1
|
Hill BG, Higdon AN, Dranka BP, Darley-Usmar VM. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:285-95. [PMID: 19925774 DOI: 10.1016/j.bbabio.2009.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 01/23/2023]
Abstract
Protein thiolation by glutathione is a reversible and regulated post-translational modification that is increased in response to oxidants and nitric oxide. Because many mitochondrial enzymes contain critical thiol residues, it has been hypothesized that thiolation reactions regulate cell metabolism and survival. However, it has been difficult to differentiate the biological effects due to protein thiolation from other oxidative protein modifications. In this study, we used diamide to titrate protein glutathiolation and examined its impact on glycolysis, mitochondrial function, and cell death in rat aortic smooth muscle cells. Treatment of cells with diamide increased protein glutathiolation in a concentration-dependent manner and had comparably little effect on protein-protein disulfide formation. Diamide increased mitochondrial proton leak and decreased ATP-linked mitochondrial oxygen consumption and cellular bioenergetic reserve capacity. Concentrations of diamide above 200 microM promoted acute bioenergetic failure and caused cell death, whereas lower concentrations of diamide led to a prolonged increase in glycolytic flux and were not associated with loss of cell viability. Depletion of glutathione using buthionine sulfoximine had no effect on basal protein thiolation or cellular bioenergetics but decreased diamide-induced protein glutathiolation and sensitized the cells to bioenergetic dysfunction and death. The effects of diamide on cell metabolism and viability were fully reversible upon addition of dithiothreitol. These data suggest that protein thiolation modulates key metabolic processes in both the mitochondria and cytosol.
Collapse
Affiliation(s)
- Bradford G Hill
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
2
|
Papa S, Zanotti F, Gaballo A. The structural and functional connection between the catalytic and proton translocating sectors of the mitochondrial F1F0-ATP synthase. J Bioenerg Biomembr 2000; 32:401-11. [PMID: 11768302 DOI: 10.1023/a:1005584221456] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The structural and functional connection between the peripheral catalytic F1 sector and the proton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. The observations examined show that the N-terminus of subunit gamma, the carboxy-terminal and central region of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateral stalk, which connects the peripheries of F1 to F0 and surrounds the central element of the stalk, constituted by subunits gamma and delta. The ATPase inhibitor protein (IF1) binds at one side of the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The 42L-58K segment of IF1, which is per se the most active domain of the protein, binds at the surface of one of the three alpha/beta pairs of F1, thus preventing the cyclic interconversion of the catalytic sites required for ATP hydrolysis.
Collapse
Affiliation(s)
- S Papa
- Department of Medical Biochemistry and Biology, University of Bari, Italy.
| | | | | |
Collapse
|
3
|
Xu T, Zanotti F, Gaballo A, Raho G, Papa S. F1 and F0 connections in the bovine mitochondrial ATP synthase: the role of the of alpha subunit N-terminus, oligomycin-sensitivity conferring protein (OCSP) and subunit d. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4445-55. [PMID: 10880968 DOI: 10.1046/j.1432-1327.2000.01492.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the functional effect of limited proteolysis by trypsin of the constituent subunits in the native and reconstituted F1F0 complex and isolated F1 of the bovine heart mitochondrial ATP synthase (EC 3.6.1.34). Chemical cross-linking of oligomycin-sensitivity conferring protein (OSCP) with other subunits of the ATP synthase and the consequent functional effects were also investigated. The results obtained show that the alpha subunit N-terminus is essential for the correct, functional connection of F1 to F0. The alpha-subunit N-terminus contacts OSCP which, in turn, contacts the F0I-PVP(b) and the F0-d subunits. The N-terminus of subunit alpha, OSCP, a segment of subunit d and the C-terminal and central region of F0I-PVP(b) subunits are peripherally located with respect to subunits gamma and delta which are completely shielded in the F1F0 complex against trypsin digestion. This qualifies the N-terminus of subunit alpha, OSCP, subunit d and F0I-PVP(b) as components of the lateral element of the stalk. These subunits, rather than being confined at one side of the complex which would leave most of the central part of the gamma subunit uncovered, surround the gamma and the delta subunits located in the central stalk.
Collapse
Affiliation(s)
- T Xu
- Department of Medical Biochemistry and Biology, and Centre for the Study of Mitochondria and Energy Metabolism, Consiglio Nazionale delle Ricerche, University of Bari, Italy
| | | | | | | | | |
Collapse
|
4
|
Papa S, Zanotti F, Cocco T, Perrucci C, Candita C, Minuto M. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:461-7. [PMID: 8841413 DOI: 10.1111/j.1432-1033.1996.0461h.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peptide segments of the inhibitor protein (IF1) of the F0F1 ATP synthase complex from bovine-heart mitochondria have been constructed by chemical synthesis. The IF1-(42-58)-peptide was equally effective as IF1 in inhibiting the ATPase activity of both the F0F1 complex in the mitochondrial membrane deprived of IF1 (SMP) and soluble F1. The IF1-(22-46)-peptide inhibited the ATPase activity in the soluble F1 but had no effect on either the ATPase activity or H+ conduction in SMP. Substitution of the His or Lys residues with Ala in the IF1-(42-58)-peptide decreased the inhibition of ATP hydrolysis. The inhibition exerted by the IF1-(42-58)-peptide on ATP hydrolysis in SMP exhibited a pH dependence, similar to that observed with IF1, which was lost upon replacement of His or Lys with Ala. In soluble F1, inhibition of ATP hydrolysis by IF1, the IF1-(42-58)-peptide and the IF1-(22-46)-peptide was pH dependent when F1 was first incubated with ATP. The IF1-(42-58)-peptide also caused inhibition of passive H+ conduction in SMP. This activity of the synthetic peptide was weaker, as compared to that of IF1, and practically unaffected by substitution of His or Lys with Ala. An antibody against the IF1-(42-58)-synthetic peptide stimulated ATP hydrolysis in the membrane-bound F0F1 complex with associated IF1 but was without effect on H+ conduction. An antibody against IF1 stimulated both processes.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Papa S, Guerrieri F, Zanotti F, Capozza G, Fiermonte M, Cocco T, Altendorf K, Deckers-Hebersteit G. F0 and F1 subunits involved in the gate and coupling function of mitochondrial H+ ATP synthase. Ann N Y Acad Sci 1992; 671:345-58. [PMID: 1288331 DOI: 10.1111/j.1749-6632.1992.tb43808.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zanotti F, Guerrieri F, Capozza G, Fiermonte M, Berden J, Papa S. Role of F0 and F1 subunits in the gating and coupling function of mitochondrial H(+)-ATP synthase. The effect of dithiol reagents. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:9-16. [PMID: 1387361 DOI: 10.1111/j.1432-1033.1992.tb17153.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A study is presented on the role of F0 and F1 subunits in oligomycin-sensitive H+ conduction and energy transfer reactions of bovine heart mitochondrial F0F1 H(+)-ATP synthase. Mild treatment with azodicarboxylic acid bis(dimethylamide) (diamide) enhanced oligomycin-sensitive H+ conduction in submitochondrial particles containing F1 attached to F0. This effect was associated with stimulation of the ATPase activity, with no effect on its inhibition by oligomycin, and depression of the 32Pi-ATP exchange. The stimulatory effect of diamide on H+ conduction decreased in particles from which F1 subunits were partially removed by urea. The stimulatory effect exerted by diamide in the submitochondrial particles with F1 attached to F0 was directly correlated with a decrease of the original electrophoretic bands of a subunit of F0 (F0I-PVP protein) and the gamma subunit of F1, with corresponding formation of their cross-linking product. In F0 liposomes, devoid of gamma subunit, diamide failed to stimulate H+ conduction and to cause disappearance of F0I-PVP protein, unless purified gamma subunit was added back. The addition to F0 liposomes of gamma subunit, but not that of alpha and beta subunits, caused per se inhibition of H+ conduction. It is concluded that F0I-PVP and gamma subunits are directly involved in the gate of the F0F1 H(+)-ATP synthase. Data are also presented indicating contribution to the gate of oligomycin-sensitivity conferral protein and of another protein subunit of F0, F6.
Collapse
Affiliation(s)
- F Zanotti
- Institute of Medical Biochemistry and Chemistry, Consiglio Nazionale delle Ricerche, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Kauffer S, Deckers-Hebestreit G, Altendorf K. Substitution of the cysteinyl residue (Cys21) of subunit b of the ATP synthase from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:1307-12. [PMID: 1837269 DOI: 10.1111/j.1432-1033.1991.tb16504.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Fo complex of the ATP synthase (F1Fo) of Escherichia coli contains only two cysteinyl residues, Cys21, of the two copies of subunit b. Modification of Cys21 with the hydrophobic maleimide N-(7-dimethylamino-4-methyl-coumarinyl)maleimide resulted in impairment of Fo functions [Schneider, E. & Altendorf, K. (1985) Eur. J. Biochim. 153, 105-109]. We replaced this residue (via cassette mutagenesis) by Ser, Gly, Ala, Thr, Asp and Pro. None of the replacements resulted in detectable alterations of the function of the ATP synthase, making a functional role for these sulfhydryl residues unlikely. Due to its high tolerance towards amino acid substitutions, the region around Cys21 seems not to be a protein-protein contact area.
Collapse
Affiliation(s)
- S Kauffer
- Universität Osnabrück, Fachbereich Biologie/Chemie, Arbeitsgruppe Mikrobiologie, Federal Republic of Germany
| | | | | |
Collapse
|
8
|
Papa S, Guerrieri F, Zanotti F, Fiermonte M, Capozza G, Jirillo E. The gamma subunit of F1 and the PVP protein of F0 (F0I) are components of the gate of the mitochondrial F0F1 H(+)-ATP synthase. FEBS Lett 1990; 272:117-20. [PMID: 2172010 DOI: 10.1016/0014-5793(90)80462-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gamma subunit of the F1 moiety of the bovine mitochondrial H(+)-ATP synthase is shown to function as a component of the gate. Addition of purified gamma subunit to F0-liposomes inhibits transmembrane proton conduction. This inhibition can be removed by the bifunctional thiol reagent diamide. Immunoblot analysis shows that the diamide effect is likely due to disulphide bridging of the gamma subunit with the PVP protein of the F0 sector.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Lippe G, Dabbeni Sala F, Sorgato MC. ATP synthase complex from beef heart mitochondria. Role of the thiol group of the 25-kDa subunit of Fo in the coupling mechanism between Fo and F1. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Park EM, Thomas JA. S-thiolation of creatine kinase and glycogen phosphorylase b initiated by partially reduced oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 964:151-60. [PMID: 2829973 DOI: 10.1016/0304-4165(88)90161-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
S-thiolation of cardiac creatine kinase and skeletal muscle glycogen phosphorylase b was initiated by reduced oxygen species in reaction mixtures containing reduced glutathione. Both proteins were extensively modified at similar rates under conditions in which the oxidation of glutathione was inadequate to cause S-thiolation by thiol-disulfide exchange. Creatine kinase was both S-thiolated and non-reducibly oxidized at the same time at low glutathione concentration. The amount of each modification was decreased by adding additional reduced glutathione, and with adequate glutathione oxidation was prevented while S-thiolation was still very active. S-thiolation of glycogen phosphorylase b was not significantly affected by glutathione concentration and non-reducible oxidation of glycogen phosphorylase b was not observed. These experiments suggest that oxyradical or H2O2-initiated processes may be an important mechanism of protein S-thiolation during oxidative stress, and that the cellular concentration of glutathione may be an important factor in S-thiolation of different proteins. Both creatine kinase and glycogen phosphorylase b competed favorably with ferricytochrome c for superoxide anion in the standard xanthine oxidase system for the generation of oxyradicals and H2O2. These proteins were as effective as ascorbate and much more effective than reduced glutathione in this regard. Ascorbate was also an effective inhibitor of oxyradical-initiated S-thiolation of creatine kinase, suggesting a role of superoxide anion in protein S-thiolation. Other experiments showed that both catalase and superoxide dismutase could partially inhibit protein S-thiolation. Thus, reduced oxygen species may react with protein sulfhydryls resulting in S-thiolation by a mechanism that involves the reaction of an activated protein thiol with reduced glutathione.
Collapse
Affiliation(s)
- E M Park
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | |
Collapse
|
11
|
Schneider E, Altendorf K. Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol Rev 1987; 51:477-97. [PMID: 2893973 PMCID: PMC373128 DOI: 10.1128/mr.51.4.477-497.1987] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Zanotti F, Guerrieri F, Che YW, Scarfò R, Papa S. Proton translocation by the H+-ATPase of mitochondria. Effect of modification by monofunctional reagents of thiol residues in F0 polypeptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 164:517-23. [PMID: 2883005 DOI: 10.1111/j.1432-1033.1987.tb11157.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A study is presented on the effect of chemical modification of thiol groups on proton conduction by the H+-ATPase complex in 'inside out' submitochondrial particles, before and after removal of the F1 moiety, and by F0 liposomes. The results obtained show that modification with monofunctional reagents [N-ethylmaleimide, 2,2'-dithiobispyridine, mersalyl and N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide] of thiol residues in membrane integral proteins of F0 results in inhibition of proton conduction. Comparison of the inhibitory effects with the binding of [14C]N-ethylmaleimide to the various F0 polypeptides indicates that the inhibition of proton conduction by thiol reagents was correlated with modification of the 25-kDa, 11-kDa and 9-kDa (N,N'-dicyclohexylcarbodiimide-binding protein) proteins. Involvement of the last component is supported by the observation that modification by thiol reagents depressed the binding of N,N'-dicyclo[14C]hexylcarbodiimide to the 9-kDa protein.
Collapse
|
13
|
Guerrieri F, Scarfò R, Zanotti F, Che YW, Papa S. Regulatory role of the ATPase inhibitor protein on proton conduction by mitochondrial H+-ATPase complex. FEBS Lett 1987; 213:67-72. [PMID: 2881808 DOI: 10.1016/0014-5793(87)81466-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study shows that the natural inhibitor protein of mitochondrial H+-ATPase complex (IF1) inhibits, in addition to the catalytic activity, the proton conductivity of the complex. The inhibition of ATPase activity by IF1 is less effective in the purified F1 than in submitochondrial particles where F1 is bound to F0. No inhibition of H+ conductivity by F0 is observed in F1-depleted particles.
Collapse
|