1
|
Löw H, Crane FL, Morré DJ. Putting together a plasma membrane NADH oxidase: A tale of three laboratories. Int J Biochem Cell Biol 2012; 44:1834-8. [DOI: 10.1016/j.biocel.2012.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
|
2
|
Crane FL, Navas P, Low H, Sun IL, de Cabo R. Sirtuin activation: a role for plasma membrane in the cell growth puzzle. J Gerontol A Biol Sci Med Sci 2012; 68:368-70. [PMID: 23033342 DOI: 10.1093/gerona/gls184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD(+) pool required for sirtuin to activate transcription factors necessary for cell growth and survival.
Collapse
|
3
|
Gray JP, Eisen T, Cline GW, Smith PJS, Heart E. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1. Am J Physiol Endocrinol Metab 2011; 301:E113-21. [PMID: 21505151 PMCID: PMC3129843 DOI: 10.1152/ajpendo.00673.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.
Collapse
Affiliation(s)
- Joshua P Gray
- United States Coast Guard Academy, New London, Connecticut, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
The notion of transmembrane electron transport is usually associated with mitochondria and chloroplasts. However, since the early 1970s, it has been known that this phenomenon also occurs at the level of the plasma membrane. Ever since, evidence has accumulated for the existence of a plethora of transplasma membrane electron transport enzymes. In this review, we discuss the various enzymes known, their molecular characteristics and their biological functions.
Collapse
Affiliation(s)
- Jennifer D Ly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
5
|
Lee RB, Urban JPG. Functional replacement of oxygen by other oxidants in articular cartilage. ARTHRITIS AND RHEUMATISM 2002; 46:3190-200. [PMID: 12483723 DOI: 10.1002/art.10686] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Articular cartilage chondrocytes consume remarkably little O(2) in comparison with most other animal cells; glycolysis forms the principal source of ATP in this cartilage. Although not lethal for many days, imposition of anoxia immediately lowers intracellular ATP, inhibits rates of glycolysis, and prevents articular chondrocytes from producing extracellular matrix macromolecules. This study was undertaken to investigate the role of O(2) in articular chondrocyte metabolism. METHODS We examined the effects of oxygen and of several other classes of exogenous oxidants, i.e., 1) the dyes methylene blue and 2,6-dichlorophenol-indophenol, 2) the iron (III) complex ferricyanide, and 3) the keto-acids oxaloacetate and pyruvate (and phosphoenolpyruvate, a metabolic precursor of pyruvate), on rates of glycolysis and of sulfate incorporation by bovine articular cartilage in vitro. RESULTS Lactate production was lowest under conditions of anoxia and was stimulated severalfold by addition of O(2) (air-saturated medium). Under strict anoxia, other oxidants restored lactate production to rates at least comparable with those seen in aerobic controls; under aerobic conditions, they had little effect. Oxygen and all of the other oxidants examined stimulated sulfate incorporation more strongly than lactate production. The compounds that promoted glycolysis and hence sulfate incorporation in cartilage under anoxia were themselves reduced; that is, they functioned as oxidants in lieu of O(2). CONCLUSION For normal function, articular cartilage appears to require exogenous oxidants to stimulate glycolysis and produce ATP and extracellular matrix. Under physiologic conditions, oxygen acts as this oxidant, but its role can be adequately assumed by other agents.
Collapse
|
6
|
Kim C, Crane FL, Faulk WP, Morré DJ. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes. J Biol Chem 2002; 277:16441-7. [PMID: 11875069 DOI: 10.1074/jbc.m112311200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane-associated redox systems play important roles in regulation of cell growth, internal pH, signal transduction, apoptosis, and defense against pathogens. Stimulation of cell growth and stimulation of the redox system of plasma membranes are correlated. When cell growth is inhibited by antitumor agents such as doxorubicin, capsaicin, and antitumor sulfonylureas, redox activities of the plasma membrane also are inhibited. A doxorubicin-inhibited NADH-quinone reductase was characterized and purified from plasma membranes of rat liver. First, an NADH-cytochrome b(5) reductase, which was doxorubicin-insensitive, was removed from the plasma membranes by the lysosomal protease, cathepsin D. After removal of the NADH-cytochrome b(5) reductase, the plasma membranes retained a doxorubicin-inhibited NADH-quinone reductase activity. The enzyme, with an apparent molecular mass of 57 kDa, was purified 200-fold over the cathepsin D-treated plasma membranes. The purified enzyme had also an NADH-coenzyme Q(0) reductase (NADH: external acceptor (quinone) reductase; EC 1.6.5.) activity. Partial amino acid sequence of the enzyme showed that it was unique with no sequence homology to any known protein. Antibody against the enzyme (peptide sequence) was produced and affinity-purified. The purified antibody immunoprecipitated both the NADH-ferricyanide reductase activity and NADH-coenzyme Q(0) reductase activity of plasma membranes and cross-reacted with human chronic myelogenous leukemia K562 cells and doxorubicin-resistant human chronic myelogenous leukemia K562R cells. Localization by fluorescence microscopy showed that the reaction was with the external surface of the plasma membranes. The doxorubicin-inhibited NADH-quinone reductase may provide a target for the anthracycline antitumor agents and a candidate ferricyanide reductase for plasma membrane electron transport.
Collapse
Affiliation(s)
- Chinpal Kim
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
7
|
Wittmann I, Köszegi T, Wagner L, Wagner Z, Nagy J. Insulin-induced peroxynitrite production in human platelet-rich plasma. Redox Rep 2002; 6:251-5. [PMID: 11642716 DOI: 10.1179/135100001101536409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent data support the possible role of nitric oxide (NO*) in the development of insulin signalling. The aim of this study was to examine the effect of insulin on NO* production by platelets. The chemiluminescence of platelet-rich plasma prepared from the blood of healthy volunteers was measured in the presence of luminol. Indirect detection of NO* by luminol is possible in the form of peroxynitrite produced in the reaction of NO* with a superoxide free radical. Luminol oxidation induced by hydroxyl free radical and lipid peroxidation was prevented by 150 micromol/l of desferrioxamine mesylate. Insulin, in the range of 0.084-840 nmol/l, induced a concentration-dependent increase in chemiluminescence, which was inhibited both by the competitive antagonist of the NO* synthase enzyme. N(omega)-nitro-L-arginine methyl ester (at concentrations of 2.0-4.0 mmol/l, P<0.001), and by the elimination of superoxide free radicals using superoxide dismutase (72-144 IU/ml, P<0.001). In conclusion, we assume that the insulin-induced increase in chemiluminescence of platelet-rich plasma was due to increased production of NO* and superoxide free radicals forming peroxynitrite. The data are consistent with production of peroxynitrite from human platelets under insulin stimulation.
Collapse
Affiliation(s)
- I Wittmann
- Second Department of Medicine, University Medical School of Pécs, Hungary.
| | | | | | | | | |
Collapse
|
8
|
Richardson DR. Cloning of the ferrireductase that may be involved in iron transport in the small intestine: revisiting Crane's controversial oxidoreductase. Redox Rep 2002; 6:133-5. [PMID: 11523586 DOI: 10.1179/135100001101536229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- D R Richardson
- The Iron Metabolism and Chelation Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Abstract
Ascorbic acid, or vitamin C, is a primary antioxidant in plasma and within cells, but it can also interact with the plasma membrane by donating electrons to the alpha-tocopheroxyl radical and a trans-plasma membrane oxidoreductase activity. Ascorbate-derived reducing capacity is thus transmitted both into and across the plasma membrane. Recycling of alpha-tocopherol by ascorbate helps to protect membrane lipids from peroxidation. However, neither the mechanism nor function of the ascorbate-dependent oxidoreductase activity is known. This activity has typically been studied using extracellular ferricyanide as an electron acceptor. Whereas an NADH:ferricyanide reductase activity is evident in open membranes, ascorbate is the preferred electron donor within cells. The oxidoreductase may be a single membrane-spanning protein or may only partially span the membrane as part of a trans-membrane electron transport chain composed of a cytochrome or even hydrophobic antioxidants such as alpha-tocopherol or ubiquinol-10. Further studies are needed to elucidate the structural components, mechanism, and physiological significance of this activity. Proposed functions for the oxidoreductase include stimulation of cell growth, reduction of the ascorbate free radical outside cells, recycling of alpha-tocopherol, reduction of lipid hydroperoxides, and reduction of ferric iron prior to iron uptake by a transferrin-independent pathway.
Collapse
Affiliation(s)
- J M May
- Departments of Medicine and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6303, USA.
| |
Collapse
|
10
|
Van Duijn MM, Van der Zee J, VanSteveninck J, Van den Broek PJ. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J Biol Chem 1998; 273:13415-20. [PMID: 9593673 DOI: 10.1074/jbc.273.22.13415] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The impermeable oxidant ferricyanide is reduced by the plasma membrane redox system of HL-60 cells. The rate of reduction is strongly enhanced by ascorbate or dehydroascorbate. The aim of this study was to determine the mechanism by which ascorbate and dehydroascorbate accelerate ferricyanide reduction in HL-60 cells. Addition of ascorbate or dehydroascorbate to cells in the presence of ferricyanide led to the intracellular accumulation of ascorbate. Control experiments showed that extracellular ascorbate was rapidly converted to dehydroascorbate in the presence of ferricyanide. These data suggest that intracellular ascorbate originates from extracellular dehydroascorbate. Accumulation of ascorbate was prevented by inhibitors of dehydroascorbate transport into the cell. These compounds also strongly inhibited ascorbate-stimulated ferricyanide reduction in HL-60 cells. Thus, it is concluded that the stimulation of ferricyanide reduction is dependent on intracellular accumulation of ascorbate. Changing the alpha-tocopherol content of the cells had no effect on the ascorbate-stimulated ferricyanide reduction, showing that a nonenzymatic redox system utilizing alpha-tocopherol was not involved. p-Chloromercuribenzenesulfonic acid strongly affected ferricyanide reduction in the absence of ascorbate, whereas the stimulated reaction was much less responsive to this compound. Thus, it appears that at least two different membrane redox systems are operative in HL-60 cells, both capable of reducing ferricyanide, but through different mechanisms. The first system is the ferricyanide reductase, which uses NADH as its source for electrons, whereas the novel system proposed in this paper relies on ascorbate.
Collapse
Affiliation(s)
- M M Van Duijn
- Department of Molecular Cell Biology, Sylvius Laboratory, Leiden University, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Richardson DR, Richardson V. The effect of impermeable oxidants on the growth of neoplastic cells. In Vitro Cell Dev Biol Anim 1998; 34:30-4. [PMID: 9542632 DOI: 10.1007/s11626-998-0049-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Abstract
In macrophages, NF-kappaB can be activated by H2O2 generated by the respiratory burst or added exogenously. The mechanism of H2O2 signaling may involve changes in the cellular redox state or a redox reaction at the plasma membrane; however, the site of H2O2 action cannot be readily ascertained because of its membrane permeability. Ferricyanide, a nonpermeable redox active anion, activated NF-kappaB in the macrophage cell line, J774A.1. In contrast with exogenous H2O2, activation by ferricyanide did not correlate with net oxidation of NAD(P)H or glutathione, suggesting that a transplasma membrane redox reaction itself was the first signaling process in NF-kappaB activation.
Collapse
Affiliation(s)
- N Kaul
- Department of Molecular Pharmacology & Toxicology, University of Southern California, Los Angeles 90033, USA
| | | | | |
Collapse
|
13
|
Garner B, van Reyk D, Dean RT, Jessup W. Direct copper reduction by macrophages. Its role in low density lipoprotein oxidation. J Biol Chem 1997; 272:6927-35. [PMID: 9054380 DOI: 10.1074/jbc.272.11.6927] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxidation of low density lipoprotein (LDL) results in changes to the lipoprotein that are potentially atherogenic. Numerous studies have shown that macrophages cultured in vitro can promote LDL oxidation via a transition metal-dependent process, yet the exact mechanisms that are responsible for macrophage-mediated LDL oxidation are not understood. One contributing mechanism may be the ability of macrophages to reduce transition metals. Reduced metals (such as Fe(II) or Cu(I)) rapidly react with lipid hydroperoxides, leading to the formation of reactive lipid radicals and conversion of the reduced metal to its oxidized form. We demonstrate here the ability of macrophages to reduce extracellular iron and copper and identify a contributing mechanism. Evidence is provided that a proportion of cell-mediated metal reduction is due to direct trans-plasma membrane electron transport. Glucagon suppressed both macrophage-mediated metal reduction and LDL oxidation. Although metal reduction was augmented when cells were provided with a substrate for thiol production, thiol export was not a strict requirement for cell-mediated metal reduction. Similarly, while the metal-dependent acceleration of LDL oxidation by macrophages was augmented by thiol production, macrophages could still promote LDL oxidation when thiol export was minimized (by substrate limitation). This study identifies a novel mechanism that may contribute to macrophage-mediated LDL oxidation and may also reveal potential new strategies for the inhibition of this process.
Collapse
Affiliation(s)
- B Garner
- Cell Biology Unit, Heart Research Institute, Sydney, New South Wales 2050, Australia
| | | | | | | |
Collapse
|
14
|
Richardson DR, Ponka P. Identification of a mechanism of iron uptake by cells which is stimulated by hydroxyl radicals generated via the iron-catalysed Haber-Weiss reaction. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1269:105-14. [PMID: 7488642 DOI: 10.1016/0167-4889(95)00096-b] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have demonstrated that preincubation of SK-Mel-28 melanoma cells with ferric ammonium citrate (FAC) resulted in marked stimulation of 59Fe uptake from 59Fe-125I-transferrin (Tf), but only at Tf concentrations above that required for saturation of the Tf receptor (Richardson and Baker (1992) J. Biol. Chem. 267, 13972-13979). The mechanism responsible for this stimulation was unknown and is the subject of the present report. Preincubation of cells with FAC (25 micrograms/ml), followed by a 2 h incubation with 59Fe-125I-Tf (0.1 mg/ml; 1.25 microM), resulted in temperature-dependent 59Fe uptake to approx. 200% of the control value. Furthermore, the effect was not specific for melanoma cells and was also observed in other normal and neoplastic cells. Preincubation of melanoma cells with FAC also stimulated 59Fe uptake from 59Fe-citrate, but to a far greater extent than that observed with 59Fe-125I-Tf (viz., > 20-fold that seen for the control). Interestingly, neither receptor-mediated endocytosis nor the postulated diferric Tf reductase were involved in the FAC-activated Fe uptake process from Tf. However, the addition of free radical scavengers to FAC such as catalase, superoxide dismutase, ceruloplasmin, Hepes, mannitol and high concentrations of BSA or ascorbate, markedly depressed FAC-activated 59Fe uptake from 59Fe-125I-Tf and 59Fe-citrate. These agents when added to control cells had no effect on 59Fe uptake. The addition of superoxide generating agents and hydrogen peroxide to minimum essential medium (MEM) containing FAC but not to MEM alone, also stimulated 59Fe uptake. These data suggest that the initial activation of the FAC-stimulated Fe uptake system was caused by the production of hydroxyl radicals via the Fe-catalysed Haber-Weiss reaction. We propose that this Fe uptake process represents an important cellular defense mechanism against oxidant stress generated in the presence of low-molecular-weight Fe complexes.
Collapse
Affiliation(s)
- D R Richardson
- Lady Davis Institute for Medical Research, Sir-Mortimer B. Davis-Jewish General Hospital, Montreal, Qué, Canada
| | | |
Collapse
|
15
|
Sun E, Lawrence J, Morré DM, Sun I, Crane FL, MacKellar WC, Morré DJ. Proton release from HeLa cells and alkalization of cytoplasm induced by diferric transferrin or ferricyanide and its inhibition by the diarylsulfonylurea antitumor drug N-(4-methylphenylsulfonyl)-N'-(4-cholorophenyl) urea (LY181984). Biochem Pharmacol 1995; 50:1461-8. [PMID: 7503797 DOI: 10.1016/0006-2952(95)02050-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Proton release from HeLa cells was stimulated by an external oxidant, potassium ferricyanide, or by the growth factor diferric transferrin. This stimulated proton release was inhibited by the antitumor sulfonylurea LY181984 [N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea] over the concentration range 10 nM to 1 microM. The antitumor-inactive sulfonylurea analog LY181985 [N-(4-methylphenylsulfonyl)-N'-(phenyl)urea] was without effect at 1 microM and required 10-100 microM concentrations to inhibit proton release. Diferric transferrin-induced alkalization of the cytoplasm estimated by BCECF [2',7'-bis(2-carboxyethyl)-5,(and 6)-carboxyfluorescein] fluorescence also was inhibited by 1 microM LY181984 but not by 1 microM LY181985. The inhibited component appeared to be amiloride resistant. The proton release induced by either ferricyanide or diferric transferrin was inhibited by about 35% at a near optimal amiloride concentration of 0.2 mM or at a dimethylamiloride concentration of 0.075 mM. However, the induced proton release was inhibited further by LY181984. Conversely, when proton release was inhibited fully by LY181984 at a near optimal concentration of 10 microM (50% inhibition), increasing concentrations of amiloride or dimethylamiloride resulted in additional inhibitions of 16 and 23%, respectively. However, the inhibitions by LY181984 and the amilorides were additive, suggesting that amiloride and the sulfonylureas may act independently. Evidence for an action of the sulfonylurea in inhibiting proton efflux differently from that of the amilorides came from measurements of sodium uptake either by fluorometry or by direct measurement with 22Na+. Sodium uptake was not inhibited by either LY181984 or LY181985 in HeLa cells at concentrations of LY181984 sufficient to inhibit proton efflux by 80% or more. The results show LY181984 to be a potent inhibitor of diferric transferrin- or ferricyanide-induced proton efflux and cytoplasmic alkalization in HeLa cells and that the inhibition may involve a component of proton transport that is resistant to amiloride.
Collapse
Affiliation(s)
- E Sun
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Coenzyme Q added to culture media stimulates the growth of HeLa and Balb/3T3 cells in serum free conditions. The stimulation by coenzyme Q is additive to the stimulation by ferricyanide, an impermeable electron acceptor for the transplasma membrane electron transport. alpha Tocopherylquinone can also stimulate cell growth, but vitamin K1 is inactive or inhibitory. The response to coenzyme Q and ferricyanide is enhanced with insulin. A contribution to plasma membrane NADH oxidation or modification of the membrane quinone redox balance can be a basis for the growth stimulation.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
17
|
Schweinzer E, Goldenberg H. Ascorbate-mediated transmembrane electron transport and ascorbate uptake in leukemic cell lines are two different processes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:807-12. [PMID: 1606963 DOI: 10.1111/j.1432-1033.1992.tb16988.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transmembrane reduction of extracellular oxidants by K562 and U937 leukemic cells was stimulated by catalytic amounts of ascorbate or dehydroascorbate. This stimulation was not due to transport of ascorbate in different redox states in and out of the cells. The membrane redox cycle was strictly dependent on the presence of the cells at every stage, and showed high affinity for ascorbate with simple linear kinetics. Metabolic inhibitors and sulfhydryl reagents inhibited this stimulation. Ascorbate uptake was also dependent on oxidation, but in a very different manner and with much lower affinity for ascorbate. The uptake was non-saturable in the concentration range used. There was some release of ascorbate from the cells, which cannot account for an appreciable part of the reduction of extracellular electron acceptors.
Collapse
Affiliation(s)
- E Schweinzer
- Institut für Medizinische Chemie, Universität Wien, Austria
| | | |
Collapse
|
18
|
Brightman AO, Wang J, Miu RK, Sun IL, Barr R, Crane FL, Morré DJ. A growth factor- and hormone-stimulated NADH oxidase from rat liver plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1105:109-17. [PMID: 1567890 DOI: 10.1016/0005-2736(92)90168-l] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NADH oxidase activity (electron transfer from NADH to molecular oxygen) of plasma membranes purified from rat liver was characterized by a cyanide-insensitive rate of 1 to 5 nmol/min per mg protein. The activity was stimulated by growth factors (diferric transferrin and epidermal growth factor) and hormones (insulin and pituitary extract) 2- to 3-fold. In contrast, NADH oxidase was inhibited up to 80% by several agents known to inhibit growth or induce differentiation (retinoic acid, calcitriol, and the monosialoganglioside, GM3). The growth factor-responsive NADH oxidase of isolated plasma membranes was not inhibited by common inhibitors of oxidoreductases of endoplasmic reticulum or mitochondria. As well, NADH oxidase of the plasma membrane was stimulated by concentrations of detergents which strongly inhibited mitochondrial NADH oxidases and by lysolipids or fatty acids. Growth factor-responsive NADH oxidase, however, was inhibited greater than 90% by chloroquine and quinone analogues. Addition of coenzyme Q10 stimulated the activity and partially reversed the analogue inhibition. The pH optimum for NADH oxidase was 7.0 both in the absence and presence of growth factors. The Km for NADH was 5 microM and was increased in the presence of growth factors. The stoichiometry of the electron transfer reaction from NADH to oxygen was 2 to 1, indicating a 2 electron transfer. NADH oxidase was separated from NADH-ferricyanide reductase, also present at the plasma membrane, by ion exchange chromatography. Taken together, the evidence suggests that NADH oxidase of the plasma membrane is a unique oxidoreductase and may be important to the regulation of cell growth.
Collapse
Affiliation(s)
- A O Brightman
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
19
|
Löw H, Crane FL, Grebing C, Isaksson M, Lindgren A, Sun IL. Modification of transplasma membrane oxidoreduction by SV40 transformation of 3T3 cells. J Bioenerg Biomembr 1991; 23:903-17. [PMID: 1663950 DOI: 10.1007/bf00786008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of 3T3 cells by SV40 virus changes the properties of the transplasma membrane electron transport activity which can be assayed by reduction of external ferric salts. After 42 h of culture and before the growth rate is maximum, the transformed cells have a much slower rate of ferric reduction. The change in activity is expressed both by change in Km and Vmax for ferricyanide reduction. The change in activity is not based on surface charge effect or on tight coupling to proton release or on intracellular NADH concentration. With transformation by SV40 virus infection the expression of transferrin receptors increases, which correlates with greater diferric transferrin stimulation of the rate of ferric ammonium citrate reduction in transformed SV40-3T3 cells than in 3T3 cells.
Collapse
Affiliation(s)
- H Löw
- Department of Endocrinology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Crane FL, Sun IL, Barr R, Löw H. Electron and proton transport across the plasma membrane. J Bioenerg Biomembr 1991; 23:773-803. [PMID: 1721049 DOI: 10.1007/bf00786001] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplasm membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes contain b cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.
Collapse
Affiliation(s)
- F L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
21
|
Barr R, Branstetter BA, Rajnicek A, Crane FL, Löw H. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:261-8. [PMID: 1904770 DOI: 10.1016/s0005-2728(05)80246-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membrane electron transport was studied in a protozoan cell, Tetrahymena pyriformis, by assaying transmembrane ferricyanide reduction and the reduction of iron compounds. The rates of ferricyanide reduction varied between 0.5 and 2.5 mumol/g dry wt. per min, with a pH optimum at 7.0-7.5. Other active non-permeable electron acceptors, with redox potentials from +360 to -125 mV, were cytochrome c, hexaammine ruthenium chloride, ferric-EDTA, ammonium ferric citrate, and indigo di-, tri- and tetrasulfonates. It was found that Tetrahymena cells can reduce external electron acceptors with redox potentials at pH 7.0 down to -125 mV. Ferricyanide stimulates ciliary action. Transmembrane ferricyanide reduction by Tetrahymena was not inhibited by such mitochondrial inhibitors as antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide, or potassium cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Tetrahymena appears to involve a plasma membrane electron transport chain similar to those of other animal cells. As in other cells, the transmembrane electron transport is associated with proton release which may be involved in internal pH control. The transmembrane redox system differs from that of mammalian cells in a 20-fold greater sensitivity to chloroquine and quinacrine. The Tetrahymena ferricyanide reduction is also inhibited by chlorpromazine and suramin. Sensitivity to these drugs indicates that the transplasma membrane electron transport and associated proton pumping may be a target for drugs used against malaria, Trypanosomes and other protozoa.
Collapse
Affiliation(s)
- R Barr
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
22
|
Toole-Simms W, Sun IL, Faulk WP, Löw H, Lindgren A, Crane FL, Morré DJ. Inhibition of transplasma membrane electron transport by monoclonal antibodies to the transferrin receptor. Biochem Biophys Res Commun 1991; 176:1437-42. [PMID: 2039523 DOI: 10.1016/0006-291x(91)90447-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduction of iron in diferric transferrin is inhibited by monoclonal antibodies to the transferrin receptor which bind at sites other than the high affinity transferrin binding site. These antibodies include B3/25, GB16 and GB22. Two antibodies which bind at the high affinity site for transferrin, 42/6 and GB18, do not inhibit iron reduction by transplasma membrane electron transport. The results are consistent with the proposal that differric transferrin reduction or stimulation of transmembrane NADH oxidase activity involves a site different from the high affinity diferric transferrin binding site. A synergistic action of antibodies with epitopes at the tight binding site involved in iron uptake and the antibodies which inhibit electron transport, B3/25 and GB16, can explain the increased inhibition of growth observed when both 42/6 and B3/25 are added to proliferating cells.
Collapse
Affiliation(s)
- W Toole-Simms
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
23
|
Sun IL, Crane FL, Morré DJ, Löw H, Faulk WP. Lactoferrin activates plasma membrane oxidase and Na+/H+ antiport activity. Biochem Biophys Res Commun 1991; 176:498-504. [PMID: 1850271 DOI: 10.1016/0006-291x(91)90952-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin is a growth stimulant. The basis for this effect is not clear since it is not thought to be involved in iron uptake through endocytosis. Ferric lactoferrin supports external ferrous chelate formation by K562 and HeLa cells, and ferric lactoferrin stimulates the reduction of external ferric iron by cells. Ferric lactoferrin also stimulates NADH oxidase activity in isolated rat liver plasma membranes and stimulates amiloride sensitive proton release from K562 cells. The evidence that ferric lactoferrin can participate in oxidoreduction reactions at the plasma membrane leading to activation of Na+/H+ exchange provides an alternative explanation for the proliferative effect.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
24
|
Bérczi A, Sizensky JA, Crane FL, Faulk WP. Diferric transferrin reduction by K562 cells. A critical study. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:562-70. [PMID: 2015280 DOI: 10.1016/0304-4165(91)90231-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.
Collapse
Affiliation(s)
- A Bérczi
- Center for Reproduction and Transplantation Immunology, Methodist Hospital of Indiana, Indianapolis 46202
| | | | | | | |
Collapse
|
25
|
Abstract
Adriamycin has a vast range of reported actions on the structural and functional properties of cells. This review summarizes the literature on the ability of the drug to modulate the cell surface membrane and attempts to address the question of how such actions could be linked to cytotoxicity. In addition, we consider the use of polymer immobilization of adriamycin to separate intracellular from plasma membrane effects of the drug, and show how this approach has been helpful in interpreting the pharmacology of adriamycin. Finally, a range of biophysical and spectroscopic approaches to defining the molecular details of adriamycin-bilayer interactions is surveyed, and the results used to discuss a model for how this antineoplastic agent binds to membranes.
Collapse
Affiliation(s)
- T R Tritton
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405
| |
Collapse
|
26
|
Affiliation(s)
- K Thorstensen
- Department of Clinical Chemistry, University Hospital, Trondheim, Norway
| | | |
Collapse
|
27
|
Oliveira MB, Campello AP, Klüppel WL. Methotrexate: studies on cellular metabolism. III.--Effect on the transplasma-membrane redox activity and on ferricyanide-induced proton extrusion by HeLa cells. Cell Biochem Funct 1989; 7:135-7. [PMID: 2548755 DOI: 10.1002/cbf.290070209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of methotrexate (MTX) on transplasma-membrane electron transport and ferricyanide-induced proton extrusion by HeLa cells was studied. Both systems were inhibited by MTX. It is suggested that inhibition of electron transport and proton extrusion caused by MTX could be associated with other metabolic alterations such as response to the increase in NADH levels and decrease in intracellular pH.
Collapse
Affiliation(s)
- M B Oliveira
- Departamento de Bioquimica da Universidade Federal do Paraná, Brasil
| | | | | |
Collapse
|
28
|
Peterson DA, Kelly B, Butterfield J, Ashley J, Peterson R, Gerrard JM. Phosphorylation of tyrosine enhances its electron transfer capability: a model of redox modulation as oncogene expression? Med Hypotheses 1988; 26:271-3. [PMID: 2459585 DOI: 10.1016/0306-9877(88)90133-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of tyrosine and o-phosphotyrosine on the transfer of electrons to nitrobluetetrazolium (NBT) was studied. Tyrosine phosphate was found to strongly promote the transfer of electrons from ferrous iron to NBT, while tyrosine was inhibitory. The enhancement of NBT reduction by tyrosine phosphate was blocked by superoxide dismutase (SOD). The results suggest a role for phosphorylated tyrosine residues to promote intracellular redox reactions. We suggest that the role of tyrosine protein kinases in cell proliferation and transformation may be to regulate electron transport in as yet undefined cellular systems. Consistent with a unique role for phosphotyrosine, the other commonly occurring phosphoamino acids, o-phosphoserine and o-phosphothreonine were not effective electron transfer agents.
Collapse
Affiliation(s)
- D A Peterson
- Research Service, Veterans Administration Medical Center, Minneapolis, Minnesota 55417
| | | | | | | | | | | |
Collapse
|
29
|
Sun IL, Toole-Simms W, Crane FL, Morré DJ, Löw H, Chou JY. Transformation with SV40 virus prevents retinoic acid inhibition of plasma membrane NADH diferric transferrin reductase in rat liver cells. J Bioenerg Biomembr 1988; 20:383-91. [PMID: 2841310 DOI: 10.1007/bf00769639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retinoic acid inhibits the reduction of diferric transferrin through the transplasma membrane electron transport system on fetal rat liver cells infected with a temperature-sensitive SV40 virus when the cells are in the nontransformed state cultured at 40 degrees C. When the cells are in the transformed state (grown at the permissive 33 degrees C temperature), retinoic acid does not inhibit the diferric transferrin reduction. Inhibition of activity of nontransformed cells is specific for retinoic acid with only slight inhibition by retinol and retinyl acetate at higher concentrations. Isolated rat liver plasma membrane NADH diferric transferrin reductase is also inhibited by retinoic acid. The effect of transformation with SV40 virus to decrease susceptibility to retinoic acid inhibition stands in contrast to much greater adriamycin inhibition of diferric transferrin reduction in the transformed cells than in nontransformed cells.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | |
Collapse
|
30
|
Sun IL, Toole-Simms W, Crane FL, Morré DJ, Löw H, Chou JY. Reduction of diferric transferrin by SV40 transformed pineal cells stimulates Na+/H+ antiport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:17-23. [PMID: 2827775 DOI: 10.1016/0005-2736(88)90117-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transplasmalemma electron transport by HeLa and pineal cells to reduce external ferricyanide is associated with proton release from the cells. Diferric transferrin also acts as an electron acceptor for the transmembrane oxidoreductase. We now show that reduction of external diferric transferrin by RPNA-209-1 SV40 transformed pineal cells is accompanied by proton release from the cells. The stoichiometry of proton release to electron transfer is much greater than would be expected from aniostropic electron flow across the membrane through protonated carriers. The proton release is not stimulated by apotransferrin and the diferric transferrin-stimulated activity is inhibited by apotransferrin. Apotransferrin also inhibits reduction of diferric transferrin by these cells. The proton release is dependent on external sodium ions and is inhibited by amiloride, which indicates that the proton release is mediated by the Na+/H+ antiport and that this antiport is activated by electron transport through the transmembrane dehydrogenase. Growth stimulation by diferric transferrin or other external oxidants can be based in part on activation of the Na+/H+ antiport.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | |
Collapse
|
31
|
Sun IL, Navas P, Crane FL, Morré DJ, Löw H. NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47676-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Löw H, Grebing C, Lindgren A, Tally M, Sun IL, Crane FL. Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system. J Bioenerg Biomembr 1987; 19:535-49. [PMID: 3693344 DOI: 10.1007/bf00770036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonpermeable electron acceptors can be reduced by a transplasma membrane electron transport system in suspensions of intact cells. Here we report that diferric transferrin is reduced by HeLa S3 cells. The reduction is recorded spectrophotometrically as the formation of the ferrous complex of bathophenanthroline disulfonate. Ferric ammonium citrate can also be used as an electron acceptor and the presence of low concentrations of diferric transferrin greatly stimulates the reduction of trivalent iron under these conditions. Likewise very low concentrations of ferricyanide, which does not give rise to a ferrous bathophenanthroline disulfonate complex formation, have a strong stimulatory effect on the complex formation when ferric ammonium citrate is the source of ferric iron. Apotransferrin is a potent inhibitor of the reaction. The inhibition occurs at the concentration necessary for complete occupancy of the transferrin receptors. The inhibition can be demonstrated also when high concentrations of ferricyanide are used as electron acceptor. The possible mechanism behind the reported phenomena is discussed, and it is concluded that the transplasma membrane electron transport system can be involved in the process of cellular iron uptake.
Collapse
Affiliation(s)
- H Löw
- Department of Endocrinology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Sun IL, Toole-Simms W, Crane FL, Golub ES, Díaz de Pagán T, Morré DJ, Löw H. Retinoic acid inhibition of transplasmalemma diferric transferrin reductase. Biochem Biophys Res Commun 1987; 146:976-82. [PMID: 3619945 DOI: 10.1016/0006-291x(87)90743-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.
Collapse
|
34
|
Sun IL, Garcia-Cañero R, Liu W, Toole-Simms W, Crane FL, Morré DJ, Löw H. Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells. Biochem Biophys Res Commun 1987; 145:467-73. [PMID: 3036130 DOI: 10.1016/0006-291x(87)91344-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proton release from HeLa cells is stimulated by external oxidants for the transplasmalemma electron transport enzymes. These oxidants, such as ferricyanide and diferric transferrin, also stimulate cell growth. We now present evidence that proton release associated with the reduction of ferricyanide and diferric transferrin is through the Na+/H+ antiport. The stoichiometry of H+/e- release with diferric transferrin is over 50 to 1, which is greater than expected for oxidation of a protonated transmembrane electron carrier. Diferric transferrin induced proton release depends on external sodium and is inhibited by amiloride. Proton release is also inhibited when diferric transferrin reduction is inhibited by apotransferrin. A tightly coupled association between the redox system and the antiport is shown by sodium dependence and amiloride inhibition of diferric transferrin reduction. The results indicate a new role for ferric transferrin in growth stimulation by activation of the sodium-proton antiport.
Collapse
|
35
|
Laliberté JF, Sun IL, Crane FL, Clarke MJ. Ruthenium ammine complexes as electron acceptors for growth stimulation by plasma membrane electron transport. J Bioenerg Biomembr 1987; 19:69-81. [PMID: 3571216 DOI: 10.1007/bf00769733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E'0) from 305 to -42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.
Collapse
|
36
|
Sun IL, Navas P, Crane FL, Chou JY, Löw H. Transplasmalemma electron transport is changed in simian virus 40 transformed liver cells. J Bioenerg Biomembr 1986; 18:471-85. [PMID: 3025192 DOI: 10.1007/bf00743145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40 degrees C) and permissive temperature (33 degrees C). The transformed cells grown at 33 degrees C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40 degrees C. Both the Km and Vmax for ferricyanide reduction were changed in the transformed state. The change in Vmax can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.
Collapse
|
37
|
Yamashoji S, Kajimoto G. Decrease of NADH in yeast cells by external ferricyanide reduction. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 852:25-9. [PMID: 3533148 DOI: 10.1016/0005-2728(86)90052-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ferricyanide reduction catalyzed by vitamin K-3 was accompanied by the decrease in intracellular (NAD(P)H concentration of yeast cells, and the rate of ferricyanide reduction depended on intracellular concentration of NADH rather than NADPH. The addition of glucose to the cell suspensions enhanced both ferricyanide reduction and intracellular NADH concentration. The catalytic action of vitamin K-3 on ferricyanide reduction was observed in the presence of NADH and plasma membrane preparations. As the toxic action of vitamin K-3 on cell growth of yeast was enhanced by addition of ferricyanide, ferricyanide reduction catalyzed by vitamin K-3 may inhibit cell growth by decreasing intracellular NADH concentration.
Collapse
|
38
|
Löw H, Sun IL, Navas P, Grebing C, Crane FL, Morre DJ. Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system. Biochem Biophys Res Commun 1986; 139:1117-23. [PMID: 3767994 DOI: 10.1016/s0006-291x(86)80293-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intact cells are known to reduce external, impermeable electron acceptors. We now show that cells can reduce the iron in diferric transferrin at the cell surface and that this reduction reaction depends on the transferrin receptor as well as the transmembrane electron transport system. Reduction of external diferric transferrin is accompanied by oxidation of internal NADH which indicates that the transmembrane enzyme is an NADH diferric transferrin reductase. Highly purified liver plasma membranes have NADH diferric transferrin reductase activity which shows properties similar to the diferric transferrin reductases activity of intact cells. Cell growth stimulation by diferric transferrin and other impermeable oxidants which can react with the diferric transferrin reductase can be based on electron transport through he plasma membrane.
Collapse
|
39
|
Sun IL, Crane FL, Chou JY. Modification of transmembrane electron transport activity in plasma membranes of simian virus 40 transformed pineal cells. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 886:327-36. [PMID: 3011115 DOI: 10.1016/0167-4889(86)90167-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Changes have been found in the plasma membrane enzyme system which carries out transmembrane electron transport and associated proton transport in Simian virus 40 (SV40) temperature-sensitive A (tsA) mutant-transformed rat pineal cell line, RPN209-1. This cell line was temperature-sensitive for the maintenance of transformation. RPN209-1 cells expressed the transformed phenotype (rapid growth, high cell density, and cloning in soft agar) at the permissive temperature (33 degrees C) and the nontransformed phenotype (slower growth, lower saturation density, and lower cloning efficiency in soft agar) at the nonpermissive temperature (40 degrees C). The reduction of external ferricyanide, hexaammine ruthenium and diferric transferrin was used to measure the transmembrane redox activity. The transformed RPN209-1 cells expressed a lower transmembrane redox activity, which is more sensitive to the antitumor drug adriamycin, when compared to the cells with a nontransformed phenotype. The lower transmembrane redox activity is associated with a decrease in the affinity for ferricyanide and a change in Vmax of the enzyme. Since the transformed cells have 25% lower concentration of NADH, the decrease in Vmax may be partly based on substrate limitation. Ionic strength variation in the assay media shows that the change in activity with transformation is not based on change in cell-surface change. Treatment with neuraminidase, however, indicates that sialic acid is important for enzyme activity, consistent with previous proposals that the transmembrane enzyme is a glycoprotein. The proton extrusion associated with transplasma membrane electron transport is increased in transformed cells relative to the rate of ferricyanide reduction. A relation between proton pumping transplasma membrane electron transport and growth stimulation by external oxidants is discussed.
Collapse
|
40
|
Navas P, Sun IL, Morré DJ, Crane FL. Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Commun 1986; 135:110-5. [PMID: 3954760 DOI: 10.1016/0006-291x(86)90949-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The short-term incubation of HeLa cells in the presence of diferric transferrin or ferricyanide, which are reduced externally by the transplasma membrane reductase, produces a stoichiometric decrease in NADH and increase in NAD+, which is stimulated by insulin. The NADP/NADPH ratio does not change during 15 min incubation with the oxidants. The total pyridine nucleotide pool of HeLa cells is not affected. Incubation with apotransferrin and ferrocyanide, which cannot act as oxidants for transmembrane electron transport, does not change the pyridine nucleotide concentrations in the cells. Our results show that NADH can act as the internal electron donor for the reduction of external oxidants by the transmembrane reductase. It appears that oxidation of NADH by the transmembrane electron transport using ferricyanide or iron transferrin as external electron acceptors is sufficient to stimulate growth in HeLa cells.
Collapse
|
41
|
Kay GF, Ellem KA. Nonhaem complexes of FeIII stimulate cell attachment and growth by a mechanism different from that of serum, 2-oxocarboxylates, and haemproteins. J Cell Physiol 1986; 126:275-84. [PMID: 3944209 DOI: 10.1002/jcp.1041260218] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most cell lines, even those producing their own growth factors, need a serum supplement when growing in several commonly used media. The requirement for serum to sustain attachment and growth in RPMI 1640 and MEM has been found to be met by a range of 2-oxocarboxylates, by diverse coordination complexes of FeIII, and by a variety of haem-containing proteins including catalase. The latter directly implicates H2O2 in the serum shift-down effects. H2O2 was found to accumulate in low serum media under normal laboratory lighting conditions to levels that were shown to be sufficient, when added to freshly prepared media, to explain the depressed cell performance. With the exception of some of the nonhaem FeIII coordination complexes, substances found to stimulate cell attachment and growth were capable of scavenging H2O2. This suggests that an important function of serum and the 2-oxocarboxylates (alpha-keto acids) frequently used as "nonessential" medium additives is to remove H2O2 produced photodynamically during the storage and manipulation of media containing a high content of riboflavin. However, the nonhaem FeIII complexes with saturated coordination shells, although capable of reducing photodynamic generation of H2O2 to a greater or lesser extent, have their prime effect by an unknown, intriguing mechanism, probably based on a common redox function.
Collapse
|
42
|
Crane FL, Sun IL, Clark MG, Grebing C, Löw H. Transplasma-membrane redox systems in growth and development. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 811:233-64. [PMID: 3893544 DOI: 10.1016/0304-4173(85)90013-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|