1
|
Sedzik J, Jastrzebski JP, Grandis M. Glycans of myelin proteins. J Neurosci Res 2014; 93:1-18. [PMID: 25213400 DOI: 10.1002/jnr.23462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023]
Abstract
Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan. The MAG has 10 glycosylation sites; the glycoprotein OMgp has 11 glycosylation sites. Aside from P0, no comprehensive data are available on other myelin glycoproteins. Here we review and analyze all published data on the physicochemical structure of the glycans linked to P0, PMP22, MOG, and MAG. Most data concern bovine P0, whose glycan moieties have an MW ranging from 1,294.56 Da (GP3) to 2,279.94 Da (GP5). The pI of glycosylated P0 protein varies from pH 9.32 to 9.46. The most charged glycan is MS2 containing three sulfate groups and one glucuronic acid; whereas the least charged one is the BA2 residue. All glycans contain one fucose and one galactose. The most mannose rich are the glycans MS2 and GP4, each of them has four mannoses; OPPE1 contains five N-acetylglucosamines and one sulfated glucuronic acid; GP4 contains one sialic acid. Furthermore, human P0 variants causing both gain and loss of glycosylation have been described and cause peripheral neuropathies with variable clinical severity. In particular, the substitution T(95) →M is a very common in Europe and is associated with a late-onset axonal neuropathy. Although peripheral myelin is made up largely of glycoproteins, mutations altering glycosylation have been described only in P0. This attractive avenue of research requires further study.
Collapse
Affiliation(s)
- Jan Sedzik
- Royal Institute of Technology, Department of Chemical Engineering, Protein Crystallization Facility, Stockholm, Sweden; National Institute of Physiological Sciences, Department of Neuroscience and Bioinformatics, Okazaki, Japan
| | | | | |
Collapse
|
2
|
Foldvari M, Jaafari MR, Mezei M, Mezei C. Targeting Liposomes Through Immunoglobulin Superfamily Domains: P0Protein as a Model. Drug Deliv 2009; 5:183-95. [DOI: 10.3109/10717549809052034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Watson SL, Westland K, Pollard JD. An electrophysiological and histological study of trypsin induced demyelination. J Neurol Sci 1994; 126:116-25. [PMID: 7853015 DOI: 10.1016/0022-510x(94)90260-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ten-microliters quantities of trypsin or saline were injected into rat tibial nerve and the physiological and histological changes evaluated and compared to the focal demyelinating lesions induced by intraneural injection of rabbit EAN serum and proteinase K. The injection of trypsin produced progressive conduction block that was maximal on day 4, and a slowing of motor nerve conduction. Early retraction of myelin at paranodes, vesicular change, and macrophage stripping of myelin from nerve axons were seen on histological examination. At day 4, the first groups of completely demyelinated axons were seen, typically in a perivascular distribution. These changes were similar to those seen in the positive controls and thus support the postulate that proteolytic enzymes from macrophages--the dominant cellular species within the demyelinating lesion, play a central role in degradation of the myelin sheath in demyelinating diseases.
Collapse
Affiliation(s)
- S L Watson
- Department of Medicine, University of Sydney, N.S.W., Australia
| | | | | |
Collapse
|
4
|
Abstract
Certain types of glycoproteins expressed in Schwann cell appear to play specific roles in neurite growth and neural migration. Peripheral myelin protein-22 (PMP-22) is a glycoprotein down-regulated in nerve damage and is involved in both trembler mouse mutation and human Charcot-Marie-Tooth disease, type 1A. PMP-22 now appears to be a homologue of previously reported PASII. The homology of PASII/PMP-22 to the growth arrest-specific protein (Gas-3) suggests its role in Schwann cell development. P0, a major protein in peripheral myelin, mediates cell adhesion and promotes neurite outgrowth. In cell adhesion mediated by P0, its unique carbohydrate chain plays an important role. A special isoform of L1 (L1cs), with a short deletion in the intracellular domain, is localized in Schwann cells, whilst the complete L1 is exclusively located in neurons. L1cs in Schwann cells may function differently from L1 in neurons.
Collapse
Affiliation(s)
- K Uyemura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Milner P, Lovelidge CA, Taylor WA, Hughes RA. P0 myelin protein produces experimental allergic neuritis in Lewis rats. J Neurol Sci 1987; 79:275-85. [PMID: 2440998 DOI: 10.1016/0022-510x(87)90235-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
P0 protein was prepared from bovine spinal root myelin. The purity was shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunostaining with affinity purified antisera. P0 in the presence of lysophosphatidylcholine induced paralysis and histological lesions resembling experimental allergic neuritis in Lewis rats. Lysophosphatidylcholine also enhanced the ability of P2 to produce neuritis. The conformation of these proteins may be important in determining their ability to induce experimental allergic neuritis. P0 deserves consideration as an antigen relevant to Guillain-Barré syndrome.
Collapse
|
6
|
Abstract
Peripheral nervous system myelin contains as the major structural protein a glycoprotein known as P0. Another glycoprotein present in smaller amounts, known as the 19K or X protein, has been previously identified as derived from P0 and identical with the main tryptic degradation product of P0 (TP0). Although both P0 and 19K protein incorporated fucose in vitro and stained on polyacrylamide gels with the periodic acid-Schiff stain for carbohydrate, only the P0 blotted to nitrocellulose paper showed immunoreactivity to an antibody to P0, whereas the 19K protein did not. Furthermore, when P0 was hydrolyzed with trypsin or elastase, the main degradation products reacted with P0 on immunoblots, whereas the 19K protein showed no immunoreactivity. From these studies and those of others, it may be concluded that the 19K protein shows some similarities to TP0, but probably has a different structure. P0 and 19K protein do not appear to be related as shown by lack of cross-immunoreactivity.
Collapse
|
7
|
Bever CT, Whitaker JN. Proteinases in inflammatory demyelinating disease. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1985; 8:235-50. [PMID: 3901368 DOI: 10.1007/bf00197298] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Association and release of the major intrinsic membrane glycoprotein from peripheral nerve myelin. Biochem J 1985; 228:43-54. [PMID: 2408610 PMCID: PMC1144951 DOI: 10.1042/bj2280043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypo-osmotic homogenization of the endoneurium from the adult-rat sciatic nerve and subsequent evaluation of the 197 000 g aqueous supernatant by sodium dodecyl sulphate pore-gradient electrophoresis (SDS-p.g.e.) revealed a release of the major glycoprotein (P0) (29 000 Mr) from peripheral nerve myelin. Immunological verification of the presence of this asparagine-linked glycoprotein in the aqueous supernatant was obtained by immune overlay after SDS-p.g.e. and electrophoretic transfer to nitrocellulose using anti-P0 gamma-globulin followed by autoradiographic detection with 125I-protein A. A comparison of successive hypo- and iso-osmotic extractions of the endoneurium revealed that the hypo-osmotic extraction released increasing amounts of P0 into the supernatant fraction, whereas the iso-osmotic treatment revealed lower levels of P0 extracted from the myelin and lesser amounts with each successive extraction. Three successive hypo-osmotic extractions resulted in a 2.0-, 2.9-, and 9.5-fold increase in the amount of P0 released compared with the successive iso-osmotic extractions. Although these results suggest that this major myelin glycoprotein has properties similar to those of extrinsic membrane proteins, temperature-dependent phase-partitioning experiments with Triton X-114 revealed that this glycoprotein is recovered in the detergent-enriched lower phase. These results indicate that this major myelin glycoprotein is an amphipathic integral membrane protein with a distinct hydrophobic domain and yet has solubility characteristics typical of an extrinsic membrane protein. P0 labelled in vitro with [3H]mannose could be immunoprecipitated from the aqueous supernatant with anti-P0 gamma-globulin by centrifugation at 197000g without the addition of second antibody or protein A. Analysis of such an immune precipitate after incorporation in vitro with [14C]acetate to label endoneurial lipids revealed that all major endoneurial lipid classes contained radioactive label, as determined by fluorography after high-performance t.l.c. The mechanism of release of this intrinsic glycoprotein from the myelin membrane, therefore, involves the osmotic-dependent formation of mixed micelles or membrane vesicles with endogenous membrane lipids.
Collapse
|
9
|
Abstract
The myelin sheath is a multilayered membrane, unique to the nervous system, which functions as an insulator to increase greatly the velocity of axonal impulse conduction. We have used the techniques of differential screening and hybrid selection to identify a cDNA clone encoding the Schwann cell glycoprotein P0, the major structural protein of the peripheral myelin sheath. The sequence of this protein, deduced from the nucleotide sequence of the cloned cDNA, indicates that P0 is an integral membrane protein containing a single membrane-spanning region, a large hydrophobic extracellular domain, and a smaller basic intracellular domain. The structure of the protein suggests that each of these domains plays an essential role in generating the highly ordered structure of the myelin sheath. Furthermore, we find that the induction of P0 mRNA coincides with the initiation of myelin formation, and we propose a model in which the glycoprotein serves as a molecular guidepost for this process.
Collapse
|
10
|
Poduslo JF, Dyck PJ, Berg CT. Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection. J Neurochem 1985; 44:388-400. [PMID: 2578177 DOI: 10.1111/j.1471-4159.1985.tb05428.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Permanent nerve transection of the adult rat sciatic nerve forces Schwann cells in the distal nerve segment from a myelin-maintaining to a quiescent state. This transition was followed by serial morphometric evaluation of the percentage fascicular area having myelin (myelin percent of area) in transverse sections of the distal nerve segment and revealed a rapid decline from a normal value of 36.6% to 3.2% by 14 days for the sciatic nerve to less than 1.0% throughout the remaining time course (up to 105 days). No evidence of axonal reentry into the distal nerve segment or new myelin formation was observed at times under 70 days. In some of the distal nerve segments at 70, 90, and 105 days, new myelinated fibers were observed that usually consisted of only a few myelinated fibers at the periphery and in the worst case amounted to 1.6% (myelin percent of area). Radioactive precursor incorporation of [3H]mannose into endoneurial slices at 4 and 7 days after transection revealed two species of the major myelin glycoprotein, P0, with Mr of 28,500 and 27,700. By 14 days after nerve transection, only the 27,700 Mr species remained. Incorporation of [3H]mannose into the 27,700 Mr species increased progressively to 35 days after transection and then began to decline at 70 and 105 days. Alterations in the oligosaccharide structure of this down-regulated myelin glycoprotein accounted for the progressive increase in mannose incorporation. Lectin affinity chromatography of pronase-digested P0 glycopeptides on concanavalin A-Sepharose revealed that the 28,500 Mr species of P0 had the complex-type oligosaccharide as the predominant oligosaccharide structure (92%). In contrast, the high mannose-type oligosaccharide was the predominate structure for the 27,700 Mr form, which increased to 70% of the total radioactivity by 35 days after nerve transection. Since the biosynthesis of the complex-type oligosaccharide chains on glycoproteins involves high mannose-type intermediates, the mechanism of down-regulation in the biosynthesis of this major myelin glycoprotein, therefore, results in a biosynthetic switch from the complex-type oligosaccharide structure as an end product to the predominantly high mannose-type oligosaccharide structure as a biosynthetic intermediate. This biosynthetic switch occurs gradually between 7 and 14 days after nerve transection and likely reflects a decreased rate of processing through the Golgi apparatus. It remains to be determined if the high mannose-type oligosaccharide chain on P0 can undergo additional processing steps in this permanent nerve transection model.
Collapse
|
11
|
Inuzuka T, Sato S, McIntyre LJ, Quarles RH. Effects of trypsin and plasmin treatment of myelin on the myelin-associated glycoprotein and basic protein. J Neurochem 1984; 43:582-5. [PMID: 6204016 DOI: 10.1111/j.1471-4159.1984.tb00938.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human and rat myelin preparations were incubated with varying concentrations of trypsin and plasmin to determine the effects of these proteolytic enzymes on myelin-associated glycoprotein (MAG), basic protein, and other myelin proteins and to compare the effects with those of the neutral protease that was reported to be endogenous in myelin. Basic protein was most susceptible to degradation by both trypsin and plasmin, whereas MAG was relatively resistant to their actions. Under the assay conditions used, the highest concentrations of trypsin and plasmin degraded greater than 80% of the basic protein but less than 30% of the MAG, and lower concentrations caused significant loss of basic protein without appreciably affecting MAG. Neither trypsin nor plasmin caused a specific cleavage of MAG to a derivative of MAG (dMAG) in a manner analogous to the endogenous neutral protease. Thus the endogenous protease appears unique in converting human MAG to dMAG much more rapidly than it degrades basic protein. MAG is slowly degraded along with other proteins when myelin is treated with trypsin or plasmin, but it is less susceptible to their action than is basic protein.
Collapse
|
12
|
Koski CL, Franko MC, Hudson CS, Shin ML. Incorporation of P0 protein into liposomes: demonstration of a two-domain structure by immunochemical and PAGE analysis. J Neurochem 1984; 42:856-62. [PMID: 6198474 DOI: 10.1111/j.1471-4159.1984.tb02759.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The amphiphilic nature of P0, the major glycoprotein of peripheral nerve myelin, has been suggested previously. In the present study, purified P0 from human peripheral nerve myelin was incorporated into an artificial lipid bilayer consisting of dimyristoyl lecithin and cholesterol. The liposomes were fractionated on a sucrose gradient. The continued expression of P0 antigenicity by the liposomes was shown by specific complement consumption with a multivalent antiserum against P0 or with an IgM monoclonal antibody. Both antibodies recognized P0 expressed on the surface of peripheral nerve myelin and the P0 liposomes. P0 liposomes and peripheral nerve myelin treated with trypsin lost the surface determinant that reacted with the monoclonal antibody. Analysis of the trypsin-treated liposomes and peripheral nerve myelin by polyacrylamide gel electrophoresis revealed molecular weights for this protein of 19,500 and 20,500, respectively. Similar treatment of the P0 in the fluid phase resulted in many smaller fragments. These results indicate that P0 consists of two domains, a hydrophilic domain accessible to trypsin digestion and a hydrophobic domain, which is potentially trypsin-sensitive, but shielded by the lipid bilayer. Binding studies with an anti-P0 monoclonal antibody and polyacrylamide gel analysis of the lipid-shielded P0 fragment in liposomes and peripheral nerve myelin suggest that the orientation of the protein in the liposome is similar to that in peripheral nerve myelin.
Collapse
|
13
|
Abstract
X-ray and neutron diffraction methods provide some information about the distribution of mass in biological membranes and lipid-water systems. Scattering density profiles obtained from these systems, however, usually are not directly interpretable in terms of the relative amounts of chemical constituents (e.g., lipid, protein, and water) as a function of position in the membrane. We demonstrate here that the combined use of x-ray and neutron-scattering profiles, together with information on the total amounts of each of the major membrane components, are sufficient to calculate unambiguously the volume fractions of these components at well-defined regions of the lamellar unit. Three cases are considered: a calculated model membrane pair, dipalmitoylphosphatidylcholine-water multilayers, and rabbit sciatic nerve myelin. For the model system, we discuss the limitations imposed by finite resolution in the diffraction patterns. For the lipid-water multilayers, we calculate water volume fractions in the hydrocarbon tail, lipid headgroup, and interlamellar regions; estimates of these values by various methods are in good agreement with our results. For the nerve myelin, we predict new results for the distribution of protein through the membrane.
Collapse
|
14
|
Abstract
Two fractions were isolated by continuous density gradient centrifugation from total particulate matter of rabbit sciatic nerves: a minor fraction, B, consisting of small-sized membrane fragments and a major fraction, C, of characteristic multilayered myelin figures, with maxima at 0.33 and 0.58 M-sucrose, respectively. In comparison with C, fraction B was enriched in CNPase and alkaline phosphatase activities and the P0, 23K and Z proteins, but was virtually devoid of basic protein. The glycoprotein composition of all fractions was examined with four fluorescein isothiocyanate-labelled lectins (WGA, Con A, RCA-60, U.E.). These revealed the presence of six glycoproteins in all fractions with similar lectin binding capacities and molecular weights ranging from 35,500 to 16,000, of which P0 was the predominant component. Material found on the heavy side of fraction C was characterized by the presence of a multitude of glycoproteins which bound variable proportions of the four different lectins, suggesting substantial variations in their carbohydrate moieties. Their absence from the central portion of fraction C points to a location other than that of compact PNS myelin.
Collapse
|
15
|
Cammer W, Brosnan CF, Bloom BR, Norton WT. Degradation of the P0, P1, and Pr proteins in peripheral nervous system myelin by plasmin: implications regarding the role of macrophages in demyelinating diseases. J Neurochem 1981; 36:1506-14. [PMID: 6167674 DOI: 10.1111/j.1471-4159.1981.tb00593.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Activated macrophages secrete a variety of neutral proteinases, including plasminogen activator. Since macrophages are implicated in primary demyelination in the peripheral nervous system (PNS) in Guillain-Barré syndrome and experimental allergic neuritis, we have investigated the ability of plasmin and of conditioned media from cultured macrophages, in the presence of plasminogen, to degrade the proteins in bovine and rat PNS myelin. The results indicate that (a) the major glycoprotein P0 and the basic P1 and Pr proteins in PNS myelin are extremely sensitive to plasmin, perhaps more so than is the basic protein in CNS myelin; (b) the initial product of degradation of P0 by plasmin has a molecular weight higher than that of the "X" protein; (c) large degradation products of P0 are relatively insensitive to further degradation; and (d) the neuritogenic P2 protein in PNS myelin is quite resistant to the action of plasmin. Results similar to those with plasmin were obtained with conditioned media from macrophages and macrophage-like cell lines together with plasminogen activator, and the degradation of the PNS myelin proteins, Po and P1, under these conditions was inhibited by p-nitrophenylguanidinobenzoate, an inhibitor of plasmin and plasminogen activator. The results suggest that the macrophage plasminogen activator could participate in inflammatory demyelination in the PNS.
Collapse
|
16
|
Abstract
Peripheral nervous system (PNS) tissue contains a variety of proteins, lipids, and carbohydrates that may serve as immunogens in proving immune responses, as antigens participating in immunological reactions, or as both types of agents. Three proteins P0, P1, and P2, account for approximately 70% of PNS myelin proteins. P0 is the major PNS myelin protein and is restricted to the PNS. P1 is similar to, if not identical with, myelin basic protein, the component of central nervous system myelin which induces experimental allergic encephalomyelitis. P2 has neuritogenic properties for inducing experimental allergic neuritis and may be involved in immune-mediated PNS myelin injury in humans. The complete amino acid sequence for P2 has recently been delineated, and its neuritogenic, immunogenic, and antigenic features can now be further characterized.
Collapse
|
17
|
Eylar EH, Uyemura K, Brostoff SW, Kitamura K, Ishaque A, Greenfield S. Proposed nomenclature for PNS myelin proteins. Neurochem Res 1979; 4:289-93. [PMID: 460524 DOI: 10.1007/bf00964152] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|