1
|
Karahoda R, Ceckova M, Staud F. The inhibitory effect of antiretroviral drugs on the L-carnitine uptake in human placenta. Toxicol Appl Pharmacol 2019; 368:18-25. [PMID: 30735677 DOI: 10.1016/j.taap.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
In spite of remarkable reduction in the number of children born with HIV due to antiretroviral therapy, concerns remain on the short- and long-term effects of antiretroviral drugs at the feto-placental unit. Cardio- and skeletal myopathies have been reported in children exposed to antiretroviral drugs prenatally. These conditions have also been described in perturbed placental transfer of l-carnitine, an essential co-factor in fatty acid oxidation. Due to limited fetal and placental synthesis, carnitine supply is maintained through the placental carnitine uptake from maternal blood by the organic cation/carnitine transporters OCTN1 and OCTN2 (SLC22A4 and SLC22A5, respectively). The aim of our study was to investigate potential inhibition of placental carnitine uptake by a broad range of antiretroviral drugs comprising nucleoside/nucleotide reverse transcriptase inhibitors (lamivudine, zidovudine, abacavir, tenofovir disoproxil fumarate), non-nucleoside reverse transcriptase inhibitors (rilpivirine, efavirenz, etravirine), protease inhibitors (ritonavir, lopinavir, atazanavir, saquinavir, tipranavir), integrase inhibitors (raltegravir, dolutegravir, elvitegravir) and viral entry inhibitor, maraviroc. Studies in choriocarcinoma BeWo cells and human placenta-derived models confirmed predominant expression and function of OCTN2 above OCTN1 in l-carnitine transport. Subsequent screenings in BeWo cells and isolated MVM vesicles revealed seven antiretroviral drugs as inhibitors of the Na+-dependent l-carnitine uptake, corresponding to OCTN2. Ritonavir, saquinavir and elvitegravir showed the highest inhibitory potential which was further confirmed for ritonavir and saquinavir in placental fresh villous fragments. Our data indicate possible impairment in placental and fetal supply of l-carnitine with ritonavir and saquinavir, while suggesting retained placental carnitine transport with the other antiretroviral drugs.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Czech Republic.
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Czech Republic
| |
Collapse
|
2
|
Pollex EK, Hutson JR. Genetic polymorphisms in placental transporters: implications for fetal drug exposure to oral antidiabetic agents. Expert Opin Drug Metab Toxicol 2011; 7:325-39. [DOI: 10.1517/17425255.2011.553188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
The role of organic cation transporters (OCTs) in the transfer of metformin in the dually perfused human placenta. Eur J Pharm Sci 2010; 39:76-81. [DOI: 10.1016/j.ejps.2009.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/24/2022]
|
4
|
Grube M, Meyer Zu Schwabedissen H, Draber K, Präger D, Möritz KU, Linnemann K, Fusch C, Jedlitschky G, Kroemer HK. Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab Dispos 2005; 33:31-7. [PMID: 15486076 DOI: 10.1124/dmd.104.001560] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
L-carnitine is assumed to play an important role in fetal development, and there is evidence that carnitine is transported across the placenta. The protein involved in this transfer, however, has not been identified on a molecular level. We therefore characterized localization and function of the carnitine transporter OCTN2 in human placenta. Significant expression of OCTN2 mRNA was detected in human placenta applying real-time polymerase chain reaction technology. Confocal immunofluorescence microscopy using an antibody directed against the carboxy terminus of OCTN2 protein revealed that it is predominantly expressed in the apical membrane of syncytiotrophoblasts. This was confirmed by the costaining of organic anion-transporting polypeptide B and MRP2, which are known to be expressed mainly in the basal and apical syncytiotrophoblasts membrane, respectively. To further support this finding, we performed transport studies using basal and apical placenta membrane vesicles. We could demonstrate that the carnitine uptake into the apical vesicles was about eight times higher compared with the basal ones. Moreover, this uptake was sodium- and pH-dependent with an apparent K(m) value of 21 muM and inhibited by verapamil, which is in line with published data for recombinant OCTN2. Finally, experiments using trophoblasts in cell culture revealed that expression of OCTN2 paralleled human choriogonadotropin production and thus is modulated by cellular differentiation. In summary, we show expression and function of OCTN2 in human placenta. Moreover, several lines of evidence indicate that OCTN2 is localized in the apical membrane of syncytiotrophoblasts, thereby suggesting a major role in the uptake of carnitine during fetal development.
Collapse
Affiliation(s)
- Markus Grube
- Department of Pharmacology, Friedrich Loefflerstr. 23d, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA. l-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol 2004; 287:C263-9. [PMID: 15238359 DOI: 10.1152/ajpcell.00333.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternofetal transport of l-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that l-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km= 11.09 ± 1.32 μM; Vmax= 41.75 ± 0.94 pmol·mg protein−1·min−1), and was unchanged over the pH range from 5.5 to 8.5. l-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of l-carnitine, including d-carnitine, acetyl-d,l-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-l-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for l-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans.
Collapse
Affiliation(s)
- Karim Lahjouji
- Division of Medical Genetics, Hôpital Sainte-Justine, Université de Montréal, 3175 Côte Sainte-Catherine, Montreal, Quebec, Canada H3T 1C5
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na(+)- and Cl(-)-dependent monoamine neurotransmitter transporters ( SLC6-family), high-affinity choline transporters ( SLC5-family), and high-affinity thiamine transporters ( SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Bayerischen Julius-Maximilians-Universität, Koellikerstr. 6, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
7
|
Wu SP, Shyu MK, Liou HH, Gau CS, Lin CJ. Interaction between Anticonvulsants and Human Placental Carnitine Transporter. Epilepsia 2004; 45:204-10. [PMID: 15009220 DOI: 10.1111/j.0013-9580.2004.29603.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To examine the inhibitory effect of anticonvulsants (AEDs) on carnitine transport by the human placental carnitine transporter. METHODS Uptake of radiolabeled carnitine by human placental brush-border membrane vesicles was measured in the absence and presence of tiagabine (TGB), vigabatrin (VGB), gabapentin (GBP), lamotrigine (LTG), topiramate (TPM), valproic acid (VPA), and phenytoin (PHT). The mechanism of the inhibitory action of TGB was determined. RESULTS Most of the AEDs inhibited placental carnitine transport. Kinetic analyses showed that TGB had the greatest inhibitory effect [50% inhibitory concentration (IC50, 190 microM)], and the order of inhibitory potency was TGB > PHT > GBP > VPA > VGB, TPM > LTG. Further studies showed that TGB competitively inhibited carnitine uptake by the human placental carnitine transporter, suggesting that it may be a substrate for this carrier. CONCLUSIONS Although the involvement of carnitine deficiency in fetal anticonvulsant syndrome requires further evaluation, potential interference with placental carnitine transport by several AEDs was demonstrated. Despite the higher inhibitory potency of TGB, given the therapeutic unbound concentrations, the results for VPA and PHT are probably more clinically significant.
Collapse
Affiliation(s)
- Shu-Pei Wu
- School of Pharmacy and Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
8
|
St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab 2002; 87:1856-63. [PMID: 11932330 DOI: 10.1210/jcem.87.4.8431] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Organic anion-transporting polypeptides (OATPs) are a family of multispecific carriers that mediate the sodium-independent transport of steroid hormone and conjugates, drugs, and numerous anionic endogenous substrates. We investigated whether members of the OATP gene family could mediate fetal-maternal transfer of anionic steroid conjugates in the human placenta. OATP-B (gene symbol SLC21A9) was isolated from a placenta cDNA library. An antiserum to OATP-B detected an 85-kDa protein in basal but not apical syncytiotrophoblast membranes. Immunohistochemistry of first-, second-, and third-trimester placenta showed staining in the cytotrophoblast membranes and at the basal surface of the syncytiotrophoblast. Trophoblasts that reacted with an antibody to Ki-67, a proliferation-associated antigen, expressed lower levels of OATP-B. OATP-B mRNA levels were measured in isolated trophoblasts under culture conditions that promoted syncytia formation. Real-time quantitative PCR estimated an 8-fold increase in OATP-B expression on differentiation to syncytia. The uptake of [(3)H]estrone-3-sulfate, a substrate for OATP-B, was measured in basal syncytiotrophoblast membrane vesicles. Transport was saturable and partially inhibited by pregnenolone sulfate, a progesterone precursor. Pregnenolone sulfate also partially inhibited OATP-B-mediated transport of estrone-3-sulfate in an oocyte expression system. These findings suggest a physiological role for OATP-B in the placental uptake of fetal-derived sulfated steroids.
Collapse
Affiliation(s)
- M V St-Pierre
- Department of Medicine, Institute of Clinical Pathology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, Tsuji A. Na(+)-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1512:273-84. [PMID: 11406104 DOI: 10.1016/s0005-2736(01)00328-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of Na(+)-dependent transport of L-carnitine via the carnitine/organic cation transporter OCTN2 and the subcellular localization of OCTN2 in kidney were studied. Using plasma membrane vesicles prepared from HEK293 cells that were stably transfected with human OCTN2, transport of L-carnitine via human OCTN2 was characterized. Uptake of L-[(3)H]carnitine by the OCTN2-expressing membrane vesicles was significantly increased in the presence of an inwardly directed Na(+) gradient, with an overshoot, while such transient uphill transport was not observed in membrane vesicles from cells that were mock transfected with expression vector pcDNA3 alone. The uptake of L-[(3)H]carnitine was specifically dependent on Na(+) and the osmolarity effect showed that Na(+) significantly influenced the transport rather than the binding. Changes of inorganic anions in the extravesicular medium and of membrane potential by valinomycin altered the initial uptake activity of L-carnitine by OCTN2. In addition, the fluxes of L-carnitine and Na(+) were coupled with 1:1 stoichiometry. Accordingly, it was clarified that Na(+) is coupled with flux of L-carnitine and the flux is an electrogenic process. Furthermore, OCTN2 was localized on the apical membrane of renal tubular epithelial cells. These results clarified that OCTN2 is important for the concentrative reabsorption of L-carnitine after glomerular filtration in the kidney.
Collapse
Affiliation(s)
- I Tamai
- Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, Leibach FH, Ganapathy V. beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem 2000; 275:1699-707. [PMID: 10636865 DOI: 10.1074/jbc.275.3.1699] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Therapeutic use of cephaloridine, a beta-lactam antibiotic, in humans is associated with carnitine deficiency. A potential mechanism for the development of carnitine deficiency is competition between cephaloridine and carnitine for the renal reabsorptive process. OCTN2 is an organic cation/carnitine transporter that is responsible for Na(+)-coupled transport of carnitine in the kidney and other tissues. We investigated the interaction of several beta-lactam antibiotics with OCTN2 using human cell lines that express the transporter constitutively as well as using cloned human and rat OCTN2s expressed heterologously in human cell lines. The beta-lactam antibiotics cephaloridine, cefoselis, cefepime, and cefluprenam were found to inhibit OCTN2-mediated carnitine transport. These antibiotics possess a quaternary nitrogen as does carnitine. Several other beta-lactam antibiotics that do not possess this structural feature did not interact with OCTN2. The interaction of cephaloridine with OCTN2 is competitive with respect to carnitine. Interestingly, many of the beta-lactam antibiotics that were not recognized by OCTN2 were good substrates for the H(+)-coupled peptide transporters PEPT1 and PEPT2. In contrast, cephaloridine, cefoselis, cefepime, and cefluprenam, which were recognized by OCTN2, did not interact with PEPT1 and PEPT2. The interaction of cephaloridine with OCTN2 was Na(+)-dependent, whereas the interaction of cefoselis and cefepime with OCTN2 was largely Na(+)-independent. Furthermore, the Na(+)-dependent, OCTN2-mediated cellular uptake of cephaloridine could be demonstrated by direct uptake measurements. These studies show that OCTN2 plays a crucial role in the pharmacokinetics and therapeutic efficacy of certain beta-lactam antibiotics such as cephaloridine and that cephaloridine-induced carnitine deficiency is likely to be due to inhibition of carnitine reabsorption in the kidney.
Collapse
Affiliation(s)
- M E Ganapathy
- Department of Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Seth P, Wu X, Huang W, Leibach FH, Ganapathy V. Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. J Biol Chem 1999; 274:33388-92. [PMID: 10559218 DOI: 10.1074/jbc.274.47.33388] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Novel organic cation transporter (OCTN2) is an organic cation/carnitine transporter, and two missense mutations, L352R and P478L, in OCTN2 have been identified as the cause for primary carnitine deficiency. In the present study, we assessed the influence of these two mutations on the carnitine transport function and the organic cation transport function of OCTN2. The L352R mutation resulted in a complete loss of both transport functions. In contrast, the P478L mutation resulted in a complete loss of only the carnitine transport function but significantly stimulated the organic cation transport function. Studies with human OCTN2/rat OCTN2 chimeric transporters indicated that the carnitine transport site and the organic cation transport site were not identical. Because carnitine transport is Na(+)-dependent whereas organic cation transport is Na(+)-independent, we investigated the possibility that the P478L mutation affected Na(+) binding. The Na(+) activation kinetics were found to be similar for the P478L mutant and wild type OCTN2. We then mutated nine different tyrosine residues located in or near transmembrane domains and assessed the transport function of these mutants. One of these mutations, Y211F, was found to have differential influence on the two transport activities of OCTN2 as did the P478L mutation. However, the Na(+) activation kinetics were not affected. These findings are of clinical relevance to patients with primary carnitine deficiency because whereas each and every mutation in these patients is expected to result in the loss of the carnitine transport function, all of these mutations may not interfere with the organic cation transport function.
Collapse
Affiliation(s)
- P Seth
- Department of Biochemistry, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
12
|
Huang W, Shaikh SN, Ganapathy ME, Hopfer U, Leibach FH, Carter AL, Ganapathy V. Carnitine transport and its inhibition by sulfonylureas in human kidney proximal tubular epithelial cells. Biochem Pharmacol 1999; 58:1361-70. [PMID: 10487540 DOI: 10.1016/s0006-2952(99)00219-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The kidney plays an important role in the homeostasis of carnitine by its ability to reabsorb carnitine almost completely from the glomerular filtrate. The transport process responsible for this reabsorption has been investigated thus far only in laboratory animals. Here we report on the characteristics of carnitine uptake in a proximal tubular epithelial cell line derived from human kidney. The uptake process was found to be obligatorily dependent on Na+ with no involvement of anions. The process was saturable, with a Michaelis-Menten constant of 14 +/- 1 microM. The Na+:carnitine stoichiometry was 1:1. The same process also was found to be responsible for the uptake of acetylcarnitine and propionylcarnitine, two acyl esters of carnitine with potential for therapeutic use in humans. The uptake process was specific for carnitine and its acyl esters. Betaine, a structural analog of carnitine, interacted with the uptake process to a significant extent. The present studies also showed that sulfonylureas, oral hypoglycemic agents currently used in the management of type 2 diabetes, inhibited the carnitine uptake system. Among the sulfonylureas tested, glibenclamide was the most potent inhibitor. The inhibition was competitive. Glibenclamide inhibited the uptake not only of carnitine but also of acetylcarnitine and propionylcarnitine. The inhibition most likely was the result of direct interaction of the compound with the carnitine transporter because the inhibition could be demonstrated in purified rat kidney brush border membrane vesicles.
Collapse
Affiliation(s)
- W Huang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912-2100, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, Wanders RJ, Fok TF, Hjelm NM. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet 1999; 8:655-60. [PMID: 10072434 DOI: 10.1093/hmg/8.4.655] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systemic primary carnitine deficiency (CDSP, OMIM 212140) is an autosomal recessive disease characterized by low serum and intracellular concentrations of carnitine. CDSP may present with acute metabolic derangement simulating Reye's syndrome within the first 2 years of life. After 3 years of age, patients with CDSP may present with cardiomyopathy and muscle weakness. A linkage with D5S436 in 5q was reported in a family. A recently cloned homologue of the organic cation transporter, OCTN2, which has sodium-dependent carnitine uptake properties, was also mapped to the same locus. We screened for mutation in OCTN2 in a confirmed CDSP family. One truncating mutation (Trp132Stop) and one missense mutation (Pro478Leu) of OCTN2 were identified together with two silent polymorphisms. Expression of the mutant cDNAs revealed virtually no uptake activity for both mutations. Our data indicate that mutations in OCTN2 are responsible for CDSP. Identification of the underlying gene in this disease will allow rapid detection of carriers and postnatal diagnosis of affected patients.
Collapse
Affiliation(s)
- N L Tang
- Department of Chemical Pathology and Department of Paediatrics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yanagawa N, Jo OD, Said HM. Riboflavin transport by rabbit renal basolateral membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:56-62. [PMID: 9858685 DOI: 10.1016/s0005-2736(98)00176-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study examined riboflavin (RF) uptake by isolated rabbit renal basolateral membrane (BLM). RF uptake was linear during the initial 10 seconds and leveled off thereafter with longer incubation. Studies on RF uptake as a function of incubation medium osmolarity indicated that the BLM RF uptake was the results of transport (approximately 45%) into the intravesicular space as well as binding (approximately 55%) to membrane surfaces. The RF binding to BLM was Na+-dependent so that replacement of Na+ by other cations eliminated the binding component of RF uptake. The process of BLM RF uptake was saturable as a function of substrate concentration and was significantly inhibited by cis-addition of its structural analogs, lumiflavin and lumichrome, indicating the involvement of a carrier-mediated process. The BLM RF uptake was affected by changes in extravesicular pH so that, as compared to pH 7.5, RF uptake was lower at pH 6.5 and higher at pH 8.5. The effect of extravesicular pH persisted when the transmembrane H+ gradient was dissipated by FCCP, indicating the direct effect of pH on BLM RF uptake. The BLM RF uptake was not affected by alterations of the transmembrane electrical potential, induced by either the presence of anions with different membrane permeability (Cl-=NO-3>SO-4>gluconate-) or using nigericin (10 microg/mg protein) with an outwardly or inwardly directed transmembrane K+ gradient. The BLM RF uptake was, however, inhibited by probenecid and p-aminohippurate, and was enhanced by trans-RF. In summary, these results demonstrate the existence of a Na+-dependent BLM binding of RF and a membrane-associated carrier system for RF uptake by renal BLM.
Collapse
Affiliation(s)
- N Yanagawa
- Division of Nephrology (111R), Medical and Research Services, Sepulveda Veterans Administration Medical Center, 16111 Plummer Street, Sepulveda, CA 91343, USA
| | | | | |
Collapse
|
15
|
|
16
|
Yanagawa N, Jo OD, Said HM. Riboflavin transport by rabbit renal brush border membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1330:172-8. [PMID: 9408170 DOI: 10.1016/s0005-2736(97)00153-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study examined riboflavin (RF) uptake by isolated rabbit renal brush border membrane (BBM). RF uptake was linear for up to 30 s and leveled off thereafter reaching an equilibrium with longer incubation. Studies on RF uptake as a function of incubation medium osmolarity indicated that the uptake was the results of transport (61.4%) into the intravesicular space as well as binding (38.6%) to membrane surfaces. The process of RF uptake was saturable as a function of substrate concentration with an apparent Km of 25.7 +/- 7.6 microM and Vmax of 75.6 +/- 14.7 pmol/mg protein/10 s. cis-Addition of unlabeled RF and its structural analogues, lumiflavin and lumichrome, inhibited the uptake of [3H]RF significantly, indicating the involvement of a carrier-mediated process in RF uptake by renal BBM. RF uptake by renal BBM was partly Na+-dependent so that when Na+ was replaced by potassium, choline, lithium or tetramethylammonium, the RF uptake was reduced to ca. 60% of the control. This Na+-dependency was unlikely to be due to Na+-cotransport mechanism because RF uptake occurred without the characteristic 'overshoot' phenomenon as for other Na+-cotransport systems and the elimination of transmembrane Na+-gradient by preloading Na+ to the intravesicular space did not affect RF uptake. In contrast, removal of Na+ eliminated the binding component of RF uptake, suggesting the requirement of Na+ for RF binding to BBM. The RF uptake was not affected when extravesicular pH was varied within the physiological pH range of 6.5 to 8.5. No effect on BBM [3H]RF uptake was found when the transmembrane electrical potential was altered by either the presence of anions with different membrane permeability (Cl- = NO3- > SO4- > gluconate-) or by using nigericin (10 microg/mg protein) with an outwardly or inwardly directed transmembrane K+ gradient. The uptake of RF by BBM vesicles was, however, inhibited by probenecid and organic anion transport inhibitors, 4,4-diiso-thiocyanatostilbene-2,2-disulfonic acid (DIDS, 1 mM) and 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS, 1 mM). In summary, these results demonstrate the existence of a membrane-associated, and organic anion inhibitor-sensitive, carrier system for RF uptake by renal BBM.
Collapse
Affiliation(s)
- N Yanagawa
- Division of Nephrology, Sepulveda Veterans Administration Medical Center, CA 91343, USA
| | | | | |
Collapse
|
17
|
El-Razek MA, Webb RA. Transport of exogenous 5-hydroxytryptamine across the outer plasma membrane of the syncytial tegument ofHymenolepis diminutais by simple diffusion. CAN J ZOOL 1997. [DOI: 10.1139/z97-787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The uptake of 5-hydroxytryptamine (5HT) from a 10 μM solution of exogenous [3H]5HT into the tegument of Hymenolepis diminuta was linear for the first 20 min of incubation. The rate of transport was 0.04 ± 0.01 pmol∙mg wet mass−1∙min−1, and there were no significant differences in the rate of uptake by the anterior, middle, and posterior regions of the body. The initial uptake was not Na+-dependent, was not saturable at up to 100 μM, was not highly temperature-dependent (Q10~ 1.2), and displayed activation energy of 11.8 kJ∙mol−1. Furthermore, uptake was not inhibited by p-chloromercuriphenyl sulphonic acid, imipramine, amiloride, or 5HT analogues, which collectively support a non-carrier-mediated uptake mechanism. Washing of the tissues with 10 mM 5HT after incubation in 10 μM [3H]5HT displaced less than 10% of the remaining [3H]5HT associated with the tissues, and little radioactivity was extracted by washing in acetone or chloroform. The uptake of [3H]5HT, however, was pH-dependent, the rate of uptake being closely correlated with the proportion of unprotonated 5HT. Only a small portion of the transported [3H]5HT was metabolized to a product associated with 5-hydroxyindoleacetic acid, and metabolism was significantly inhibited by the monoamine oxidase inhibitors iproniazid phosphate, deprenyl, and clorgyline. The present study showed that small amounts of [3H]5HT were taken up by H. diminuta by simple diffusion, little of the [3H]5HT was adsorbed to the surface of the worms or dissolved in the lipid phase of the plasma membrane, and some of the [3H]5HT taken up was metabolized by a monoamine oxidase-like enzyme.
Collapse
|
18
|
Brandsch M, Brandsch C, Ganapathy ME, Chew CS, Ganapathy V, Leibach FH. Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2). BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1324:251-62. [PMID: 9092712 DOI: 10.1016/s0005-2736(96)00231-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism by which H+ alters the kinetics of the H+-coupled peptide transporters PEPT 1 and PEPT 2 was investigated in two different cell lines which differentially express these transporters, namely Caco-2 cells (PEPT 1) and SKPT cells (PEPT 2). The effects of H+ on the affinity and the maximal velocity of Gly-Sar uptake were analyzed in these cells under identical conditions. In both cells, H+ influenced only the maximal velocity of uptake and not the apparent affinity. The effects of H+ on the IC50 values (i.e., concentration necessary to cause 50% inhibition) of the cationic dipeptide Ala-Lys and the anionic dipeptide Ala-Asp for inhibition of Gly-Sar uptake were also investigated. H+ did not change the IC50 value for Ala-Lys but did decrease the IC50 value for Ala-Asp considerably. The influence of diethylpyrocarbonate (DEP) on the kinetic parameters of PEPT 1 and PEPT 2 was then studied. Histidyl residues are the most likely amino acid residues involved in H+ binding and translocation in H+-coupled transport systems and DEP is known to chemically modify histidyl residues and block their function. DEP treatment altered the maximal velocity of Gly-Sar uptake but had no effect on its K(t) (Michaelis-Menten constant) or the IC50 values of Ala-Lys or Ala-Asp for the inhibition of Gly-Sar uptake. It is concluded that H+ stimulates PEPT 1 and PEPT 2 primarily by increasing the maximal velocity of the transporters with no detectable influence on the substrate affinity.
Collapse
Affiliation(s)
- M Brandsch
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | | | |
Collapse
|