
12
|
Hossain KR, Turkewitz DR, Holt SA, Le Brun AP, Valenzuela SM. Sterol Structural Features' Impact on the Spontaneous Membrane Insertion of CLIC1 into Artificial Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3286-3300. [PMID: 36821411 DOI: 10.1021/acs.langmuir.2c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background: A membrane protein interaction with lipids shows distinct specificity in terms of the sterol structure. The structure of the sterol's polar headgroup, steroidal rings, and aliphatic side chains have all been shown to influence protein membrane interactions, including the initial binding and subsequent oligomerization to form functional channels. Previous studies have provided some insights into the regulatory role that cholesterol plays in the spontaneous membrane insertion of the chloride intracellular ion channel protein, CLIC1. However, the manner in which cholesterol interacts with CLIC1 is yet largely unknown. Method: In this study, the CLIC1 interaction with different lipid:sterol monolayers was studied using the Langmuir trough and neutron reflectometry in order to investigate the structural features of cholesterol essential for the spontaneous membrane insertion of the CLIC1 protein. Molecular docking simulations were also performed to study the binding affinities between CLIC1 and the different sterol molecules. Results: This study, for the first time, highlights the vital role of the free sterol 3β-OH group as an essential structural requirement for the interaction of CLIC1 with cholesterol. Furthermore, the presence of additional hydroxyl groups, methylation of the sterol skeleton, and the structure of the sterol alkyl side chain have also been shown to modulate the magnitude of CLIC1 interaction with sterols and hence their spontaneous membrane insertion. This study also reports the ability of CLIC1 to interact with other naturally existing sterol molecules. General Significance: Like the sterol molecules, CLIC proteins are evolutionarily conserved with almost all vertebrates expressing six CLIC proteins (CLIC1-6), and CLIC-like proteins are also present in invertebrates and have also been reported in plants. This discovery of CLIC1 protein interaction with other natural sterols and the sterol structural requirements for CLIC membrane insertion provide key information to explore the feasibility of exploiting these properties for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- Khondker R Hossain
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Daniel R Turkewitz
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL Hub), Faculty of Science, University of Technology Sydney, , Sydney, New South Wales 2007, Australia
| |
Collapse
|
13
|
Morvan E, Taib-Maamar N, Grélard A, Loquet A, Dufourc EJ. Dynamic Sorting of Mobile and Rigid Molecules in Biomembranes by Magic-Angle Spinning 13C NMR. Anal Chem 2023; 95:3596-3605. [PMID: 36749686 DOI: 10.1021/acs.analchem.2c04185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the membrane dynamics of complex systems is essential to follow their function. As molecules in membranes can be in a rigid or mobile state depending on external (temperature, pressure) or internal (pH, domains, etc.) conditions, we propose an in-depth examination of NMR methods to filter highly mobile molecular parts from others that are in more restricted environments. We have thus developed a quantitative magic-angle spinning (MAS) 13C NMR approach coupled with cross-polarization (CP) and/or Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) on rigid and fluid unlabeled model membranes. We demonstrate that INEPT can detect only very mobile lipid headgroups in gel (solid-ordered) phases; the remaining rigid parts are only detected with CP. A direct correlation is established between the normalized line intensity as obtained by CP and the C-H (C-D) order parameters measured by wide-line 2H NMR or extracted from molecular dynamics: ICP/IDPeq ≈ 5|SCH|, indicating that when the order is greater than 0.2-0.3 (maximum value of 0.5 for chain CH2), only rigid parts can be filtered and detected using CP techniques. In very fluid (liquid-disordered) membranes, where there are many more active motions, both INEPT and CP detect resonances, with, however, a clear propensity of each technique to detect mobile and restricted molecular parts, respectively. Interestingly, the 13C NMR chemical shift of lipid hydrocarbon chains can be used to monitor order-disorder phase transitions and calculate the fraction of chain defects (rotamers) and the part of the transition enthalpy due to bond rotations (6-7 kJ·mol-1 for dimyristolphosphatidylcholine, DMPC). Cholesterol-containing membranes (liquid-ordered phases) can be dynamically contrasted as the rigid-body sterol is mainly detected by the CP technique, with a contact time of 1 ms, and the phospholipid by INEPT. Our work opens up a straightforward, robust, and cost-effective route for the determination of membrane dynamics by taking advantage of well-resolved conventional 13C NMR experiments without the need of isotopic labeling.
Collapse
Affiliation(s)
- Estelle Morvan
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France
| | - Nada Taib-Maamar
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| | - Axelle Grélard
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| | - Antoine Loquet
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| | - Erick J Dufourc
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| |
Collapse
|
14
|
Potapov K, Gordeev A, Biktasheva L, Rudakova M, Alexandrov A. Effects of Natural Rhamnolipid Mixture on Dioleoylphosphatidylcholine Model Membrane Depending on Method of Preparation and Sterol Content. MEMBRANES 2023; 13:112. [PMID: 36676919 PMCID: PMC9865241 DOI: 10.3390/membranes13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Rhamnolipids as biosurfactants have a potentially wide range of applications, for example, as "green" surfactants or components of drug delivery systems, which is associated with the features of their interaction with cell membranes. However, as noted in the literature, those kind of features have not been sufficiently studied now. This paper presents a study of the interaction of a natural mixture of rhamnolipids produced by bacteria of the rhizosphere zone of plants Pseudomonas aeruginosa with model membranes-liposomes based on dioleoylphosphatidylcholine (DOPC), depending on the method of their preparation and the content of sterols-ergosterol, cholesterol, lanosterol. Liposomes with rhamnolipids were prepared by two protocols: with film method from a mixture of DOPC and rhamnolipids; with film method from DOPC and injection of water solution of rhamnolipids. Joint analysis of the data of 31P NMR spectroscopy and ATR-FTIR spectroscopy showed that in the presence of rhamnolipids, the mobility of the head group of the DOPC phospholipid increases, the conformational disorder of the hydrophobic tail increases, and the degree of hydration of the C=O and P=O groups of the phospholipid decreases. It can be assumed that, when prepared from a mixture, rhamnolipids are incorporated into the membrane in the form of clusters and are located closer to the middle of the bilayer; while when prepared by injection, rhamnolipid molecules migrate into the membrane in the form of individual molecules and are located closer to the head part of phospholipids. The sterol composition of the model membrane also affects the interaction of rhamnolipids with the membrane. Here it is worth noting the possible presence of type of interaction between rhamnolipids and ergosterol differ from other investigated sterols, due to which rhamnolipid molecules are embedded in the area where ergosterol is located.
Collapse
Affiliation(s)
- Konstantin Potapov
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, 420011 Kazan, Russia
| | - Alexander Gordeev
- Institute of Environmental Sciences, Kazan Federal University, 420011 Kazan, Russia
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, 420011 Kazan, Russia
| | - Maya Rudakova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, 420011 Kazan, Russia
| | - Artem Alexandrov
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, 420011 Kazan, Russia
| |
Collapse
|
15
|
Braithwaite IM, Davis JH. Orientation of Cholesterol in Polyunsaturated Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15804-15816. [PMID: 36480923 DOI: 10.1021/acs.langmuir.2c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The local normal to the fluid liquid crystalline phase of the lipid membrane is an axis of motional symmetry for the molecules that make up the bilayer. The presence of cholesterol in the membrane increases not only the lipid hydrocarbon chain order but also the strength of the membrane's orienting potential. Cholesterol undergoes rapid reorientation about a diffusion axis that is roughly aligned with the long molecular axis, but there is also a slower reorientation of the diffusion axis, or "wobble", relative to the local bilayer normal. The extent of this second, slower motion depends on the degree of order of the lipids that make up the bilayer. We use 2H nuclear magnetic resonance of deuterium-labeled cholesterol to investigate quantitatively the effect of lipid chain unsaturation on cholesterol orientation in a series of phospholipid bilayers. We find that the hydrocarbon chains in membranes composed of polyunsaturated lipids are much more highly disordered than those in membranes composed of saturated lipids but that cholesterol remains aligned roughly along the bilayer normal.
Collapse
Affiliation(s)
| | - James H Davis
- Department of Physics, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
16
|
Taheri S, Ahadi Z, Matta CF, Ghanbarzadeh S, Shadman Lakmehsari M. The Effects of the Nature of the Sterol on the Properties and Stability of Niosome Bilayer Vesicles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
18
|
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun 2022; 13:1605. [PMID: 35338137 PMCID: PMC8956743 DOI: 10.1038/s41467-022-29272-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Cell membranes provide a selective semi-permeable barrier to the passive transport of molecules. This property differs greatly between organisms. While the cytoplasmic membrane of bacterial cells is highly permeable for weak acids and glycerol, yeasts can maintain large concentration gradients. Here we show that such differences can arise from the physical state of the plasma membrane. By combining stopped-flow kinetic measurements with molecular dynamics simulations, we performed a systematic analysis of the permeability of a variety of small molecules through synthetic membranes of different lipid composition to obtain detailed molecular insight into the permeation mechanisms. While membrane thickness is an important parameter for the permeability through fluid membranes, the largest differences occur when the membranes transit from the liquid-disordered to liquid-ordered and/or to gel state, which is in agreement with previous work on passive diffusion of water. By comparing our results with in vivo measurements from yeast, we conclude that the yeast membrane exists in a highly ordered and rigid state, which is comparable to synthetic saturated DPPC-sterol membranes. Membrane permeability of small molecules depends on the composition of the lipid bilayer. Here, authors compare permeability measured on membranes in different physical states and conclude that the yeast membrane exists in a highly ordered phase.
Collapse
Affiliation(s)
- Jacopo Frallicciardi
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Josef Melcr
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Pareskevi Siginou
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Siewert J Marrink
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
19
|
Nguyen HL, Man VH, Li MS, Derreumaux P, Wang J, Nguyen PH. Elastic moduli of normal and cancer cell membranes revealed by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:6225-6237. [PMID: 35229839 DOI: 10.1039/d1cp04836h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies indicate that there are mechanical differences between normal cells and cancer cells. Because the cell membrane takes part in a variety of vital processes, we test the hypothesis of whether or not two fundamental alterations in the cell membrane, i.e., the overexpression of phosphatidylserine lipids in the outer leaflet and a reduction in cholesterol concentration, could cause the softening in cancer cells. Adopting ten models of normal and cancer cell membranes, we carry out 1 μs all-atom molecular dynamics simulations to compare the structural properties and elasticity properties of two membrane types. We find that the overexpression of the phosphatidylserine lipids in the outer leaflet does not significantly alter the area per lipid, the membrane thickness, the lipid order parameters and the elasticity moduli of the cancer membranes. However, a reduction in the cholesterol concentration leads to clear changes in those quantities, especially decreases in the bending, tilt and twist moduli. This implies that the reduction of cholesterol concentration in the cancer membranes could contribute to the softening of cancer cells.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
20
|
Alavizargar A, Keller F, Wedlich-Söldner R, Heuer A. Effect of Cholesterol Versus Ergosterol on DPPC Bilayer Properties: Insights from Atomistic Simulations. J Phys Chem B 2021; 125:7679-7690. [PMID: 34255501 DOI: 10.1021/acs.jpcb.1c03528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sterols have been ascribed a major role in the organization of biological membranes, in particular for the formation of liquid ordered domains in complex lipid mixtures. Here, we employed molecular dynamics simulations to compare the effects of cholesterol and ergosterol as the major sterol of mammalian and fungal cells, respectively, on binary mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a proxy for saturated lipids. In agreement with previous work, we observe that the addition of sterol molecules modifies the order of DPPC both in the gel phase and in the liquid phase. When disentangling the overall tilt angle and the structure of the tail imposed by trans/gauche configurations of torsion angles in the tail, respectively, a more detailed picture of the impact of sterols can be formulated, revealing, for example, an approximate temperature-concentration superposition ranging from the liquid to the gel phase. Furthermore, a new quantitative measure to identify the presence of collective sterol effects is discussed. Moreover, when comparing both types of sterols, addition of cholesterol has a noticeably stronger impact on phospholipid properties than that of ergosterol. The observed differences can be attributed to higher planarity of the cholesterol ring system. This planarity combined with an inherent asymmetry in its molecular interactions leads to better alignment and hence stronger interaction with saturated acyl chains. Our results suggest that the high order demonstrated for ergosterol in fungal plasma membranes must therefore be generated via additional mechanisms.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - Fabian Keller
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| |
Collapse
|
21
|
The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. NANOMATERIALS 2020; 10:nano10122439. [PMID: 33291326 PMCID: PMC7762259 DOI: 10.3390/nano10122439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.
Collapse
|
22
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Cournia Z, Mavromoustakos T. Interplay of cholesterol, membrane bilayers and the AT1R: A cholesterol consensus motif on AT1R is revealed. Comput Struct Biotechnol J 2020; 19:110-120. [PMID: 33384858 PMCID: PMC7758360 DOI: 10.1016/j.csbj.2020.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Hypertension, mediated by the Angiotensin II receptor type 1 (AT1R), is still the major cause of premature death despite the discovery of novel therapeutics, highlighting the importance of an in depth understanding of the drug-AT1R recognition mechanisms coupled with the impact of the membrane environment on the interaction of drugs with AT1R. Herein, we examine the interplay of cholesterol-lipid-candesartan and the AT1R using Molecular Dynamics simulations of a model membrane consisting of 60:40 mol%. DPPC:cholesterol, candesartan and the AT1R, mimicking the physiological cholesterol concentration in sarcolemma membranes. The simulations of the model membrane of 60:40 mol%. DPPC:cholesterol were further validated using DOSY NMR experiments. Interestingly, our results suggest a significant role of cholesterol in the AT1R function imposed through a Cholesterol Consensus Motif (CCM) in the receptor, which could be crucial in the drug binding process. Candesartan diffusion towards AT1R through incorporation into lipid bilayers, appears to be retarded by the presence of cholesterol. However, its direct approach towards AT1R may be facilitated through the mobility induced on the N-terminus by the cholesterol binding on the CCM these novel insights could pave the way towards the development of more potent pharmaceutical agents to combat hypertension more effectively.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G. Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
- Corresponding authors.
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
- Corresponding authors.
| |
Collapse
|
23
|
Herzog M, Tiso T, Blank LM, Winter R. Interaction of rhamnolipids with model biomembranes of varying complexity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183431. [DOI: 10.1016/j.bbamem.2020.183431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
|
24
|
Galván-Hernández A, Kobayashi N, Hernández-Cobos J, Antillón A, Nakabayashi S, Ortega-Blake I. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183101. [DOI: 10.1016/j.bbamem.2019.183101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
|
25
|
Luchini A, Delhom R, Cristiglio V, Knecht W, Wacklin-Knecht H, Fragneto G. Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers. Chem Phys Lipids 2020; 227:104873. [PMID: 31926858 DOI: 10.1016/j.chemphyslip.2020.104873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Sterols regulate several physico-chemical properties of biological membranes that are considered to be linked to function. Ergosterol is the main sterol molecule found in the cell membranes of yeasts and other fungi. Like the cholesterol found in mammalian cells, ergosterol has been proposed to have an ordering and condensing effect on saturated phospholipid membranes. The effects of cholesterol have been investigated extensively and result in an increase in the membrane thickness and the lipid acyl chain order. Less information is available on the effects of ergosterol on phospholipid membranes. Neutron Diffraction (ND) was used to characterize the effect of ergosterol on lipid multilayers prepared with deuterated natural phospholipids extracted from the yeast Pichia pastoris. The data show that the effect of ergosterol on membranes prepared from the natural phospholipid extract rich in unsaturated acyl chains, differs from what has been observed previously in membranes rich in saturated phospholipids. In contrast to cholesterol in synthetic phospholipid membranes, the presence of ergosterol up to 30 mol % in yeast phospholipid membranes only slightly altered the multilayer structure. In particular, only a small decrease in the multilayer d-spacing was observed as function of increasing ergosterol concentrations. This result highlights the need for further investigation to elucidate the effects of ergosterol in biological lipid mixtures.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, UniversiteTsparken 5, 2100 Copenhagen, Denmark.
| | - Robin Delhom
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | | - Wolfgang Knecht
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden; Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden; Division of Physical Chemistry, Lund University, P.O.Box 124, 22100 Lund, Sweden
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue Des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
26
|
Kumari P, Kashyap HK. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures. J Chem Phys 2019; 151:215103. [DOI: 10.1063/1.5127852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
27
|
Mangiarotti A, Genovese DM, Naumann CA, Monti MR, Wilke N. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183060. [DOI: 10.1016/j.bbamem.2019.183060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
28
|
Kumari P, Kumari M, Kashyap HK. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM–POPC Lipid Membrane: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:9616-9628. [DOI: 10.1021/acs.jpcb.9b07107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
29
|
Bui TT, Suga K, Kuhl TL, Umakoshi H. Melting-Temperature-Dependent Interactions of Ergosterol with Unsaturated and Saturated Lipids in Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10640-10647. [PMID: 31310548 DOI: 10.1021/acs.langmuir.9b01538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sterols such as cholesterol (Chol) and ergosterol (Erg) are known to regulate membrane properties in higher eukaryotes and in lower eukaryotes, respectively. To better understand the modulation of membrane properties by Erg, binary lipid membranes composed of Erg and diacylglycerophosphocholine (PC) were studied in Langmuir monolayer and bilayer vesicle systems. From the excess area measured by pressure-area isotherms, attractive interactions between Erg and saturated PC were significant above the melting temperature (Tm) of PC. Conversely, repulsive interactions were observed at temperatures below Tm. From the analyses of membrane fluidity and polarity using fluorescence probes, similar trends were observed for bilayer systems where Erg had an ordering effect on saturated PC vesicles in the fluid state. However, Chol had a stronger ordering effect than Erg. In unsaturated PC systems, Erg did not alter membrane ordering. These findings demonstrate that the interaction of Erg with the fluid-state PC lipids will maintain lower-eukaryote membranes in a more ordered state, similar to the effect of cholesterol in higher eukaryotes.
Collapse
Affiliation(s)
- Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama-cho , Toyonaka , Osaka 560-8531 , Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama-cho , Toyonaka , Osaka 560-8531 , Japan
| | | | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama-cho , Toyonaka , Osaka 560-8531 , Japan
| |
Collapse
|
30
|
Bui TT, Suga K, Umakoshi H. Ergosterol-Induced Ordered Phase in Ternary Lipid Mixture Systems of Unsaturated and Saturated Phospholipid Membranes. J Phys Chem B 2019; 123:6161-6168. [DOI: 10.1021/acs.jpcb.9b03413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
31
|
Talandashti R, Mahdiuni H, Jafari M, Mehrnejad F. Molecular Basis for Membrane Selectivity of Antimicrobial Peptide Pleurocidin in the Presence of Different Eukaryotic and Prokaryotic Model Membranes. J Chem Inf Model 2019; 59:3262-3276. [DOI: 10.1021/acs.jcim.9b00245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Reza Talandashti
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Hamid Mahdiuni
- Bioinformatics Lab., Department of Biology, School of Sciences, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Majid Jafari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| |
Collapse
|
32
|
Saeedimasine M, Montanino A, Kleiven S, Villa A. Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study. Sci Rep 2019; 9:8000. [PMID: 31142762 PMCID: PMC6541598 DOI: 10.1038/s41598-019-44318-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
The integrity of cellular membranes is critical for the functionality of axons. Failure of the axonal membranes (plasma membrane and/or myelin sheath) can be the origin of neurological diseases. The two membranes differ in the content of sphingomyelin and galactosylceramide lipids. We investigate the relation between lipid content and bilayer structural-mechanical properties, to better understand the dependency of membrane properties on lipid composition. A sphingomyelin/phospholipid/cholesterol bilayer is used to mimic a plasma membrane and a galactosylceramide/phospholipid/cholesterol bilayer to mimic a myelin sheath. Molecular dynamics simulations are performed at atomistic and coarse-grained levels to characterize the bilayers at equilibrium and under deformation. For comparison, simulations of phospholipid and phospholipid/cholesterol bilayers are also performed. The results clearly show that the bilayer biomechanical and structural features depend on the lipid composition, independent of the molecular models. Both galactosylceramide or sphingomyelin lipids increase the order of aliphatic tails and resistance to water penetration. Having 30% galactosylceramide increases the bilayers stiffness. Galactosylceramide lipids pack together via sugar-sugar interactions and hydrogen-bond phosphocholine with a correlated increase of bilayer thickness. Our findings provide a molecular insight on role of lipid content in natural membranes.
Collapse
Affiliation(s)
- Marzieh Saeedimasine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Annaclaudia Montanino
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Huddinge, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
33
|
Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J Mol Model 2019; 25:76. [PMID: 30806797 DOI: 10.1007/s00894-019-3964-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/07/2019] [Indexed: 02/04/2023]
Abstract
The physical properties of lipid bilayers are sensitive to the specific type and composition of the lipids that make up the many different types of cell membranes. Studying model bilayers of representative heterogeneous compositions can provide key insights into membrane functionality. In this work, we use atomistic molecular dynamics simulations to characterize key properties in a number of bilayer membranes of varying composition. We first examine basic properties, such as lipid area, volume, and bilayer thickness, of simple, homogeneous bilayers comprising several lipid types, which are prevalent in biological membranes. Such lipids are then used in simulations of heterogeneous systems representative of bacterial, mammalian, and cancer membranes. Our analysis is especially focused on depth-dependent, transmembrane profiles; in particular, we calculate lateral pressure and dipole potential profiles, two fundamental properties which play key roles in a large number of biological functions.
Collapse
Affiliation(s)
- Ganesh Shahane
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wei Ding
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Michail Palaiokostas
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Mario Orsi
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
34
|
Liu J, Chen C, Lu C, Li W. Different mechanisms on the stabilization of POPC membrane by trehalose upon varied mechanical stress. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: From model membranes to living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:418-430. [DOI: 10.1016/j.bbamem.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023]
|
36
|
Miranda C, Booth VK, Morrow MR. Effects of Amphipathic Polypeptides on Membrane Organization Inferred from Studies Using Bicellar Lipid Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11759-11771. [PMID: 30196696 DOI: 10.1021/acs.langmuir.8b02257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
SP-B63-78, a lung surfactant protein fragment, and magainin 2, an antimicrobial peptide, are amphipathic peptides with the same overall charge but different biological functions. Deuterium nuclear magnetic resonance has been used to compare the interactions of these peptides with dispersions of 1,2-dimyristoyl- sn-glycero-3-phophocholine (DMPC)/1,2-dihexanoyl- sn-glycero-3-phophocholine (DHPC) (4:1) and DMPC/1,2-dimyristoyl- sn-glycero-3-phopho-(1'-rac-glycerol) (DMPG)/DHPC (3:1:1), two mixtures of long-chain and short-chain lipids that display bicellar behavior. This study exploited the sensitivity of a bicellar system structural organization to factors that modify partitioning of their lipid components between different environments. In small bicelle particles formed at low temperatures, short-chain components preferentially occupy curved rim environments around bilayer disks of the long-chain components. Changes in chain order and lipid mixing, on heating, can drive transitions to more extended assemblies including a magnetically orientable phase at intermediate temperature. In this work, neither peptide had a substantial effect on the behavior of the zwitterionic DMPC/DHPC mixture. For bicellar mixtures containing the anionic lipid DMPG, the peptide SP-B63-78 lowered the temperature at which magnetically orientable particles coalesced into more extended lamellar structures. SP-B63-78 did not promote partitioning of the zwitterionic and anionic long-chain lipid components into different environments. Magainin 2, on the other hand, was found to promote separation of the anionic lipid, DMPG, and the zwitterionic lipid, DMPC, into different environments for temperatures above 34 °C. The contrast between the effects of these two peptides on the lipid mixtures studied appears to be consistent with their functional roles in biological systems.
Collapse
Affiliation(s)
- Chris Miranda
- Department of Physics and Physical Oceanography , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada A1B 3X7
| | - Valerie K Booth
- Department of Biochemistry , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada A1B 3X9
| | - Michael R Morrow
- Department of Physics and Physical Oceanography , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada A1B 3X7
| |
Collapse
|
37
|
Barani M, Nematollahi MH, Zaboli M, Mirzaei M, Torkzadeh-Mahani M, Pardakhty A, Karam GA. In silico and in vitro study of magnetic niosomes for gene delivery: The effect of ergosterol and cholesterol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:234-246. [PMID: 30423705 DOI: 10.1016/j.msec.2018.09.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023]
Abstract
A low transfection efficiency and failure to deliver therapeutic genes to target organs limit the use of vesicular systems in gene therapy. In this study, magnetic niosomes were used to improve transfection efficiency and overcome limitations. In this light, Tween 60 and Span 60 molecules were employed as the bilayer component and ergosterol and/or cholesterol as membrane-stabilizing agents. We studied the structural and dynamical properties of cholesterol-containing niosomes (ST60/Chol) and ergosterol-containing vesicles (ST60/Ergo) using the molecular dynamics (MD) simulation technique. In in vitro experiments, the protamine-condensed DNA along with magnetic nanoparticles were prepared and incorporated into the niosome to form magnetic niosome-entrapped protamine-condensed DNA (M-NPD). The MD simulation comparison of two bilayers showed that the ST60/Ergo vesicles have better properties for gene delivery. Our in vitro results confirmed the in silico results and revealed that Ergo-niosomes have smaller size, better polydispersity, and slower release of plasmid than Chol-niosome. Moreover, M-NPD-Ergo showed higher cellular uptake and gene expresssion in HEK-293T cell line compared to M-NPD-Chol vesicles.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Maryam Zaboli
- Department of chemistry, University of Birjand, Birjand, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadi Karam
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Oliveira WN, Amaral-Machado L, Alencar EN, Marcelino HR, Genre J, Silva-Rocha WP, Gondim AD, Chaves GM, Fernandes-Pedrosa MF, Egito EST. Getting the Jump on the Development of Bullfrog Oil Microemulsions: a Nanocarrier for Amphotericin B Intended for Antifungal Treatment. AAPS PharmSciTech 2018; 19:2585-2597. [PMID: 29916194 DOI: 10.1208/s12249-018-1093-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
Amphotericin B (AmB), a potent antifungal drug, presents physicochemical characteristics that impair the development of suitable dosage forms. In order to overcome the AmB insolubility, several lipid carriers such as microemulsions have been developed. In this context, the bullfrog oil stands out as an eligible oily phase component, since its cholesterol composition may favor the AmB incorporation. Thus, the aim of this study was to develop a microemulsion based on bullfrog oil containing AmB. Moreover, its thermal stability, antifungal activity, and cytotoxicity in vitro were evaluated. The microemulsion formulation was produced using the pseudo-ternary phase diagram (PTPD) approach and the AmB was incorporated based on the pH variation technique. The antifungal activity was evaluated by determination of minimal inhibitory concentration (MIC) against different species of Candida spp. and Trichosporon asahii. The bullfrog oil microemulsion, stabilized with 16.8% of a surfactant blend, presented an average droplet size of 26.50 ± 0.14 nm and a polydispersity index of 0.167 ± 0.006. This system was able to entrap AmB up to 2 mg mL-1. The use of bullfrog oil as oily phase allowed an improvement of the thermal stability of the system. The MIC assay results revealed a growth inhibition for different strains of Candida spp. and were able to enhance the activity of AmB against T. asahii. The microemulsion was also able to reduce the AmB toxicity. Finally, the developed microemulsion showed to be a suitable system to incorporate AmB, improving the system's thermal stability, increasing the antifungal activity, and reducing the toxicity of this drug.
Collapse
|
39
|
Elola MD, Rodriguez J. Influence of Cholesterol on the Dynamics of Hydration in Phospholipid Bilayers. J Phys Chem B 2018; 122:5897-5907. [PMID: 29742895 DOI: 10.1021/acs.jpcb.8b00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the dynamics of interfacial waters in dipalmitoylphosphatidylcholine (DPPC) bilayers upon the addition of cholesterol, by molecular dynamics simulations. Our data reveal that the inclusion of cholesterol modifies the membrane aqueous interfacial dynamics: waters diffuse faster, their rotational decay time is shorter, and the DPPC/water hydrogen bond dynamics relaxes faster than in the pure DPPC membrane. The observed acceleration of the translational water dynamics agrees with recent experimental results, in which, by means of NMR techniques, an increment of the surface water diffusivity is measured upon the addition of cholesterol. A microscopic analysis of the lipid/water hydrogen bond network at the interfacial region suggests that the mechanism underlying the observed water mobility enhancement is given by the rupture of a fraction of interlipid water bridge hydrogen bonds connecting two different DPPC molecules, concomitant to the formation of new lipid/solvent bonds, whose dynamics is faster than that of the former. The consideration of a simple two-state model for the decay of the hydrogen bond correlation function yielded excellent results, obtaining two well-separated characteristic time scales: a slow one (∼250 ps) associated with bonds linking two DPPC molecules, and a fast one (∼15 ps), related to DPPC/solvent bonds.
Collapse
Affiliation(s)
- M Dolores Elola
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina
| | - Javier Rodriguez
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina.,ECyT , UNSAM , Martín de Irigoyen 3100, 1650 San Martín, Provincia de Buenos Aires , Argentina
| |
Collapse
|
40
|
Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie 2018; 153:150-161. [PMID: 29730298 DOI: 10.1016/j.biochi.2018.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Cancer is a global problem with no sign that incidences are reducing. The great costs associated with curing cancer, through developing novel treatments and applying patented therapies, is an increasing burden to developed and developing nations alike. These financial and societal problems will be alleviated by research efforts into prevention, or treatments that utilise off-patent or repurposed agents. Phytosterols are natural components of the diet found in an array of seeds, nuts and vegetables and have been added to several consumer food products for the management of cardio-vascular disease through their ability to lower LDL-cholesterol levels. In this review, we provide a connected view between the fields of structural biophysics and cellular and molecular biology to evaluate the growing evidence that phytosterols impair oncogenic pathways in a range of cancer types. The current state of understanding of how phytosterols alter the biophysical properties of plasma membrane is described, and the potential for phytosterols to be repurposed from cardio-vascular to oncology therapeutics. Through an overview of the types of biophysical and molecular biology experiments that have been performed to date, this review informs the reader of the molecular and biophysical mechanisms through which phytosterols could have anti-cancer properties via their interactions with the plasma cell membrane. We also outline emerging and under-explored areas such as computational modelling, improved biomimetic membranes and ex vivo tissue evaluation. Focus of future research in these areas should improve understanding, not just of phytosterols in cancer cell biology but also to give insights into the interaction between the plasma membrane and the genome. These fields are increasingly providing meaningful biological and clinical data but iterative experiments between molecular biology assays, biosynthetic membrane studies and computational membrane modelling improve and refine our understanding of the role of different sterol components of the plasma membrane.
Collapse
|
41
|
Stereospecific Interactions of Cholesterol in a Model Cell Membrane: Implications for the Membrane Dipole Potential. J Membr Biol 2018; 251:507-519. [DOI: 10.1007/s00232-018-0016-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
|
42
|
Haralampiev I, Scheidt HA, Huster D, Müller P. The Potential of α-Spinasterol to Mimic the Membrane Properties of Natural Cholesterol. Molecules 2017; 22:molecules22081390. [PMID: 28829376 PMCID: PMC6152097 DOI: 10.3390/molecules22081390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 01/07/2023] Open
Abstract
Sterols play a unique role for the structural and dynamical organization of membranes. The current study reports data on the membrane properties of the phytosterol (3β,5α,22E)-stigmasta-7,22-dien-3-β-ol (α-spinasterol), which represents an important component of argan oil and have not been investigated so far in molecular detail. In particular, the impact of α-spinasterol on the structure and organization of lipid membranes was investigated and compared with those of cholesterol. Various membrane parameters such as the molecular packing of the phospholipid fatty acyl chains, the membrane permeability toward polar molecules, and the formation of lateral membrane domains were studied. The experiments were performed on lipid vesicles using methods of NMR spectroscopy and fluorescence spectroscopy and microscopy. The results show that α-spinasterol resembles the membrane behavior of cholesterol to some degree.
Collapse
Affiliation(s)
- Ivan Haralampiev
- Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany.
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Peter Müller
- Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
43
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
44
|
Hung WC, Lee MT, Chung H, Sun YT, Chen H, Charron NE, Huang HW. Comparative Study of the Condensing Effects of Ergosterol and Cholesterol. Biophys J 2017; 110:2026-33. [PMID: 27166810 DOI: 10.1016/j.bpj.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022] Open
Abstract
Cholesterol, due to its condensing effect, is considered an important regulator of membrane thickness. Other sterols, due to their structural similarities to cholesterol, are often assumed to have a universal effect on membrane properties similar to the condensing effect of cholesterol, albeit possibly to different degrees. We used x-ray diffraction to investigate this assumption. By the combination of lamellar diffraction and grazing-angle scattering, we measured the membrane thickness and the tilt-angle distribution of the lipid's hydrocarbon chains. This method is sensitive to phase separation, which is important for examining the miscibility of sterols and phospholipids. Mixtures of ergosterol or cholesterol with dimyristoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine, and dioleoylphosphatidylcholine were systematically studied. We found that mixing ergosterol with phospholipids into a single phase became increasingly difficult with higher sterol concentrations and also with higher concentrations of unsaturated lipid chains. The only condensing effect of ergosterol was found in dimyristoylphosphatidylcholine, although the effect was less than one-third of the effect of cholesterol. Unlike cholesterol, ergosterol could not maintain a fixed electron density profile of the surrounding lipids independent of hydration. In dioleoylphosphatidylcholine and palmitoyloleoylphosphatidylcholine, ergosterol made the membranes thinner, opposite to the effect of cholesterol. In all cases, the tilt-angle variation of the chain diffraction was consistent with the membrane thickness changes measured by lamellar diffraction, i.e., a thickening was always associated with a reduction of chain tilt angles. Our findings do not support the notion that different sterols have a universal behavior that differs only in degree.
Collapse
Affiliation(s)
- Wei-Chin Hung
- Department of Physics, Republic of China Military Academy, Fengshan, Kaohsiung, Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Physics, National Central University, Jhongli, Taiwan
| | - Hsien Chung
- Department of Physics, Republic of China Military Academy, Fengshan, Kaohsiung, Taiwan
| | - Yi-Ting Sun
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiung Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | | | - Huey W Huang
- Department of Physics and Astronomy, Rice University, Houston, Texas.
| |
Collapse
|
45
|
Javanainen M, Martinez-Seara H, Vattulainen I. Nanoscale Membrane Domain Formation Driven by Cholesterol. Sci Rep 2017; 7:1143. [PMID: 28442766 PMCID: PMC5430823 DOI: 10.1038/s41598-017-01247-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic experimental techniques due to their small size, yet there is also a lack of atomistic simulation models able to describe spontaneous nanodomain formation in sufficiently simple but biologically relevant complex membranes. Here we use atomistic simulations to consider a binary mixture of saturated dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets. The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains. The model considered explains a plethora of controversial experimental results and provides an excellent basis for further computational studies on nanodomains. Furthermore, the results highlight the role of cholesterol as a key player in the modulation of nanodomains for membrane protein function.
Collapse
Affiliation(s)
- Matti Javanainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Hector Martinez-Seara
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland. .,Department of Physics, University of Helsinki, Helsinki, Finland. .,MEMPHYS - Centre for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
46
|
Knight C, Rahmani A, Morrow MR. Effect of an Anionic Lipid on the Barotropic Behavior of a Ternary Bicellar Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10259-10267. [PMID: 27648612 DOI: 10.1021/acs.langmuir.6b02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dispersions of lipid mixtures comprising long- and short-chain phospholipids (bicellar mixtures) can form small isotropically reorienting particles (bilayered micelles), magnetically orientable stuctures, or unorientable lamellar structures. Application of hydrostatic pressure can also induce interdigitation of the long-chain lipid components. In this work, variable-pressure 2H NMR was used to study the effect of head group charge on the barotropic behavior of bicellar mixtures. Observations at pressures up to 152 MPa and temperatures up to 64 °C were combined with earlier observations at lower pressure and lower temperature to obtain a pressure-temperature phase diagram for DMPC-d54/DMPG/DHPC (3:1:1). In this phase diagram, a region corresponding to small, isotropically reorienting particles at lower temperature and higher pressure is separated from a region corresponding to unorientable lamellar organization, at higher temperature and lower pressure, by a band in which the magnetically orientable phase is stable below ∼100 MPa and in which an interdigitated gel phase is stable above ∼120 MPa. From ∼46 to ∼52 °C, the dispersion transforms directly from the unorientable lamellar to isotropically reorienting particle phases upon isothermal pressurization. The extent to which this behavior reflects the presence of anionic lipid in the long-chain fraction of this mixture is illustrated by comparison with spectral series obtained during isothermal pressurization of DMPC-d54/DHPC (4:1) and DMPC-d54/DMPG/DHPC (2.7:1.3:1) at selected temperatures. These observations show how electrostatic interactions at a bilayer surface can affect the balance between hydrophobic and hydrophilic interactions that is reflected by a dispersion's barotropic phase behavior.
Collapse
Affiliation(s)
- Collin Knight
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Ashkan Rahmani
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| |
Collapse
|
47
|
Melo MN, Ingólfsson HI, Marrink SJ. Parameters for Martini sterols and hopanoids based on a virtual-site description. J Chem Phys 2016; 143:243152. [PMID: 26723637 DOI: 10.1063/1.4937783] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the use of virtual sites as a means of increasing the stability of cholesterol and cholesterol-like structures. We improve and extend the Martini parameterization of sterols in four different ways: 1-the cholesterol parameters were adapted to make use of virtual interaction sites, which markedly improves numerical stability; 2-cholesterol parameters were also modified to address reported shortcomings in reproducing correct lipid phase behavior in mixed membranes; 3-parameters for ergosterol were created and adapted from cholesterols; and 4-parameters for the hopanoid class of bacterial polycyclic molecules were created, namely, for hopane, diploptene, bacteriohopanetetrol, and for their polycyclic base structure.
Collapse
Affiliation(s)
- M N Melo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - H I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - S J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
48
|
Fiedler S, Heerklotz H. Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis. Biophys J 2016; 109:2079-89. [PMID: 26588567 DOI: 10.1016/j.bpj.2015.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/30/2022] Open
Abstract
Cyclic lipopeptides act against a variety of plant pathogens and are thus highly efficient crop-protection agents. Some pesticides contain Bacillus subtilis strains that produce lipopeptide families, such as surfactins (SF), iturins (IT), and fengycins (FE). The antimicrobial activity of these peptides is mainly mediated by permeabilizing cellular membranes. We used a fluorescence-lifetime based leakage assay to examine the effect of individual lipid components in model membranes on lipopeptide activity. Leakage induction by FE was strongly inhibited by cholesterol (CHOL) as well as by phosphatidylethanolamine (PE) and -glycerol (PG) lipids. Already moderate amounts of CHOL increased the tolerable FE content in membranes by an order of magnitude to 0.5 FE per PC + CHOL. This indicates reduced FE-lipid demixing and aggregation, which is known to be required for membrane permeabilization and explains the strong inhibition by CHOL. Ergosterol (ERG) had a weak antagonistic effect. This confirms results of microbiological tests and agrees with the fungicidal activity and selectivity of FE. SF is known to be much less selective in its antimicrobial action. In line with this, liposome leakage by SF was little affected by sterols and PE. Interestingly, PG increased SF activity and changed its leakage mechanism toward all-or-none, suggesting more specific, larger, and/or longer-lived defect structures. This may be because of the reduced energetic cost of locally accumulating anionic SF in an anionic lipid matrix. IT was found largely inactive in our assays. B. subtilis QST713 produces the lipopeptides in a ratio of 6 mol SF: 37 mol FE: 57 mol IT. Leakage induced by this native mixture was inhibited by CHOL and PE, but unaffected by ERG and by PG in the absence of PE. Note that fungi contain anionic lipids, but little PE. Hence, our data explain the strong, fungicidal activity and selectivity of B. subtilis QST713 lipopeptides.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | - Heiko Heerklotz
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
49
|
Shaghaghi M, Chen MT, Hsueh YW, Zuckermann MJ, Thewalt JL. Effect of Sterol Structure on the Physical Properties of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Membranes Determined Using (2)H Nuclear Magnetic Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7654-7663. [PMID: 27341069 DOI: 10.1021/acs.langmuir.6b01401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of a series of phytosterols on lipid chain ordering in 1-palmitoyl((2)H31)-2-oleoyl-sn-glycero-3-phosphocholine (POPC-d31) multibilayer vesicles was examined by (2)H NMR spectroscopy at 25 °C. These results, along with existing data for other sterols, indicate that the ordering power of sterols in POPC-d31 depends on subtle aspects of sterol structure. Cholesterol, 7-dehydrocholesterol (7-DHC), campesterol, β-sitosterol, ergosterol, brassicasterol, and stigmasterol all increase the lipid chain order as sterol concentration is increased. However, saturation of the ordering occurs at different sterol concentrations for ergosterol (as previously reported), brassicasterol, β-sitosterol, and stigmasterol. Here our interest lies in finding which part of the sterol structure is responsible for the observed saturation of the palmitoyl chain order as a function of sterol concentration. In particular, we propose that the saturation of the ordering of POPC-d31/brassicasterol and POPC-d31/stigmasterol membranes at quite low sterol concentrations is due to the presence of a double bond at C22. We also discuss how the structural differences between the sterols affect their ability to intercalate between the POPC acyl chains. Furthermore, the effective solubility of sterols in POPC is discussed in relation to the dependence of maximum POPC-d31 chain order vs sterol concentration.
Collapse
Affiliation(s)
| | - Mei-Ting Chen
- Department of Physics, National Central University , Jung-Li 32001, Taiwan
| | - Ya-Wei Hsueh
- Department of Physics, National Central University , Jung-Li 32001, Taiwan
| | | | | |
Collapse
|
50
|
Andersson J, Köper I. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function. MEMBRANES 2016; 6:E30. [PMID: 27249006 PMCID: PMC4931525 DOI: 10.3390/membranes6020030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Abstract
Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.
Collapse
Affiliation(s)
- Jakob Andersson
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide SA 5001, Australia.
| | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide SA 5001, Australia.
| |
Collapse
|