1
|
Rozova ON, Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN. Role of the malic enzyme in metabolism of the halotolerant methanotroph Methylotuvimicrobium alcaliphilum 20Z. PLoS One 2019; 14:e0225054. [PMID: 31738793 PMCID: PMC6860931 DOI: 10.1371/journal.pone.0225054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
The bacteria utilizing methane as a growth substrate (methanotrophs) are important constituents of the biosphere. Methanotrophs mitigate the emission of anthropogenic and natural greenhouse gas methane to the environment and are the promising agents for future biotechnologies. Many aspects of CH4 bioconversion by methanotrophs require further clarification. This study was aimed at characterizing the biochemical properties of the malic enzyme (Mae) from the halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z. The His6-tagged Mae was obtained by heterologous expression in Escherichia coli BL21 (DE3) and purified by affinity metal chelating chromatography. As determined by gel filtration and non-denaturating gradient gel electrophoresis, the molecular mass of the native enzyme is 260 kDa. The homotetrameric Mae (65x4 kDa) catalyzed an irreversible NAD+-dependent reaction of L-malate decarboxylation into pyruvate with a specific activity of 32 ± 2 units mg-1 and Km value of 5.5 ± 0.8 mM for malate and 57 ± 5 μM for NAD+. The disruption of the mae gene by insertion mutagenesis resulted in a 20-fold increase in intracellular malate level in the mutant compared to the wild type strain. Based on both enzyme and mutant properties, we conclude that the malic enzyme is involved in the control of intracellular L-malate level in Mtm. alcaliphilum 20Z. Genomic analysis has revealed that Maes present in methanotrophs fall into two different clades in the amino acid-based phylogenetic tree, but no correlation of the division with taxonomic affiliations of the host bacteria was observed.
Collapse
Affiliation(s)
- Olga N. Rozova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ildar I. Mustakhimov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Sergei Y. But
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Aleksandr S. Reshetnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina N. Khmelenina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Thøgersen MS, Delpin MW, Melchiorsen J, Kilstrup M, Månsson M, Bunk B, Spröer C, Overmann J, Nielsen KF, Gram L. Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme. Front Microbiol 2016; 7:1461. [PMID: 27695447 PMCID: PMC5025454 DOI: 10.3389/fmicb.2016.01461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7-10% the amount of violacein compared to the wild type strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wild type. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s) may be play a role in the antibacterial activity of P. luteoviolacea.
Collapse
Affiliation(s)
- Mariane S. Thøgersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| | - Marina W. Delpin
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| | - Jette Melchiorsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| | - Maria Månsson
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures – Partner Site Hannover-Braunschweig, German Centre for Infection ResearchBraunschweig, Germany
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures – Partner Site Hannover-Braunschweig, German Centre for Infection ResearchBraunschweig, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures – Partner Site Hannover-Braunschweig, German Centre for Infection ResearchBraunschweig, Germany
| | - Kristian F. Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Expression characteristics of the maeA and maeB genes by extracellular malate and pyruvate in Escherichia coli. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0061-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
5
|
Dao TV, Nomura M, Hamaguchi R, Kato K, Itakura M, Minamisawa K, Sinsuwongwat S, Le HTP, Kaneko T, Tabata S, Tajima S. NAD-Malic Enzyme Affects Nitrogen Fixing Activity of Bradyrhizobium japonicum USDA 110 Bacteroids in Soybean Nodules. Microbes Environ 2012; 23:215-20. [PMID: 21558711 DOI: 10.1264/jsme2.23.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The NAD(+)-dependent malic enzyme (DME) has been reported to play a key role supporting nitrogenase activity in bacteroids of Sinorhizobium meliloti. Genetic evidence for a similar role in Bradyrhizobium japonicum USDA110 was obtained by constructing a dme mutant. Soybean plants inoculated with a dme mutant did not show delayed nodulation, but formed small root nodules and exhibited significant nitrogen-deficiency symptoms. Nodule numbers and the acetylene reducting activity per nodule as a dry weight value 14 and 28 days after inoculation with the dme mutant were comparable to those of plants inoculated with wild-type B. japonicum. However, shoot dry weight and acetylene reducting activity per nodule decreased to ca. 30% of the values in plants with wild-type B. japonicum. The sucrose and organic acid (malate, succinate, acetate, α-ketoglutarate and lactate) contents of the nodules were investigated. Amounts of sucrose, malate and a-ketoglutarate increased on inoculation with the dme mutant, suggesting that the decreased DME and nitrogenase activities in the bacteroids resulted in a reduction in the consumption of these respiratory metabolites by the nodules. The data suggest that the DME activity of B. japonicum bacteroids plays a role in nodule metabolism and supports nitrogen fixation.
Collapse
Affiliation(s)
- Tan Van Dao
- Centre for Ressources and Environmental Studies, Vietnam National University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. J Microbiol 2011; 49:797-802. [PMID: 22068497 DOI: 10.1007/s12275-011-0487-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/25/2011] [Indexed: 10/15/2022]
Abstract
Malic enzymes catalyze the reversible oxidative decarboxylation of L-malate using NAD(P)(+) as a cofactor. NADP-dependent malic enzyme (MaeB) from Escherichia coli MG1655 was expressed and purified as a fusion protein. The molecular weight of MaeB was about 83 kDa, as determined by SDS-PAGE. The recombinant MaeB showed a maximum activity at pH 7.8 and 46°C. MaeB activity was dependent on the presence of Mn(2+) but was strongly inhibited by Zn(2+). In order to understand the physiological roles, recombinant E. coli strains (icd (NADP)/ΔmaeB and icd (NAD)/ΔmaeB) containing NADP-dependent isocitrate dehydrogenase (IDH), or engineered NAD-dependent IDH with the deletion of the maeB gene, were constructed using homologous recombination. During growth on acetate, icd (NAD)/ΔmaeB grew poorly, having a growth rate only 60% that of the wild-type strain (icd (NADP)). Furthermore, icd (NADP)/ΔmaeB exhibited a 2-fold greater adaptability to acetate than icd (NAD)/ΔmaeB, which may be explained by more NADPH production for biosynthesis in icd (NADP)/ΔmaeB due to its NADP-dependent IDH. These results indicated that MaeB was important for NADPH production for bacterial growth on acetate. We also observed that MaeB activity was significantly enhanced (7.83-fold) in icd (NAD), which was about 3-fold higher than that in icd (NADP), when switching from glucose to acetate. The marked increase of MaeB activity was probably induced by the shortage of NADPH in icd (NAD). Evidently, MaeB contributed to the NADPH generation needed for bacterial growth on two carbon compounds.
Collapse
|
7
|
Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J Ind Microbiol Biotechnol 2010; 38:649-56. [DOI: 10.1007/s10295-010-0913-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
8
|
Skorupa Parachin N, Carlquist M, Gorwa-Grauslund MF. Comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli for the production of an optically pure keto alcohol. Appl Microbiol Biotechnol 2009; 84:487-97. [PMID: 19352650 DOI: 10.1007/s00253-009-1964-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
In this study, the production of enantiomerically pure (1R,4S,6S)-6-hydroxy-bicyclo[2.2.2]octane-2-one ((-)-2) through stereoselective bioreduction was used as a model reaction for the comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli as biocatalysts. For both microorganisms, over-expression of the gene encoding the NADPH-dependent aldo-keto reductase YPR1 resulted in high purity of the keto alcohol (-)-2 (>99% ee, 97-98% de). E. coli had three times higher initial reduction rate but S. cerevisiae continued the reduction reaction for a longer time period, thus reaching a higher conversion of the substrate (95%). S. cerevisiae was also more robust than E. coli, as demonstrated by higher viability during bioreduction. It was also investigated whether the NADPH regeneration rate was sufficient to supply the over-expressed reductase with NADPH. Five strains of each microorganism with varied carbon flux through the NADPH regenerating pentose phosphate pathway were genetically constructed and compared. S. cerevisiae required an increased NADPH regeneration rate to supply YPR1 with co-enzyme while the native NADPH regeneration rate was sufficient for E. coli.
Collapse
Affiliation(s)
- Nádia Skorupa Parachin
- Department of Applied Microbiology, Center for Chemistry and Chemical engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | | | | |
Collapse
|
9
|
Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 2009; 191:2112-21. [PMID: 19181802 DOI: 10.1128/jb.01523-08] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To sustain growth, the catabolic formation of the redox equivalent NADPH must be balanced with the anabolic demand. The mechanisms that ensure such network-wide balancing, however, are presently not understood. Based on 13C-detected intracellular fluxes, metabolite concentrations, and cofactor specificities for all relevant central metabolic enzymes, we have quantified catabolic NADPH production in Agrobacterium tumefaciens, Bacillus subtilis, Escherichia coli, Paracoccus versutus, Pseudomonas fluorescens, Rhodobacter sphaeroides, Sinorhizobium meliloti, and Zymomonas mobilis. For six species, the estimated NADPH production from glucose catabolism exceeded the requirements for biomass synthesis. Exceptions were P. fluorescens, with balanced rates, and E. coli, with insufficient catabolic production, in which about one-third of the NADPH is supplied via the membrane-bound transhydrogenase PntAB. P. versutus and B. subtilis were the only species that appear to rely on transhydrogenases for balancing NADPH overproduction during growth on glucose. In the other four species, the main but not exclusive redox-balancing mechanism appears to be the dual cofactor specificities of several catabolic enzymes and/or the existence of isoenzymes with distinct cofactor specificities, in particular glucose 6-phosphate dehydrogenase. An unexpected key finding for all species, except E. coli and B. subtilis, was the lack of cofactor specificity in the oxidative pentose phosphate pathway, which contrasts with the textbook view of the pentose phosphate pathway dehydrogenases as being NADP+ dependent.
Collapse
|
10
|
Abstract
The transcriptional regulator CcpN of Bacillus subtilis has been recently characterized as a repressor of two gluconeogenic genes, gapB and pckA, and of a small noncoding regulatory RNA, sr1, involved in arginine catabolism. Deletion of ccpN impairs growth on glucose and strongly alters the distribution of intracellular fluxes, rerouting the main glucose catabolism from glycolysis to the pentose phosphate (PP) pathway. Using transcriptome analysis, we show that during growth on glucose, gapB and pckA are the only protein-coding genes directly repressed by CcpN. By quantifying intracellular fluxes in deletion mutants, we demonstrate that derepression of pckA under glycolytic condition causes the growth defect observed in the ccpN mutant due to extensive futile cycling through the pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate kinase. Beyond ATP dissipation via this cycle, PckA activity causes a drain on tricarboxylic acid cycle intermediates, which we show to be the main reason for the reduced growth of a ccpN mutant. The high flux through the PP pathway in the ccpN mutant is modulated by the flux through the alternative glyceraldehyde-3-phosphate dehydrogenases, GapA and GapB. Strongly increased concentrations of intermediates in upper glycolysis indicate that GapB overexpression causes a metabolic jamming of this pathway and, consequently, increases the relative flux through the PP pathway. In contrast, derepression of sr1, the third known target of CcpN, plays only a marginal role in ccpN mutant phenotypes.
Collapse
|
11
|
Mitsch MJ, Cowie A, Finan TM. Malic enzyme cofactor and domain requirements for symbiotic N2 fixation by Sinorhizobium meliloti. J Bacteriol 2006; 189:160-8. [PMID: 17071765 PMCID: PMC1797227 DOI: 10.1128/jb.01425-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.
Collapse
Affiliation(s)
- Michael J Mitsch
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
12
|
Lerondel G, Doan T, Zamboni N, Sauer U, Aymerich S. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis. J Bacteriol 2006; 188:4727-36. [PMID: 16788182 PMCID: PMC1482987 DOI: 10.1128/jb.00167-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome contains several sets of paralogs. An extreme case is the four putative malic enzyme genes maeA, malS, ytsJ, and mleA. maeA was demonstrated to encode malic enzyme activity, to be inducible by malate, but also to be dispensable for growth on malate. We report systematic experiments to test whether these four genes ensure backup or cover different functions. Analysis of single- and multiple-mutant strains demonstrated that ytsJ has a major physiological role in malate utilization for which none of the other three genes could compensate. In contrast, maeA, malS, and mleA had distinct roles in malate utilization for which they could compensate one another. The four proteins exhibited malic enzyme activity; MalS, MleA, and MaeA exhibited 4- to 90-fold higher activities with NAD+ than with NADP+. YtsJ activity, in contrast, was 70-fold higher with NADP+ than with NAD+, with Km values of 0.055 and 2.8 mM, respectively. lacZ fusions revealed strong transcription of ytsJ, twofold higher in malate than in glucose medium, but weak transcription of malS and mleA. In contrast, mleA was strongly transcribed in complex medium. Metabolic flux analysis confirmed the major role of YtsJ in malate-to-pyruvate interconversion. While overexpression of the NADP-dependent Escherichia coli malic enzyme MaeB did not suppress the growth defect of a ytsJ mutant on malate, overexpression of the transhydrogenase UdhA from E. coli partially suppressed it. These results suggest an additional physiological role of YtsJ beyond that of malate-to-pyruvate conversion.
Collapse
Affiliation(s)
- Guillaume Lerondel
- Microbiologie et Génétique Moléculaire, INRA (UMR1238) CNRS (UMR2585) and INAP-G, F-78850 Thiverval-Grignon, France
| | | | | | | | | |
Collapse
|
13
|
Effect of fadR gene knockout on the metabolism of Escherichia coli based on analyses of protein expressions, enzyme activities and intracellular metabolite concentrations. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sauer U, Eikmanns BJ. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 2004; 29:765-94. [PMID: 16102602 DOI: 10.1016/j.femsre.2004.11.002] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 11/16/2022] Open
Abstract
In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and energy supply of the cell. While sugar catabolism proceeds mainly via oxidative or non-oxidative decarboxylation of pyruvate to acetyl-CoA, anaplerosis and the initial steps of gluconeogenesis are accomplished by C3- (PEP- and/or pyruvate-) carboxylation and C4- (oxaloacetate- and/or malate-) decarboxylation, respectively. In contrast to the relatively uniform central metabolic pathways in bacteria, the set of enzymes at the PEP-pyruvate-oxaloacetate node represents a surprising diversity of reactions. Variable combinations are used in different bacteria and the question of the significance of all these reactions for growth and for biotechnological fermentation processes arises. This review summarizes what is known about the enzymes and the metabolic fluxes at the PEP-pyruvate-oxaloacetate node in bacteria, with a particular focus on the C3-carboxylation and C4-decarboxylation reactions in Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. We discuss the activities of the enzymes, their regulation and their specific contribution to growth under a given condition or to biotechnological metabolite production. The present knowledge unequivocally reveals the PEP-pyruvate-oxaloacetate nodes of bacteria to be a fascinating target of metabolic engineering in order to achieve optimized metabolite production.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, ETH Zürich, Switzerland
| | | |
Collapse
|
15
|
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol 2004; 182:354-63. [PMID: 15375646 DOI: 10.1007/s00203-004-0710-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 11/30/2022]
Abstract
In many bacteria, pyruvate kinase serves a well-defined function in glycolysis, catalyzing an ATP-generating reaction. However, its role during growth on carbon sources requiring glucoeneogenesis is less well investigated. We analyzed a defined pyruvate kinase gene (pyk) deletion mutant of Corynebacterium glutamicum, which is unable to grow on ribose as sole carbon source. Unexpectedly, the pyk deletion mutant was also unable to grow on acetate or citrate as sole carbon sources unless low amounts of pyruvate were added to the growth medium. A spontaneous suppressor mutant of the pyk deletion strain that regained the ability to grow on acetate was isolated. DNA microarray experiments revealed increased expression of the malic enzyme gene malE. The point mutation upstream of malE identified in this mutant was responsible for the loss of carbon-source-dependent regulation, as revealed by transcriptional fusion analysis. Overexpression of malE was sufficient to restore growth of the pyk deletion strain on acetate or citrate. The requirement of increased malic enzyme levels to re-route the carbon flux at the interface between glycolysis, gluconeogenesis and the tricarboxylic acid cycle in order to compensate for the absence of pyruvate kinase indicates a metabolic flux bifurcation at the metabolic node phosphoenolpyruvate. Whereas during growth of C. glutamicum on acetate or citrate most of the phosphoenolpyruvate generated from oxaloacetate is metabolized in gluconeogenesis, a fraction is converted by pyruvate kinase in the glycolytic direction to sustain proper pyruvate availability for biomass synthesis.
Collapse
Affiliation(s)
- Roman Netzer
- Institute of Biotechnology 1, Research Centre Jülich, 52425 Juelich, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Hua Q, Yang C, Baba T, Mori H, Shimizu K. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 2004; 185:7053-67. [PMID: 14645264 PMCID: PMC296241 DOI: 10.1128/jb.185.24.7053-7067.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The responses of Escherichia coli central carbon metabolism to knockout mutations in phosphoglucose isomerase and glucose-6-phosphate (G6P) dehydrogenase genes were investigated by using glucose- and ammonia-limited chemostats. The metabolic network structures and intracellular carbon fluxes in the wild type and in the knockout mutants were characterized by using the complementary methods of flux ratio analysis and metabolic flux analysis based on [U-(13)C]glucose labeling and two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, glycerol, and glucose. Disruption of phosphoglucose isomerase resulted in use of the pentose phosphate pathway as the primary route of glucose catabolism, while flux rerouting via the Embden-Meyerhof-Parnas pathway and the nonoxidative branch of the pentose phosphate pathway compensated for the G6P dehydrogenase deficiency. Furthermore, additional, unexpected flux responses to the knockout mutations were observed. Most prominently, the glyoxylate shunt was found to be active in phosphoglucose isomerase-deficient E. coli. The Entner-Doudoroff pathway also contributed to a minor fraction of the glucose catabolism in this mutant strain. Moreover, although knockout of G6P dehydrogenase had no significant influence on the central metabolism under glucose-limited conditions, this mutation resulted in extensive overflow metabolism and extremely low tricarboxylic acid cycle fluxes under ammonia limitation conditions.
Collapse
Affiliation(s)
- Qiang Hua
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.
| | | | | | | | | |
Collapse
|
17
|
Doan T, Servant P, Tojo S, Yamaguchi H, Lerondel G, Yoshida KI, Fujita Y, Aymerich S. The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2331-2343. [PMID: 12949160 DOI: 10.1099/mic.0.26256-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A transcriptome comparison of a wild-type Bacillus subtilis strain growing under glycolytic or gluconeogenic conditions was performed. In particular, it revealed that the ywkA gene, one of the four paralogues putatively encoding a malic enzyme, was more transcribed during gluconeogenesis. Using a lacZ reporter fusion to the ywkA promoter, it was shown that ywkA was specifically induced by external malate and not subject to glucose catabolite repression. Northern analysis confirmed this expression pattern and demonstrated that ywkA is cotranscribed with the downstream ywkB gene. The ywkA gene product was purified and biochemical studies demonstrated its malic enzyme activity, which was 10-fold higher with NAD than with NADP (kcat/Km 102 and 10 s(-1) mM(-1), respectively). However, physiological tests with single and multiple mutant strains affected in ywkA and/or in ywkA paralogues showed that ywkA does not contribute to efficient utilization of malate for growth. Transposon mutagenesis allowed the identification of the uncharacterized YufL/YufM two-component system as being responsible for the control of ywkA expression. Genetic analysis and in vitro studies with purified YufM protein showed that YufM binds just upstream of ywkA promoter and activates ywkA transcription in response to the presence of malate in the extracellular medium, transmitted by YufL. ywkA and yufL/yufM could thus be renamed maeA for malic enzyme and malK/malR for malate kinase sensor/malate response regulator, respectively.
Collapse
Affiliation(s)
- Thierry Doan
- Génétique Moléculaire et Cellulaire, INRA (UMR216) CNRS (URA1925) and INAP-G, F-78850 Thiverval-Grignon, France
| | - Pascale Servant
- Génétique Moléculaire et Cellulaire, INRA (UMR216) CNRS (URA1925) and INAP-G, F-78850 Thiverval-Grignon, France
| | - Shigeo Tojo
- Department of Biotechnology, Fukuyama University, 985 Sanzo, Higashimura, Fukuyama, Japan
| | - Hirotake Yamaguchi
- Department of Biotechnology, Fukuyama University, 985 Sanzo, Higashimura, Fukuyama, Japan
| | - Guillaume Lerondel
- Génétique Moléculaire et Cellulaire, INRA (UMR216) CNRS (URA1925) and INAP-G, F-78850 Thiverval-Grignon, France
| | - Ken-Ichi Yoshida
- Department of Biotechnology, Fukuyama University, 985 Sanzo, Higashimura, Fukuyama, Japan
| | - Yasutaro Fujita
- Department of Biotechnology, Fukuyama University, 985 Sanzo, Higashimura, Fukuyama, Japan
| | - Stéphane Aymerich
- Génétique Moléculaire et Cellulaire, INRA (UMR216) CNRS (URA1925) and INAP-G, F-78850 Thiverval-Grignon, France
| |
Collapse
|
18
|
Oh MK, Rohlin L, Kao KC, Liao JC. Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 2002; 277:13175-83. [PMID: 11815613 DOI: 10.1074/jbc.m110809200] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study characterized the transcript profile of Escherichia coli in acetate cultures using DNA microarray on glass slides. Glucose-grown cultures were used as a reference. At the 95% confidence level, 354 genes were up-regulated in acetate, while 370 genes were down-regulated compared with the glucose-grown culture. Generally, more metabolic genes were up-regulated in acetate than other gene groups, while genes involved in cell replication, transcription, and translation machinery tended to be down-regulated. It appears that E. coli commits more resources to metabolism at the expense of growth when cultured in the poor carbon source. The expression profile confirms many known features in acetate metabolism such as the induction of the glyoxylate pathway, tricarboxylic acid cycle, and gluconeogenic genes. It also provided many previously unknown features, including induction of malic enzymes, ppsA, and the glycolate pathway and repression of glycolytic and glucose phosphotransferase genes in acetate. The carbon flux delivered from the malic enzymes and PpsA in acetate was further confirmed by deletion mutations. In general, the gene expression profiles qualitatively agree with the metabolic flux changes and may serve as a predictor for gene function and metabolic flux distribution.
Collapse
Affiliation(s)
- Min-Kyu Oh
- Department of Chemical Engineering, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
19
|
Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wüthrich K, Hohmann HP, Sauer U, Bailey JE. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol 2002; 68:1760-71. [PMID: 11916694 PMCID: PMC123836 DOI: 10.1128/aem.68.4.1760-1771.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolic responses to cofeeding of different carbon substrates in carbon-limited chemostat cultures were investigated with riboflavin-producing Bacillus subtilis. Relative to the carbon content (or energy content) of the substrates, the biomass yield was lower in all cofeeding experiments than with glucose alone. The riboflavin yield, in contrast, was significantly increased in the acetoin- and gluconate-cofed cultures. In these two scenarios, unusually high intracellular ATP-to-ADP ratios correlated with improved riboflavin yields. Nuclear magnetic resonance spectra recorded with amino acids obtained from biosynthetically directed fractional (13)C labeling experiments were used in an isotope isomer balancing framework to estimate intracellular carbon fluxes. The glycolysis-to-pentose phosphate (PP) pathway split ratio was almost invariant at about 80% in all experiments, a result that was particularly surprising for the cosubstrate gluconate, which feeds directly into the PP pathway. The in vivo activities of the tricarboxylic acid cycle, in contrast, varied more than twofold. The malic enzyme was active with acetate, gluconate, or acetoin cofeeding but not with citrate cofeeding or with glucose alone. The in vivo activity of the gluconeogenic phosphoenolpyruvate carboxykinase was found to be relatively high in all experiments, with the sole exception of the gluconate-cofed culture.
Collapse
Affiliation(s)
- Michael Dauner
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wüthrich K, Bailey JE, Sauer U. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 2002; 184:152-64. [PMID: 11741855 PMCID: PMC134756 DOI: 10.1128/jb.184.1.152-164.2002] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13C labeling experiments with [U-13C6]glucose in glucose- or ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.
Collapse
Affiliation(s)
- Marcel Emmerling
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van der Rest ME, Frank C, Molenaar D. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 2000; 182:6892-9. [PMID: 11092847 PMCID: PMC94812 DOI: 10.1128/jb.182.24.6892-6899.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidation of malate to oxaloacetate in Escherichia coli can be catalyzed by two enzymes: the well-known NAD-dependent malate dehydrogenase (MDH; EC 1.1.1.37) and the membrane-associated malate:quinone-oxidoreductase (MQO; EC 1.1.99.16), encoded by the gene mqo (previously called yojH). Expression of the mqo gene and, consequently, MQO activity are regulated by carbon and energy source for growth. In batch cultures, MQO activity was highest during exponential growth and decreased sharply after onset of the stationary phase. Experiments with the beta-galactosidase reporter fused to the promoter of the mqo gene indicate that its transcription is regulated by the ArcA-ArcB two-component system. In contrast to earlier reports, MDH did not repress mqo expression. On the contrary, MQO and MDH are active at the same time in E. coli. For Corynebacterium glutamicum, it was found that MQO is the principal enzyme catalyzing the oxidation of malate to oxaloacetate. These observations justified a reinvestigation of the roles of MDH and MQO in the citric acid cycle of E. coli. In this organism, a defined deletion of the mdh gene led to severely decreased rates of growth on several substrates. Deletion of the mqo gene did not produce a distinguishable effect on the growth rate, nor did it affect the fitness of the organism in competition with the wild type. To investigate whether in an mqo mutant the conversion of malate to oxaloacetate could have been taken over by a bypass route via malic enzyme, phosphoenolpyruvate synthase, and phosphenolpyruvate carboxylase, deletion mutants of the malic enzyme genes sfcA and b2463 (coding for EC 1.1.1.38 and EC 1.1.1.40, respectively) and of the phosphoenolpyruvate synthase (EC 2.7.9.2) gene pps were created. They were introduced separately or together with the deletion of mqo. These studies did not reveal a significant role for MQO in malate oxidation in wild-type E. coli. However, comparing growth of the mdh single mutant to that of the double mutant containing mdh and mqo deletions did indicate that MQO partly takes over the function of MDH in an mdh mutant.
Collapse
Affiliation(s)
- M E van der Rest
- Biotechnologisches Zentrallabor, Geb. 25.12, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
22
|
Klinke S, Dauner M, Scott G, Kessler B, Witholt B. Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas putida. Appl Environ Microbiol 2000; 66:909-13. [PMID: 10698750 PMCID: PMC91921 DOI: 10.1128/aem.66.3.909-913.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.
Collapse
Affiliation(s)
- S Klinke
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Kofoid E, Rappleye C, Stojiljkovic I, Roth J. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 1999; 181:5317-29. [PMID: 10464203 PMCID: PMC94038 DOI: 10.1128/jb.181.17.5317-5329.1999] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eut operon of Salmonella typhimurium encodes proteins involved in the cobalamin-dependent degradation of ethanolamine. Previous genetic analysis revealed six eut genes that are needed for aerobic use of ethanolamine; one (eutR), encodes a positive regulator which mediates induction of the operon by vitamin B12 plus ethanolamine. The DNA sequence of the eut operon included 17 genes, suggesting a more complex pathway than that revealed genetically. We have correlated an open reading frame in the sequence with each of the previously identified genes. Nonpolar insertion and deletion mutations made with the Tn10-derived transposable element T-POP showed that at least 10 of the 11 previously undetected eut genes have no Eut phenotype under the conditions tested. Of the dispensable eut genes, five encode apparent homologues of proteins that serve (in other organisms) as shell proteins of the carboxysome. This bacterial organelle, found in photosynthetic and sulfur-oxidizing bacteria, may contribute to CO2 fixation by concentrating CO2 and excluding oxygen. The presence of these homologues in the eut operon of Salmonella suggests that CO2 fixation may be a feature of ethanolamine catabolism in Salmonella.
Collapse
Affiliation(s)
- E Kofoid
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
24
|
Chen F, Okabe Y, Osano K, Tajima S. Purification and characterization of an NAD-malic enzyme from Bradyrhizobium japonicum A1017. Appl Environ Microbiol 1998; 64:4073-5. [PMID: 9758846 PMCID: PMC106605 DOI: 10.1128/aem.64.10.4073-4075.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An NAD-malic enzyme was purified to homogeneity from Bradyrhizobium japonicum A1017, and its molecular characteristics were surveyed. The enzyme exhibited native and subunit molecular masses of 388 and 85 kDa, respectively, suggesting that it exists as a homotetramer, and was activated by metabolic intermediates in glycolysis. The role of the enzyme in bacteroids' carbon metabolism is discussed.
Collapse
Affiliation(s)
- F Chen
- Department of Bioresource Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Kita-gun, Kagawa 761-07, Japan
| | | | | | | |
Collapse
|
25
|
Stols L, Donnelly MI. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 1997; 63:2695-701. [PMID: 9212416 PMCID: PMC168564 DOI: 10.1128/aem.63.7.2695-2701.1997] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
NAD(+)-dependent malic enzyme was cloned from the Escherichia coli genome by PCR based on the published partial sequence of the gene. The enzyme was overexpressed and purified to near homogeneity in two chromatographic steps and was analyzed kinetically in the forward and reverse directions. The Km values determined in the presence of saturating cofactor and manganese ion were 0.26 mM for malate (physiological direction) and 16 mM for pyruvate (reverse direction). When malic enzyme was induced under appropriate culture conditions in a strain of E. coli that was unable to ferment glucose and accumulated pyruvate, fermentative metabolism of glucose was restored. Succinic acid was the major fermentation product formed. When this fermentation was performed in the presence of hydrogen, the yield of succinic acid increased. The constructed pathway represents an alternative metabolic route for the fermentative production of dicarboxylic acids from renewable feedstocks.
Collapse
Affiliation(s)
- L Stols
- Environmental Research Division, Argonne National Laboratory, Illinois 60439, USA
| | | |
Collapse
|
26
|
Stols L, Kulkarni G, Harris BG, Donnelly MI. Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl Biochem Biotechnol 1997; 63-65:153-8. [PMID: 9170244 DOI: 10.1007/bf02920421] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The malic enzyme gene of Ascaris suum, was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.
Collapse
Affiliation(s)
- L Stols
- Environmental Research Division, Argonne National Laboratory, IL 60439, USA
| | | | | | | |
Collapse
|
27
|
Driscoll BT, Finan TM. Properties of NAD(+)- and NADP(+)-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti and differential expression of their genes in nitrogen-fixing bacteroids. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):489-498. [PMID: 9043124 DOI: 10.1099/00221287-143-2-489] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The wild-type NAD(+)-dependent malic enzyme (dme) gene of Rhizobium (now Sinorhizobium) meliloti was cloned and localized to a 3.1 kb region isolated on the cosmid pTH69. This cosmid complemented the symbiotic nitrogen fixation (Fix-) phenotype of R. meliloti dme mutants. The dme gene was mapped by conjugation to between the cys-11 and leu-53 markers on the R. meliloti chromosome. beta-Galactosidase activities measured in bacterial strains carrying either dme-lacZ or tme-lacZ gene fusions (the tme gene encodes NADP(+)-dependent malic enzyme) indicated that the dme gene was expressed constitutively in free-living cells and in N2-fixing bacteroids whereas expression of the tme gene was repressed in bacteroids. The R. meliloti dme gene product (DME) was overexpressed in and partially purified from Escherichia coli. The properties of this enzyme, together with those of the NADP(+)-dependent malic enzyme (TME) partially purified from R. meliloti dme mutants, were determined. Acetyl-CoA inhibited DME but not TME activity. This result supports the hypothesis that DME, together with pyruvate dehydrogenase, forms a pathway in which malate is converted to acetyl-CoA.
Collapse
Affiliation(s)
- Brian T Driscoll
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
28
|
Abstract
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.
Collapse
Affiliation(s)
- B T Driscoll
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
29
|
Laluce C, Ernandes JR, Molinari R. Chemically Defined Medium for the Accumulation of Intracellular Malate Dehydrogenase by
Streptomyces aureofaciens. Appl Environ Microbiol 1987; 53:1913-7. [PMID: 16347416 PMCID: PMC204024 DOI: 10.1128/aem.53.8.1913-1917.1987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chemically defined medium was developed for the production of intracellular malate dehydrogenases by
Streptomyces aureofaciens
NRRL-B 1286. The composition of the medium (per liter) was as follows: 50 g of starch, 4 g of ammonium sulfate, 7.32 g of
l
-aspartic acid, 13.8 g of MgSO
4
· 7H
2
O, 1.7 g of K
2
HPO
4
, 0.01 g of ZnSO
4
· 7H
2
O, 0.01 g of FeSO
4
· 7H
2
O, 0.01 g of MnSO
4
· H
2
O, and 0.005 g of CoSO
4
· 7H
2
O. The pH of the medium was adjusted to 6.7 to 7.0 after sterilization. The activity of the intracellular malate dehydrogenases of the crude cell extract was greatest after 40 h of mycelium growth in a rotary shaker at 30°C. The best temperature for the enzyme reactions was approximately 35°C for NAD
+
activity at pH 9.7 and 40°C for NADP
+
-linked enzyme at pH 9.0. The NAD
+
activity required Mg
2+
, and both activities were sensitive to SH-group reagents. The NADP
+
-dependent activity remained completely stable, and the NAD
+
-dependent activity decreased to a very low residual level after 30 min at 60°C.
Collapse
Affiliation(s)
- C Laluce
- Departamento de Química Tecnológica e de Aplicação, Instituto de Química da Universidade Estadual Paulista, 14.800 Araraquara, São Paulo, Brazil
| | | | | |
Collapse
|
30
|
|
31
|
Frenkel R. Regulation and physiological functions of malic enzymes. CURRENT TOPICS IN CELLULAR REGULATION 1975; 9:157-81. [PMID: 235406 DOI: 10.1016/b978-0-12-152809-6.50012-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Schütz M, Radler F. [The "malic enzyme" from Lactobacillus plantarum and Leuconostoc mesenteroides]. ARCHIV FUR MIKROBIOLOGIE 1973; 91:183-202. [PMID: 4732222 DOI: 10.1007/bf00408907] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Benziman M, Mazover A. Nicotinamide Adenine Dinucleotide- and Nicotinamide Adenine Dinucleotide Phosphate-specific Glucose 6-Phosphate Dehydrogenases of Acetobacter xylinum and Their Role in the Regulation of the Pentose Cycle. J Biol Chem 1973. [DOI: 10.1016/s0021-9258(19)44233-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Brown AT, Wittenberger CL. Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. J Bacteriol 1972; 109:106-15. [PMID: 4400413 PMCID: PMC247257 DOI: 10.1128/jb.109.1.106-115.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.
Collapse
|