1
|
Valinluck V, Liu P, Kang JI, Burdzy A, Sowers LC. 5-halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucleic Acids Res 2005; 33:3057-64. [PMID: 15917437 PMCID: PMC1140371 DOI: 10.1093/nar/gki612] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Perturbations in cytosine methylation signals are observed in the majority of human tumors; however, it is as yet unknown how methylation patterns become altered. Epigenetic changes can result in the activation of transforming genes as well as in the silencing of tumor suppressor genes. We report that methyl-CpG-binding proteins (MBPs), specific for methyl-CpG dinucleotides, bind with high affinity to halogenated pyrimidine lesions, previously shown to result from peroxidase-mediated inflammatory processes. Emerging data suggest that the initial binding of MBPs to methyl-CpG sequences may be a seeding event that recruits chromatin-modifying enzymes and DNA methyltransferase, initiating a cascade of events that result in gene silencing. MBD4, a protein with both methyl-binding and glycosylase activity demonstrated repair activity against a series of 5-substituted pyrimidines, with the greatest efficiency against 5-chlorouracil, but undetectable activity against 5-chlorocytosine. The data presented here suggest that halogenated pyrimidine damage products can potentially accumulate and mimic endogenous methylation signals.
Collapse
Affiliation(s)
- Victoria Valinluck
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda UniversityLoma Linda, CA 92350, USA
| | - Pingfang Liu
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda UniversityLoma Linda, CA 92350, USA
- Graduate School of Biological Sciences, City of Hope National Medical Center1500 East Duarte Road, Duarte, CA 91010, USA
| | - Joseph I. Kang
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda UniversityLoma Linda, CA 92350, USA
| | - Artur Burdzy
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda UniversityLoma Linda, CA 92350, USA
| | - Lawrence C. Sowers
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda UniversityLoma Linda, CA 92350, USA
- Graduate School of Biological Sciences, City of Hope National Medical Center1500 East Duarte Road, Duarte, CA 91010, USA
- To whom correspondence should be addressed. Tel: +1 909 558 4480; Fax: +1 909 558 4035;
| |
Collapse
|
2
|
Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 2004; 32:4100-8. [PMID: 15302911 PMCID: PMC514367 DOI: 10.1093/nar/gkh739] [Citation(s) in RCA: 564] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytosine methylation in CpG dinucleotides is believed to be important in gene regulation, and is generally associated with reduced levels of transcription. Methylation-mediated gene silencing involves a series of DNA-protein and protein-protein interactions that begins with the binding of methyl-CpG binding proteins (MBPs) followed by the recruitment of histone-modifying enzymes that together promote chromatin condensation and inactivation. It is widely known that alterations in methylation patterns, and associated gene activities, are often found in human tumors. However, the mechanisms by which methylation patterns are altered are not currently understood. In this paper, we investigate the impact of oxidative damage to a methyl-CpG site on MBP binding by the selective placement of 8-oxoguanine (8-oxoG) and 5-hydroxymethylcytosine (HmC) in a MBP recognition sequence. Duplexes containing these specific modifications were assayed for binding to the methyl-CpG binding domain (MBD) of one member of the MBP family, methyl-CpG binding protein 2 (MeCP2). Our results reveal that oxidation of either a single guanine to 8-oxoG or of a single 5mC to HmC, significantly inhibits binding of the MBD to the oligonucleotide duplex, reducing the binding affinity by at least an order of magnitude. Oxidative damage to DNA could therefore result in heritable, epigenetic changes in chromatin organization.
Collapse
Affiliation(s)
- Victoria Valinluck
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
3
|
Rusmintratip V, Riggs AD, Sowers LC. Examination of the DNA substrate selectivity of DNA cytosine methyltransferases using mass tagging. Nucleic Acids Res 2000; 28:3594-9. [PMID: 10982881 PMCID: PMC110732 DOI: 10.1093/nar/28.18.3594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological significance of cytosine methylation is as yet incompletely understood, but substantial and growing evidence strongly suggests that perturbation of methylation patterns, resulting from the infidelity of DNA cytosine methyltransferase, is an important component of the development of human cancer. We have developed a novel in vitro assay that allows us to quantitatively determine the DNA substrate preferences of cytosine methylases. This approach, which we call mass tagging, involves the labeling of target cytosine residues in synthetic DNA duplexes with stable isotopes, such as (15)N. Methylation is then measured by the formation of 5-methylcytosine (5mC) by gas chromatography/mass spectrometry. The DNA substrate selectivity is determined from the mass spectrum of the product 5mC. With the non-symmetrical duplex DNA substrate examined in this study we find that the bacterial methyltransferase HPA:II (duplex DNA recognition sequence CCGG) methylates the one methylatable cytosine of each strand similarly. Introduction of an A-C mispair at the methylation site shifts methylation exclusively to the mispaired cytosine residue. In direct competition assays with HPA:II methylase we observe that the mispaired substrate is methylated more extensively than the fully complementary, normal substrate, although both have one HPA:II methylation site. Through the use of this approach we will be able to learn more about the mechanisms by which methylation patterns can become altered.
Collapse
Affiliation(s)
- V Rusmintratip
- Division of Molecular Medicine, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
4
|
Tardy-Planechaud S, Fujimoto J, Lin SS, Sowers LC. Solid phase synthesis and restriction endonuclease cleavage of oligodeoxynucleotides containing 5-(hydroxymethyl)-cytosine. Nucleic Acids Res 1997; 25:553-9. [PMID: 9016595 PMCID: PMC146456 DOI: 10.1093/nar/25.3.553] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Emerging data suggest an important role for cytosine methylation in tumorigenesis. Simultaneously, recent studies indicate a significant contribution of endogenous oxidative DNA damage to the development of human disease. Oxidation of the 5-methyl group of 5-methylcytosine (5mC) residues in DNA results in the formation of 5-(hydroxymethyl)cytosine (hmC). The biological consequences ofhmC residues in vertebrate DNA are as yet unknown; however, conversion of the hydrophobic methyl group to the hydrophilic hydroxymethyl group may substantially alter the interaction of sequence-specific binding proteins with DNA. Central to both biophysical and biochemical studies on the potential consequences of specific DNA damage products such as hmC are efficient methods for the synthesis of oligodeoxynucleotides containing such modified bases at selected positions. In this paper, we describe a method for the placement of hmC residues in oligodeoxynucleotides using established phosphoramidite chemistry. In addition, we have examined the influence of specific hmC residues on enzymatic cleavage of oligodeoxynucleotides by the methylation-sensitive restriction endonucleases MspI and HpaII.
Collapse
Affiliation(s)
- S Tardy-Planechaud
- Division of Pediatrics, City of Hope National Medical Center, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
5
|
Cremonesi C, Scarpini C, Bianchi R, Radaelli A, Gimelli M, De Giuli Morghen C. Antiherpesvirus Activity of the Combination of 5-iodo-2′-deoxycytidine with methotrexate: An in vitroand in vivoStudy. Antivir Chem Chemother 1994. [DOI: 10.1177/095632029400500501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We evaluated the in vitro and in vivo antiviral activity of the deoxyribonucleoside analogue 5-iodo-2′-deoxycytidine (IDC) combined with the dihydrofolate reductase inhibitor methotrexate (MTX) on herpes simplex virus types 1 and 2 (HSV-1, HSV-2). The IDC-MTX combination synergistically inhibited HSV-1 and HSV-2 replication in vitro at concentrations that did not reduce cellular viability and was very effective in reducing the severity of cutaneous lesions in the experimental guinea pig model in vivo. The antiviral activity of the IDC-MTX combination in guinea pigs was also compared with that of acyclovir and was demonstrated to be higher.
Collapse
Affiliation(s)
- C. Cremonesi
- Department of Pharmacology and CNR Center for Cytopharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - C. Scarpini
- Department of Pharmacology and CNR Center for Cytopharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - R. Bianchi
- CNR Center for the Study of the Relations between Structure and Chemical Reactivity, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - A. Radaelli
- Department of Pharmacology and CNR Center for Cytopharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
- Institute of Pharmacological Sciences, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - M. Gimelli
- Department of Pharmacology and CNR Center for Cytopharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - C. De Giuli Morghen
- Department of Pharmacology and CNR Center for Cytopharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
6
|
Smith SS, Kaplan BE, Sowers LC, Newman EM. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci U S A 1992; 89:4744-8. [PMID: 1584813 PMCID: PMC49160 DOI: 10.1073/pnas.89.10.4744] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The properties of the methyl-directed DNA (cytosine-5-)-methyltransferase (EC 2.1.1.37) suggest that it is the enzyme that maintains patterns of methylation in the human genome. Proposals for the enzyme's mechanism of action suggest that 5-methyldeoxycytidine is produced from deoxycytidine via a dihydrocytosine intermediate. We have used an oligodeoxynucleotide containing 5-fluorodeoxycytidine as a suicide substrate to capture the enzyme and the dihydrocytosine intermediate. Gel retardation experiments demonstrate the formation of the expected covalent complex between duplex DNA containing 5-fluorodeoxycytidine and the human enzyme. Formation of the complex was dependent upon the presence of the methyl donor S-adenosylmethionine, suggesting that it comprises an enzyme-linked 5-substituted dihydrocytosine moiety in DNA. Dihydrocytosine derivatives are extremely labile toward hydrolytic deamination in aqueous solution. Because C-to-T transition mutations are especially prevalent at CG sites in human DNA, we have used high-performance liquid chromatography to search for thymidine that might be generated by hydrolysis during the methyl transfer reaction. Despite the potential for deamination inherent in the formation of the intermediate, the methyltransferase did not produce detectable amounts of thymidine. The data suggest that the ability of the human methyltransferase to preserve genetic information when copying a methylation pattern (i.e., its fidelity) is comparable to the ability of a mammalian DNA polymerase to preserve genetic information when copying a DNA sequence. Thus the high frequency of C-to-T transitions at CG sites in human DNA does not appear to be due to the normal enzymatic maintenance of methylation patterns.
Collapse
Affiliation(s)
- S S Smith
- City of Hope National Medical Center, Duarte, CA
| | | | | | | |
Collapse
|
7
|
Barletta J, Greer SB. Methylation of HSV-1 DNA as a mechanism of viral inhibition: studies of an analogue of methyldeoxycytidine: trifluoromethyldeoxycytidine (F3mdCyd). Antiviral Res 1992; 18:1-25. [PMID: 1384426 DOI: 10.1016/0166-3542(92)90002-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although several hypomethylating agents such as 5-azadeoxycytidine and 5-fluorodeoxycytidine have been shown to activate transcription after incorporation into viral or cellular DNA, agents which selectively affect the methylation status of virus-infected cells have not been described. Studies on the antiviral effect of the methyldeoxycytidine (mdCyd) analogue trifluoromethyldeoxycytidine (F3mdCyd) showed significant antiviral activity against herpes simplex virus type 1 (HSV-1). This analogue of both dCyd and dThd is selectively incorporated into the DNA of herpesvirus infected cells due to the unique specificity of the herpesvirus thymidine kinase (TK) because the HSV-1 TK is both a dCyd and dThd kinase. In contrast, the deoxycytidine kinase of uninfected cells preferentially phosphorylates dCyd and has a poor affinity for F3mdCyd. F3mdCyd hemisubstituted M13 DNA displayed the same properties as mdCyd-substituted M13 DNA with respect to cleavage by restriction enzymes, and acted as an efficient template for eukaryotic DNA methyltransferase (S-adenosyl-L-methionine DNA (cytosine-5) methyltransferase: EC 2.1.1.37). Using the persistently infected CEM cell model system, the extent of DNA methylation was shown to increase in a dose-related manner when HSV-1-infected CEM cells were treated with increasing concentrations of F3mdCyd. Higher levels of methylation correlated with significant decreases in HSV-1 titers. Isoschizomer analyses followed by Southern blotting and hybridization with genomic HSV-1 DNA showed that DNA from HSV-1-infected, analogue-treated Vero cells was resistant to cleavage by restriction enzymes at a time when productive virus was not present in culture. We infer from these results that the methylation-like properties of the incorporated F3mdCyd occur concomitantly with, and appear to be involved in, the mechanisms of the analogue's antiviral effect towards HSV-1.
Collapse
Affiliation(s)
- J Barletta
- Department of Microbiology and Immunology, University of Miami School of Medicine, FL 33136
| | | |
Collapse
|
8
|
Smith SS, Kan JL, Baker DJ, Kaplan BE, Dembek P. Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase. J Mol Biol 1991; 217:39-51. [PMID: 1988679 DOI: 10.1016/0022-2836(91)90609-a] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The symmetry of the responses of the human DNA (cytosine-5)methyltransferase to alternative placements of 5-methylcytosine in model oligodeoxynucleotide duplexes containing unusual structures has been examined. The results of these experiments more clearly define the DNA recognition specificity of the enzyme. A simple three-nucleotide recognition motif within the CG dinucleotide pair can be identified in each enzymatically methylated duplex. The data can be summarized by numbering the four nucleotides in the dinucleotide pair thus: 1 4/2 3. With reference to this numbering scheme, position 1 can be occupied by cytosine or 5-methylcytosine; position 2 can be occupied by guanosine or inosine; position 3, the site of enzymatic methylation, can be occupied only by cytosine; and position 4 can be occupied by guanosine, inosine, O6-methylguanosine, cytosine, adenosine, an abasic site, or the 3' hydroxyl group at the end of a gapped molecule. Replacing the guanosine normally found at position 4 with any of the moieties introduces unusual (non-Watson-Crick) pairing at position 3 and generally enhances methylation of the cytosine at that site. The exceptional facility of the enzyme in actively methylating unusual DNA structures suggests that the evolution of the DNA methyltransferase, and perhaps DNA methylation itself, may be linked to the biological occurrence of unusual DNA structures.
Collapse
Affiliation(s)
- S S Smith
- City of Hope Medical Center, Duarte, CA
| | | | | | | | | |
Collapse
|
9
|
Smith SS, Baker DJ, Jardines LA. A G4-DNA/B-DNA junction at codon 12 of c-Ha-ras is actively and asymmetrically methylated by DNA(cytosine-5)methyltransferase. Biochem Biophys Res Commun 1989; 160:1397-402. [PMID: 2658995 DOI: 10.1016/s0006-291x(89)80159-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oligodeoxynucleotides spanning codon 12 of the human c-Ha-ras gene were found to be exceptionally good substrates for de novo methylation by human DNA(cytosine-5)methyltransferase. In the complex formed by two complementary 30mers, only the C-rich strand was methylated by the enzyme. Guanines at the 3' end of the G-rich strand of the complex could not be completely modified by dimethyl sulfate [corrected] suggesting tetrameric bonding at these G-residues. An eight-stranded structure, composed of four duplex DNAs at one end, joined to a G4-DNA segment at the other with the junction between the two DNA forms at codon 12, can account for our results.
Collapse
Affiliation(s)
- S S Smith
- Division of Surgery, City of Hope, Duarte, CA 91010
| | | | | |
Collapse
|
10
|
Heby O, Persson L, Smith SS. Polyamines, DNA methylation and cell differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:291-9. [PMID: 3076327 DOI: 10.1007/978-1-4684-5637-0_26] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cellular concentration of AdoMet is normally very much higher than that of dcAdoMet, the aminopropyl group donor in polyamine synthesis. However, when cells are depleted of their putrescine and spermidine, i.e. the aminopropyl group acceptors, the dcAdoMet concentration increases dramatically, to a level that may greatly exceed that of AdoMet. Using a highly purified DNA methyltransferase and its preferred substrates, a defined hemimethylated duplex oligodeoxynucleotide or poly(dI-dC)-poly(dI-dC), we demonstrate that dcAdoMet is a poor methyl group donor, and that it starts to inhibit DNA methylation when its concentration exceeds that of AdoMet. At a dcAdoMet/AdoMet ratio of 5:1 there is very little methyl transfer. This study suggests that the antiproliferative and differentiative effects brought about by inhibitors of polyamine synthesis may be partly attributable to dcAdoMet-mediated inhibition of DNA methylation.
Collapse
Affiliation(s)
- O Heby
- Department of Zoophysiology, University of Lund, Sweden
| | | | | |
Collapse
|
11
|
Smith SS, Hardy TA, Baker DJ. Human DNA (cytosine-5)methyltransferase selectively methylates duplex DNA containing mispairs. Nucleic Acids Res 1987; 15:6899-916. [PMID: 3658670 PMCID: PMC306183 DOI: 10.1093/nar/15.17.6899] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The presence of the C.C mispair in a defined duplex oligodeoxynucleotide enhanced its capacity to serve as a substrate for highly purified human DNA methyltransferase. Analysis of tritiated reaction products showed that the C.C mispair acted as a "methylation acceptor" in that it was itself rapidly methylated. The m5C.G base pair also enhanced the capacity of the oligodeoxynucleotide to serve as a substrate for the enzyme. However, this complementary base pair was found to act as a "methylation director". That is, the presence of the m5C in one strand induced the enzyme to rapidly methylate at the cytosine residue on the opposite strand in an adjacent C.G base pair.
Collapse
Affiliation(s)
- S S Smith
- Division of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | | | | |
Collapse
|
12
|
Baker DJ, Hardy TA, Smith SS. The influence of the dT.dG mispair on the activity of the human DNA(cytosine-5)methyltransferase. Biochem Biophys Res Commun 1987; 146:596-602. [PMID: 3039984 DOI: 10.1016/0006-291x(87)90570-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic oligodeoxynucleotides containing a dT.dG mispair at a centrally located d(pCG) dimer are methylated at a moderate rate by highly purified human DNA(cytosine-5)methyltransferase (E.C. 2.1.1.37). The presence of a mispaired dT in one strand induced the enzyme to preferentially methylate the opposite strand.
Collapse
|