1
|
Manoj KM, Gideon DA, Bazhin NM, Tamagawa H, Nirusimhan V, Kavdia M, Jaeken L. Na,K-ATPase: A murzyme facilitating thermodynamic equilibriums at the membrane-interface. J Cell Physiol 2023; 238:109-136. [PMID: 36502470 DOI: 10.1002/jcp.30925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The redox metabolic paradigm of murburn concept advocates that diffusible reactive species (DRS, particularly oxygen-centric radicals) are mainstays of physiology, and not mere pathological manifestations. The murburn purview of cellular function also integrates the essential principles of bioenergetics, thermogenesis, homeostasis, electrophysiology, and coherence. In this context, any enzyme that generates/modulates/utilizes/sustains DRS functionality is called a murzyme. We have demonstrated that several water-soluble (peroxidases, lactate dehydrogenase, hemogoblin, etc.) and membrane-embedded (Complexes I-V in mitochondria, Photosystems I/II in chloroplasts, rhodopsin/transducin in rod cells, etc.) proteins serve as murzymes. The membrane protein of Na,K-ATPase (NKA, also known as sodium-potassium pump) is the focus of this article, owing to its centrality in neuro-cardio-musculo electrophysiology. Herein, via a series of critical queries starting from the geometric/spatio-temporal considerations of diffusion/mass transfer of solutes in cells to an update on structural/distributional features of NKA in diverse cellular systems, and from various mechanistic aspects of ion-transport (thermodynamics, osmoregulation, evolutionary dictates, etc.) to assays/explanations of inhibitory principles like cardiotonic steroids (CTS), we first highlight some unresolved problems in the field. Thereafter, we propose and apply a minimalist murburn model of trans-membrane ion-differentiation by NKA to address the physiological inhibitory effects of trans-dermal peptide, lithium ion, volatile anesthetics, confirmed interfacial DRS + proton modulators like nitrophenolics and unsaturated fatty acid, and the diverse classes of molecules like CTS, arginine, oximes, etc. These explanations find a pan-systemic connectivity with the inhibitions/uncouplings of other membrane proteins in cells.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Daniel A Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Nikolai M Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Vijay Nirusimhan
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Antwerp, Belgium
| |
Collapse
|
2
|
Cao L, Liu J, Pu J, Milne G, Chen M, Xu H, Shipley A, Forrester JV, McCaig CD, Lois N. Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology. J Cell Mol Med 2018; 22:5552-5564. [PMID: 30160348 PMCID: PMC6201363 DOI: 10.1111/jcmm.13829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
The transepithelial potential difference (TEP) across the retinal pigment epithelial (RPE) is dependent on ionic pumps and tight junction "seals" between epithelial cells. RPE cells release neurotrophic growth factors such as pigment epithelial derived factor (PEDF), which is reduced in age-related macular degeneration (AMD). The mechanisms that control the secretion of PEDF from RPE cells are not well understood. Using the CCL2/CX3CR1 double knockout mouse model (DKO), which demonstrates RPE damage and retinal degeneration, we uncovered an interaction between PEDF and the TEP which is likely to play an important role in retinal ageing and in the pathogenesis of AMD. We found that: (a) the expression of ATP1B1 (the Na+ /K+ -ATPase β1 subunit) was reduced significantly in RPE from aged mice, in patients with CNV (Choroidal Neovascularization) and in DKO mice; (b) the expression of PEDF also was decreased in aged persons and in DKO mice; (c) the TEP across RPE was reduced markedly in RPE cells from DKO mice and (d) an applied electric field (EF) of 50-100 mV/mm, used to mimic the natural TEP, increased the expression and secretion of PEDF in primary RPE cells. In conclusion, the TEP across the RPE depends on the expression of ATP1B1 and this regulates the secretion of PEDF by RPE cells and so may regulate the onset of retinal disease. Increasing the expression of PEDF using an applied EF to replenish a disease or age-reduced TEP may offer a new way of preventing or reversing retinal dysfunction.
Collapse
Affiliation(s)
- Lin Cao
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
- Yizhou International Proton Medical Centre and Cancer HospitalHe BeiChina
| | - Jie Liu
- Department of OphthalmologyFrist Hospital Affiliated to the Chinese PLA General HospitalBeijingChina
| | - Jin Pu
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gillian Milne
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Mei Chen
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| | - Heping Xu
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| | - Alan Shipley
- Biological Research & DevelopmentUniversity of New EnglandBiddefordMaine
| | - John V Forrester
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Colin D McCaig
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Noemi Lois
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| |
Collapse
|
3
|
Lu Y, Zhou Y, Nakai S, Hosomi M, Zhang H, Kronzucker HJ, Shi W. Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components. PLANTA 2014; 239:591-603. [PMID: 24271005 PMCID: PMC3928532 DOI: 10.1007/s00425-013-1998-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/06/2013] [Indexed: 05/21/2023]
Abstract
Plants can stimulate bacterial nitrogen (N) removal by secretion of root exudates that may serve as carbon sources as well as non-nutrient signals for denitrification. However, there is a lack of knowledge about the specific non-nutrient compounds involved in this stimulation. Here, we use a continuous root exudate-trapping system in two common aquatic duckweed species, Spirodela polyrrhiza (HZ1) and Lemna minor (WX3), under natural and aseptic conditions. An activity-guided bioassay using denitrifying bacterium Pseudomonas fluorescens showed that crude root exudates of the two species strongly enhanced the nitrogen-removal efficiency (NRE) of P. fluorescens (P < 0.05) under both conditions. Water-insoluble fractions (F) obtained under natural conditions stimulated NRE to a significant extent, promoting rates by about 30%. Among acidic, neutral and basic fractions, a pronounced stimulatory effect was also observed for the neutral fractions from HZ1 and WX3 under both conditions, whereas the acidic fractions from WX3 displayed an inhibitory effect. Analysis of the active fractions using gas chromatography/mass spectrometry (GC/MS) revealed that duckweed released fatty acid methyl esters and fatty acid amides, specifically: methyl hexadecanoate, methyl (Z)-7-hexadecenoate, methyl dodecanoate, methyl-12-hydroxystearate, oleamide, and erucamide. Methyl (Z)-7-hexadecenoate and erucamide emerged as the effective N-removal stimulants (maximum stimulation of 25.9 and 33.4%, respectively), while none of the other tested compounds showed stimulatory effects. These findings provide the first evidence for a function of fatty acid methyl esters and fatty acid amides in stimulating N removal of denitrifying bacteria, affording insight into the "crosstalk" between aquatic plants and bacteria in the rhizosphere.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingru Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Satoshi Nakai
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527 Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588 Japan
| | - Hailin Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-6028 USA
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| |
Collapse
|
4
|
Xie JX, Shapiro AP, Shapiro JI. The Trade-Off between Dietary Salt and Cardiovascular Disease; A Role for Na/K-ATPase Signaling? Front Endocrinol (Lausanne) 2014; 5:97. [PMID: 25101054 PMCID: PMC4101451 DOI: 10.3389/fendo.2014.00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022] Open
Abstract
It has been postulated for some time that endogenous digitalis-like substances, also called cardiotonic steroids (CTS), exist, and that these substances are involved in sodium handling. Within the past 20 years, these substances have been unequivocally identified and measurements of circulating and tissue concentrations have been made. More recently, it has been identified that CTS also mediate signal transduction through the Na/K-ATPase, and consequently been implicated in profibrotic pathways. This review will discuss the mechanism of CTS in renal sodium handling and a potential "trade-off" effect from their role in inducing tissue fibrosis.
Collapse
Affiliation(s)
- Joe X. Xie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Pearl Shapiro
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Joseph Isaac Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- *Correspondence: Joseph Isaac Shapiro, Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive Suite 3408, Huntington, WV 25701, USA e-mail:
| |
Collapse
|
5
|
Dyck MC, Ma DWL, Meckling KA. The anticancer effects of Vitamin D and omega-3 PUFAs in combination via cod-liver oil: One plus one may equal more than two. Med Hypotheses 2011; 77:326-32. [DOI: 10.1016/j.mehy.2011.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 03/24/2011] [Accepted: 05/02/2011] [Indexed: 01/06/2023]
|
6
|
Rieder F, Biancani P, Harnett K, Yerian L, Falk GW. Inflammatory mediators in gastroesophageal reflux disease: impact on esophageal motility, fibrosis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G571-81. [PMID: 20299604 PMCID: PMC2867418 DOI: 10.1152/ajpgi.00454.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastroesophageal reflux disease (GERD) is one of the most common problems in clinical practice today. It is widely believed that functional and structural abnormalities of the gastroesophageal junction as well as an abnormal exposure to gastroduodenal contents are the main contributors to its pathogenesis. Novel findings of the inflammatory process in GERD suggest a far more complex process involving multifaceted inflammatory mechanisms. This review summarizes knowledge about the expression of inflammatory mediators in GERD and their potential cellular sources and provides an integrated concept of disease pathogenesis. In addition we evaluate the contribution of inflammatory mediators to well-known complications of GERD, namely motility abnormalities, fibrosis, and carcinogenesis. Novel findings regarding the pathophysiology of esophageal inflammation should enhance our understanding of GERD and its complications and provide new treatment insights.
Collapse
Affiliation(s)
- Florian Rieder
- Dept. of Gastroenterology and Hepatology, NC22, Cleveland Clinic Foundation; 9500 Euclid Ave., Cleveland, OH, 44195.
| | - Piero Biancani
- 4Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Karen Harnett
- 4Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Lisa Yerian
- 3Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio; and
| | - Gary W. Falk
- 2Department of Gastroenterology and Hepatology, and
| |
Collapse
|
7
|
Mimura K, Tahara Y, Shinji N, Tokuda E, Takenaka H, Hayashi Y. Isolation of stable (alphabeta)4-Tetraprotomer from Na+/K+-ATPase solubilized in the presence of short-chain fatty acids. Biochemistry 2008; 47:6039-51. [PMID: 18465843 DOI: 10.1021/bi800445f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, it was demonstrated that acetate anions increase the higher oligomer (H), consuming (alphabeta) 2-diprotomer (D) and alphabeta-protomer (P) of solubilized dog kidney Na (+)/K (+)-ATPase [ Kobayashi, T. et al. (2007) J. Biochem. 142, 157-173 ]. Presently, short-chain fatty acids, such as propionate (Prop) and butyrate, have been substituted effectively for acetate. The molecular weight of 6.01 x 10 (5) for H and quantitative Na (+)/K (+)-dependent interconversion among H, D, and P showed that H was an (alphabeta) 4-tetraprotomer (T). T was optimally isolated from the enzyme solubilized in aqueous 40 mM K (+)Prop at pH 5.6 by gel chromatography performed at 0 degrees C with elution buffer containing synthetic dioleoyl phosphatidylserine (PS). K 0.5 values of K (+)-congeners constituting K (+)Prop for the maximal amount of T were NH 4 (+) >> Rb (+) congruent with K (+) > Tl (+), while Na (+) had no effect. The oligomers of T, D, and P were simultaneously assayed for ATPase upon elution from the gel column, resulting in a specific activity ratio of 1:2:2. The activity of the chromatographically isolated T increased with an increasing dioleoyl PS, giving a saturated activity of 2.38 units/mg at pH 5.6 and 25 degrees C, and the active enzyme chromatography of T showed 34% dissociation into D by exposing it at 25 degrees C. On the basis of these data, the specific ATPase activities of T, D, and P were concluded to be 32, 65, and 65 units/mg, respectively, under the conventionally optimal conditions of pH 7.3 and 37 degrees C, suggesting an equivalence to a fully active enzyme for D and P but half activity for T. The physiological significance of the stable form of T remains to be investigated.
Collapse
Affiliation(s)
- Kunihiro Mimura
- Department of Environment System Science, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Liu L, Gable ME, Garlid KD, Askari A. Interactions of K+ATP channel blockers with Na+/K+-ATPase. Mol Cell Biochem 2007; 306:231-7. [PMID: 17721811 DOI: 10.1007/s11010-007-9574-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Two K(+) (ATP) channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na(+)/K(+)-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na(+)/K(+)-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na(+)/K(+)-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K(+) (ATP) channels. 5-HD did not affect the ouabain sensitivity of Na(+)/K(+)-ATPase. Glyburide had both activating and inhibitory effects on Na(+)/K(+)-ATPase at concentrations used to block plasma membrane K(+) (ATP) channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na(+)/K(+)-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K(+) (ATP) channels, when the relation of this channel to Na(+)/K(+)-ATPase is being studied.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, The University of Toledo College of Medicine, Mail Stop 1008, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA
| | | | | | | |
Collapse
|
9
|
Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, Harnett KM. In vitro model of acute esophagitis in the cat. Am J Physiol Gastrointest Liver Physiol 2005; 289:G860-9. [PMID: 16037543 DOI: 10.1152/ajpgi.00260.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown that IL-1beta and IL-6, possibly originating from the mucosa in response to injury, inhibit neurally mediated contraction of esophageal circular muscle but do not affect ACh-induced contraction, reproducing the effect of experimental esophagitis on esophageal contraction. To examine the interaction of mucosa and circular muscle in inflammation, we examined the effect of HCl on in vitro esophageal mucosa and circular muscle. Circular muscle strips, when directly exposed to HCl, contracted normally. However, when circular muscle strips were exposed to supernatants of mucosa incubated in HCl (2-3 h, pH 5.8), contraction decreased, and the inhibition was partially reversed by an IL-6 antibody. Supernatants from the mucosa of animals with in vivo-induced acute esophagitis (AE) similarly reduced contraction. IL-6 levels were higher in mucosal tissue from AE animals than in control mucosa and in AE mucosa supernatants than in normal mucosa supernatants. IL-6 levels increased significantly in normal mucosa and supernatants in response to HCl, suggesting increased production and release of IL-6 by the mucosa. IL-6 increased H2O2 levels in the circular muscle layer but not in mucosa. Exposure of the mucosa to HCl caused IL-1beta to increase only in the mucosa and not in the supernatant. These data suggest that HCl-induced damage occurs first in the mucosa, leading to the production of IL-1beta and IL-6 but not H2O2. IL-1beta appears to remain in the mucosa. In contrast, IL-6 is produced and released by the mucosa, eventually resulting in the production of H2O2 by the circular muscle, with this affecting circular muscle contraction.
Collapse
Affiliation(s)
- Ling Cheng
- Division of Gastroenterology, Rhode Island Hospital and Brown University, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
10
|
Cheng L, Cao W, Behar J, Biancani P, Harnett KM. Inflammation induced changes in arachidonic acid metabolism in cat LES circular muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G787-97. [PMID: 15550558 DOI: 10.1152/ajpgi.00327.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myogenic lower esophageal sphincter (LES) tone is maintained by arachidonic acid metabolites, such as PGF(2alpha) and thromboxane A(2)/B(2). Experimental esophagitis in cat reduces LES in vivo pressure and in vitro tone. Because IL-1beta may mediate esophagitis-associated reduction in ACh release in esophagus, we examined whether IL-1beta may also play a role in esophagitis-induced reduction of LES tone. A cat model of experimental esophagitis was obtained by repeated esophageal perfusion with HCl (Biancani P, Barwick K, Selling J, and McCallum R. Gastreonterology 87: 8-16, 1984 and Sohn UD, Harnett KM, Cao W, Rich H, Kim N, Behar J, and Biancani P. J Pharmacol Exp Ther 283: 1293-1304, 1997.). LES circular muscle strips were examined in muscle chambers as previously described (Biancani P, Billett G, Hillemeier C, Nissenshon M, Rhim BY, Sweczack S, and Behar J. Gastroenterology 103: 1199-1206, 1992). Levels of inflammatory mediators were measured. IL-1beta levels were higher in esophagitis than in normal LES. IL-1beta reduced normal LES tone, and the reduction was reversed by catalase, suggesting a role of H(2)O(2). This was confirmed by IL-1beta-induced production of H(2)O(2) in normal LES and elevated H(2)O(2) levels in esophagitis. H(2)O(2) by itself is sufficient to explain the changes that occur in the muscle, reducing its ability to contract. H(2)O(2) increased PGE(2) in normal LES, and PGE(2) levels were elevated in esophagitis LES, whereas PGF(2alpha) levels were unchanged. H(2)O(2) also increased levels of 8-isoprostanes, stable prostaglandin-like compounds formed by free radical-induced peroxidation of arachidonic acid, and 8-isoprostane levels were elevated in esophagitis. The PGF(2alpha) analog 8-iso-PGF(2alpha) caused little contraction of LES strips but reduced PGF(2alpha) binding and contraction of normal LES. In esophagitis, PGF(2alpha) binding and contraction were reduced in LES, suggesting that isoprostanes may contribute to reduction in tone in esophagitis. The data suggest that, in esophagitis, IL-1beta causes production of H(2)O(2). H(2)O(2) increases PGE(2), which relaxes the LES, and 8-iso-F(2alpha), which blocks PGF(2alpha)-mediated contraction.
Collapse
Affiliation(s)
- Ling Cheng
- G.I. Motility Research Laboratory, Rhode Island Hospital and Brown Univ., 55 Claverick St., Room 333, Providence RI 02903, USA
| | | | | | | | | |
Collapse
|
11
|
Haag M, Magada ON, Claassen N, Böhmer LH, Kruger MC. Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins Leukot Essent Fatty Acids 2003; 68:423-9. [PMID: 12798663 DOI: 10.1016/s0952-3278(03)00067-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.
Collapse
Affiliation(s)
- Marianne Haag
- Department of Physiology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa.
| | | | | | | | | |
Collapse
|
12
|
Haag M, Kearns SD, Magada ON, Mphata PR, Claassen N, Kruger MC. Effect of arachidonic acid on duodenal enterocyte ATPases. Prostaglandins Other Lipid Mediat 2001; 66:53-63. [PMID: 11519794 DOI: 10.1016/s0090-6980(01)00141-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Duodenal ion transport processes are supported by ATPase enzymes in basolateral membranes of the enterocyte. In vivo studies have shown that long term n-6 poly-unsaturated fatty acid (PUFA) supplementation in rats causes increases in intestinal Ca absorption, coupled with a higher total calcium balance and bone calcium content. The present in vitro study was undertaken to test the effect of arachidonic acid (AA), a highly unsaturated (and thus physiologically potent) member of the n-6 PUFA family, on ATPases in enterocyte basolateral membranes isolated with a sorbitol density gradient procedure. This paper presents results which show that AA inhibits Na+,K+-ATPase in a dose-dependent manner (-67% of basal activity at a concentration of 30 microg/ml, P < 0.005) but that this effect is not mediated by protein kinase C, as shown by the use of the protein kinase C blocker calphostin (0.5 microM). Indomethacin (IDM) at 0.1 mM, a cyclo-oxygenase blocker, could also not reverse the inhibitory effect of AA on Na+,K+-ATPase. Ca2+-ATPase, on the other hand, is not affected significantly (-10%, P > 0.05) by arachidonic acid at 30 microg/ml.
Collapse
Affiliation(s)
- M Haag
- Department of Physiology, University of Pretoria, South Africa.
| | | | | | | | | | | |
Collapse
|
13
|
Haag M, Kruger MC. Upregulation of duodenal calcium absorption by poly-unsaturated fatty acids: events at the basolateral membrane. Med Hypotheses 2001; 56:637-40. [PMID: 11388782 DOI: 10.1054/mehy.2000.1182] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Poly-unsaturated fatty acids, especially of the n-3 series, have a beneficial effect in treatment of osteoporosis in the elderly. Duodenal calcium absorption is a particularly vulnerable aspect of the development of this disease. It has been shown that the process of calcium transport through the rat duodenal enterocyte takes place in essentially three steps: entry of calcium through channels in the brush border (apical membrane), transcellular transport through the cytoplasm by calbindin and extrusion at the basolateral membrane by Ca(2+)-ATPase and a Ca(2+)-Na(+)exchanger which is driven by Na(+), K(+)-ATPase. This paper presents a hypothesis that poly-unsaturated fatty acids can modulate both Ca(2+)-ATPase and Na(+), K(+)-ATPase activity either by a direct action on the enzyme or by phosphorylation processes via protein kinases A and C and thus exert their positive influence on calcium absorption in this manner.
Collapse
Affiliation(s)
- M Haag
- Department of Physiology, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| | | |
Collapse
|
14
|
Abulrob AN, Mason M, Bryce R, Gumbleton M. The effect of fatty acids and analogues upon intracellular levels of doxorubicin in cells displaying P-glycoprotein mediated multidrug resistance. J Drug Target 2001; 8:247-56. [PMID: 11144235 DOI: 10.3109/10611860008997903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multidrug resistance mediated by overexpression of P-glycoprotein (P-gp) is a major obstacle in the chemotherapeutic management of cancer. The objectives of the current work were to examine if fatty acids affect the intracellular transport and dynamics of doxorubicin in drug-resistant cancer cell lines, and to assess if such effects were mediated through modulation of P-gp efflux pump activity. Among the range of fatty acids tested in this study, eicosapentaenoic acid diester (EPADI) increased doxorubicin accumulation [A] to 137% and retention [R] to 212% in doxorubicin-resistant MCF-7/ADR breast carcinoma cells, and [A] to 147% and [R] to 163% in vinblastine-resistant KBVI nasopharyngeal carcinoma cells. Consistent with EPADI-induced increases in intracellular doxorubicin concentrations, EPADI (10 microg/ml) sensitized MCF-7/ADR cells to the cytotoxic effects of doxorubicin (1 microg/ml) as assessed by MTT assay (viability < 50% of control), while EPADI itself displayed no cytotoxicity. The combination of EPADI (10 microg/ml) with verapamil (1 microM) resulted in a considerable increase in the [A] and [R] of the model P-gp substrate rhodamine-123 within drug-resistant cells compared to when either agent were used alone. KBV1 cells treated with combination of EPADI (10 microg/ml) and verapamil (1 microM) achieved 160% and 1120% greater [A] and [R] of rhodamine-123, respectively, compared to untreated cells. The P-gp modulatory effects of EPADI either alone, or as part of a combination with more potent inhibitors, should be further investigated.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/toxicity
- Biological Transport, Active/drug effects
- Doxorubicin/pharmacokinetics
- Doxorubicin/toxicity
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Drug Synergism
- Eicosapentaenoic Acid/analogs & derivatives
- Eicosapentaenoic Acid/pharmacology
- Fatty Acids, Unsaturated/pharmacology
- Humans
- Rhodamine 123/pharmacokinetics
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Verapamil/pharmacology
Collapse
Affiliation(s)
- A N Abulrob
- Pharmaceutical Cell Biology, Welsh School of Pharmacy, Cardiff University, United Kingdom
| | | | | | | |
Collapse
|
15
|
Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1-24. [PMID: 9688830 DOI: 10.1152/ajpcell.1998.275.1.c1] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of electrophysiological and molecular biology techniques has shed light on reactive oxygen species (ROS)-induced impairment of surface and internal membranes that control cellular signaling. These deleterious effects of ROS are due to their interaction with various ion transport proteins underlying the transmembrane signal transduction, namely, 1) ion channels, such as Ca2+ channels (including voltage-sensitive L-type Ca2+ currents, dihydropyridine receptor voltage sensors, ryanodine receptor Ca2+-release channels, and D-myo-inositol 1,4,5-trisphosphate receptor Ca2+-release channels), K+ channels (such as Ca2+-activated K+ channels, inward and outward K+ currents, and ATP-sensitive K+ channels), Na+ channels, and Cl- channels; 2) ion pumps, such as sarcoplasmic reticulum and sarcolemmal Ca2+ pumps, Na+-K+-ATPase (Na+ pump), and H+-ATPase (H+ pump); 3) ion exchangers such as the Na+/Ca2+ exchanger and Na+/H+ exchanger; and 4) ion cotransporters such as K+-Cl-, Na+-K+-Cl-, and Pi-Na+ cotransporters. The mechanism of ROS-induced modifications in ion transport pathways involves 1) oxidation of sulfhydryl groups located on the ion transport proteins, 2) peroxidation of membrane phospholipids, and 3) inhibition of membrane-bound regulatory enzymes and modification of the oxidative phosphorylation and ATP levels. Alterations in the ion transport mechanisms lead to changes in a second messenger system, primarily Ca2+ homeostasis, which further augment the abnormal electrical activity and distortion of signal transduction, causing cell dysfunction, which underlies pathological conditions.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
16
|
Pomposiello SI, Alva M, Wilde DW, Carretero OA. Linoleic acid induces relaxation and hyperpolarization of the pig coronary artery. Hypertension 1998; 31:615-20. [PMID: 9461230 DOI: 10.1161/01.hyp.31.2.615] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Linoleic acid, a polyunsaturated C18 fatty acid, is one of the major fatty acids in the coronary arterial wall. Although diets rich in linoleic acid reduce blood pressure and prevent coronary artery disease in both humans and animals, very little is known about its mechanism of action. We believed that its beneficial effects might be mediated by changes in vascular tone. We investigated whether linoleic acid induces relaxation of porcine coronary artery rings and the mechanism involved in this process. Linoleic acid and two of its metabolites, 13-hydroxyoctadecadienoic acid (13-HODE) and 13-hydroperoxyoctadecadienoic acid (13-HPODE), induced dose-dependent relaxation of prostaglandin (PG) F2alpha-precontracted rings that was not affected by indomethacin (10[-5] mol/L), a cyclooxygenase inhibitor, or cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (CDC; 10[-5] mol/L), a lipoxygenase inhibitor. Removal of endothelial cells had no effect on vasorelaxation, suggesting a direct effect on the vascular smooth muscle cells (VSMC). When rings were contracted with KCl, linoleic acid failed to induce relaxation. Although tetrabutylammonium (5 x 10[-3] mol/L), a nonselective K+ channel blocker, slightly inhibited the relaxation caused by linoleic acid, glibenclamide (10[-6] mol/L), an ATP-sensitive K+ channel blocker, and charybdotoxin (7.5x10[-8] mol/L) or tetraethylammonium (5x10[-3] mol/L), two different Ca2+-activated K+ channel blockers, had no effect. However, relaxation was completely blocked by ouabain (5x10[-7] mol/L), a Na+/K+-ATPase inhibitor, or by a K+-free solution. In addition, linoleic acid (10[-6] mol/L) caused sustained hyperpolarization of porcine coronary VSMC (from -49.5+/-2.0 to -60.7+/-4.2 mV), which was also abolished by ouabain. We concluded that linoleic acid induces relaxation and hyperpolarization of porcine coronary VSMC via a mechanism that involves activation of the Na+/K+-ATPase pump.
Collapse
Affiliation(s)
- S I Pomposiello
- Department of Medicine, Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|