1
|
Kar AN, Vargas JNS, Chen CY, Kowalak JA, Gioio AE, Kaplan BB. Molecular determinants of cytochrome C oxidase IV mRNA axonal trafficking. Mol Cell Neurosci 2017; 80:32-43. [PMID: 28161363 DOI: 10.1016/j.mcn.2017.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 01/10/2017] [Accepted: 01/29/2017] [Indexed: 01/17/2023] Open
Abstract
In previous studies, we identified a putative 38-nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the cytochrome c oxidase subunit IV (COXIV) mRNA that was necessary and sufficient for the axonal localization of the message in primary superior cervical ganglion (SCG) neurons. However, little is known about the proteins that interact with the COXIV-zipcode and regulate the axonal trafficking and local translation of the COXIV message. To identify proteins involved in the axonal transport of the COXIV mRNA, we used the biotinylated 38-nucleotide COXIV RNA zipcode as bait in the affinity purification of COXIV zipcode binding proteins. Gel-shift assays of the biotinylated COXIV zipcode indicated that the putative stem-loop structure functions as a nucleation site for the formation of ribonucleoprotein complexes. Mass spectrometric analysis of the COXIV zipcode ribonucleoprotein complex led to the identification of a large number RNA binding proteins, including fused in sarcoma/translated in liposarcoma (FUS/TLS), and Y-box protein 1 (YB-1). Validation experiments, using western analyses, confirmed the presence of the candidate proteins in the COXIV zipcode affinity purified complexes obtained from SCG axons. Immunohistochemical studies show that FUS, and YB-1 are present in SCG axons. Importantly, RNA immunoprecipitation studies show that FUS, and YB-1 interact with endogenous axonal COXIV transcripts. siRNA-mediated downregulation of the candidate proteins FUS and YB-1 expression in the cell-bodies diminishes the levels of COXIV mRNA in the axon, suggesting functional roles for these proteins in the axonal trafficking of COXIV mRNA.
Collapse
Affiliation(s)
- Amar N Kar
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jose Norberto S Vargas
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cai-Yun Chen
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey A Kowalak
- NIMH-NINDS Clinical Proteomics Unit, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anthony E Gioio
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Barry B Kaplan
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Hsu CYM, Uludağ H. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Target 2012; 20:301-28. [PMID: 22303844 DOI: 10.3109/1061186x.2012.655247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.
Collapse
Affiliation(s)
- Charlie Yu Ming Hsu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Cananda
| | | |
Collapse
|
3
|
Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010:646929. [PMID: 20981357 PMCID: PMC2958427 DOI: 10.4061/2010/646929] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis.
Collapse
Affiliation(s)
- Sam L Stephen
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 2008; 218:35-44. [PMID: 18767039 DOI: 10.1002/jcp.21579] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is a metabolite generated and released from cells, particularly under injury or stress. It elicits protective or damaging responses via signaling through the adenosine receptors, including the adenylyl cyclase inhibitory A(1) and A(3), and the adenylyl cyclase stimulatory A(2A) and A(2B). Multiple adenosine receptor types, including stimulatory and inhibitory, can be found in the same cell, suggesting that a careful balance of adenosine receptor expression in a particular cell is necessary for a specific adenosine-induced response. This balance could be controlled by differential expression of the adenosine receptor genes under different stimuli. Here, we have reviewed an array of studies that have characterized basal or induced expression of the adenosine receptors and common as well as distinct mechanisms of effect, in hopes that ongoing studies on this topic will further elucidate detailed mechanisms of adenosine receptor regulation, leading to potential therapeutic applications.
Collapse
Affiliation(s)
- Cynthia St Hilaire
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
5
|
Hama S, Akita H, Iida S, Mizuguchi H, Harashima H. Quantitative and mechanism-based investigation of post-nuclear delivery events between adenovirus and lipoplex. Nucleic Acids Res 2007; 35:1533-43. [PMID: 17287293 PMCID: PMC1865055 DOI: 10.1093/nar/gkl1165] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Quantitative and mechanism-based information on differences in transfection efficiency between viral and non-viral vectors would be highly useful for improving the effectiveness of non-viral vectors. A previous quantitative comparison of intracellular trafficking between adenovirus and LipofectAMINE PLUS (LFN) revealed that the three orders of magnitude lower transfection efficiency of LFN was dominantly rate limited by the post-nuclear delivery process. In the present study, the contribution of transcription and translation processes to the overall differences in the transgene expression efficiency of nucleus-delivered DNA was independently evaluated by quantifying mRNA. As a result, transcription efficiency (Etranscript) of LFN, denoted as transgene expression divided by the amount of nuclear pDNA was about 16 times less than that for adenovirus. Furthermore, translation efficiency (Etranslate), denoted as transfection activity divided by mRNA expression was approximately 460 times less in LFN. Imaging of the decondensed form of DNA by in situ hybridization revealed that poor decondensation efficiency of LFN is involved in the inferior Etranscript. Moreover, the inferior translation efficiency (Etranslate) of LFN was mainly due to electrostatic interactions between LFN and mRNA. Collectively, an improvement in nuclear decondensation and the diminution of the interaction between vector and mRNA is essential for the development of new generations of non-viral vectors.
Collapse
Affiliation(s)
- Susumu Hama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Shinya Iida
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hiroyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
- *To whom correspondence should be addressed. +81 11 706 3919+81 11 706 4879
| |
Collapse
|
6
|
Steffensen KR, Holter E, Tobin KA, Leclerc S, Gustafsson JA, Guérin SL, Eskild W. Members of the nuclear factor 1 family reduce the transcriptional potential of the nuclear receptor LXRalpha promoter. Biochem Biophys Res Commun 2001; 289:1262-7. [PMID: 11741331 DOI: 10.1006/bbrc.2001.6078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the LXRalpha nuclear receptor in liver is predicted to affect cholesterol and lipid metabolism. Here we show that a short fragment from the LXRalpha gene promoter spanning the region from -144 to +43 relative to the mRNA initiation site can drive transcription of a reporter gene. Under basal conditions, in vitro DNase I footprinting demonstrated interaction between nuclear proteins and an NF1 recognition site in close vicinity to the transcriptional initiation. Both supershift, mutational analyses in EMSA and transfections provided evidence that the NF1 (nuclear factor I) transcription factor interacts with the LXRalpha promoter. All four members of the NF1 family were found to suppress the transcriptional activity indicating a general inhibitory effect on LXRalpha expression. A similar regulation by NF1 was also observed when using a fragment from the LXRalpha promoter extending up to position -3033 therefore giving the inhibitory effect of NF1 a significant impact on LXRalpha gene expression.
Collapse
Affiliation(s)
- K R Steffensen
- Department of Biosciences, Novum Research Park, Karolinska Institute, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
7
|
Gao B, Kunos G. Cell type-specific transcriptional activation and suppression of the alpha1B adrenergic receptor gene middle promoter by nuclear factor 1. J Biol Chem 1998; 273:31784-7. [PMID: 9822643 DOI: 10.1074/jbc.273.48.31784] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor 1 (NF1) has been reported to be a transcriptional activator for some genes and a transcriptional silencer for others. Here we report that in Hep3B cells, cotransfection of NF1/L, NF1/Red1, or NF1/X with the alpha1B adrenergic receptor (alpha1BAR) gene middle (P2) promoter increases P2 activity to more or less the same degree, whereas in DDT1 MF-2 cells cotransfection of NF1/L or NF1/Red1 causes a small but statistically significant decrease in the P2 promoter activity, and NF1/X causes a greater, 70% inhibition. Further experiments using truncated NF1/X mutants indicate that NF1/X contains both positive and negative regulatory domains. The positive domain, located between amino acids 416 and 505, is active in Hep3B cells, whereas the negative domain, located between amino acids 243 and 416, is active in DDT1 MF-2 cells. These functional domains are also capable of regulating transcription when isolated from their natural context and fused into the GAL4 binding domain. Furthermore, NF1 affinity purified from rat liver nuclear extracts copurified with a non-DNA binding protein, which can bind to the P2 promoter of the alpha1BAR gene via interacting with NF1. Taken together, these findings indicate that NF1/X contains both activation and suppression domains that may be recognized and modulated by cell type-specific cofactors. This may be one of the mechanisms whereby NF1 can activate or suppress the expression of different genes, and it may also underlie the tissue-specific regulation of the alpha1B AR gene.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular
- Chromatography, Affinity
- Cricetinae
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Humans
- Kinetics
- Liver/metabolism
- Liver Neoplasms
- Muscle, Smooth
- NFI Transcription Factors
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Rats
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Regulatory Sequences, Nucleic Acid
- Suppression, Genetic
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
8
|
Bergeron MJ, Leclerc S, Laniel MA, Poirier GG, Guérin SL. Transcriptional regulation of the rat poly(ADP-ribose) polymerase gene by Sp1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:342-53. [PMID: 9428683 DOI: 10.1111/j.1432-1033.1997.0342a.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the gene encoding poly(ADP-ribose) polymerase (PARP), although ubiquitous, nevertheless varies substantially between tissues. We have recently shown that Sp1 binds five distinct target sequences (US-1 and F1-F4) in the rat PARP (rPARP) gene promoter. Here we used deletion analyses and site-directed mutagenesis to address the regulatory function played by these Sp1 sites on the basal transcriptional activity directed by the rPARP promoter. Transfection experiments revealed that the most proximal Sp1 site is insufficient by itself to direct any promoter activity. In addition, a weak negative regulatory element was identified between positions -101 and -60. The rPARP promoter directed high levels of chloramphenicol acetyltransferase activity in Jurkat T-lymphoblastoid and Ltk- fibroblast cells but only moderate levels in pituitary GH4C1 and liver HTC cells, correlating with the amounts of PARP detected in these cells by western blot analysis. However, the reduced promoter efficiency in HTC and GH4C1 cells did not result from the lack of Sp1 activity in these cells but suggested that yet uncharacterized regulatory proteins might turn off PARP gene expression by binding negative regulatory elements from the rPARP promoter. Similarly, site-directed mutagenesis on the three most proximal Sp1 elements suggested the influence exerted by Sp1 on the rPARP promoter activity to vary substantially between cell types. It also provided evidence for a basal rPARP promoter activity driven through the recognition of unidentified cis-acting elements by transcription factors other than Sp1.
Collapse
Affiliation(s)
- M J Bergeron
- Laboratory of Molecular Endocrinology, CHUL Research Center, Ste-Foy, Qc, Canada
| | | | | | | | | |
Collapse
|
9
|
Leclerc S, Eskild W, Guérin SL. The rat growth hormone and human cellular retinol binding protein 1 genes share homologous NF1-like binding sites that exert either positive or negative influences on gene expression in vitro. DNA Cell Biol 1997; 16:951-67. [PMID: 9303437 DOI: 10.1089/dna.1997.16.951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High levels of expression for the rat growth hormone (rGH) gene are restricted to the somatotroph cells of the anterior pituitary. Previously, we have shown that rGH cell-specific repression results in part from the recognition of negatively acting silencers by a number of nuclear proteins that repress basal promoter activity. Examination of these silencers revealed the presence of binding sites for proteins that belong to the NF1 family of transcription factors. Indeed, proteins from this family were shown to bind the rGH proximal silencer (designated silencer-1) in in vitro assays. Furthermore, this silencer site is capable of repressing chloramphenicol acetyltransferase (CAT) gene expression driven by an heterologous promoter (that of the mouse p12 gene), even in pituitary cells. Recently, we identified in the 5' untranslated region of the gene encoding human cellular retinol binding protein 1 (hCRBP1) a negative regulatory element (Fp1) that also bears an NF1 binding site very similar to that of rGH silencer-1. However, although deletion of Fp1 in the hCRBP1 gene yielded increased CAT activity, pointing toward a negative regulatory function exerted by this element, its insertion upstream of the p12 basal promoter results in an impressive positive stimulation of CAT gene expression. By exploiting NaDodSO4 gel protein fractionation and renaturation, we identified a 40-kD nuclear protein (designated Bp1) present in GH4C1 cells that binds very strongly to rGH silencer-1 but only weakly to hCRBP1 Fp1. Similarly, we also detected a 29-kD nuclear factor (designated Bp2) that recognizes exclusively the Fp1 element as its target site, therefore suggesting that different, but likely related, proteins bind these homologous elements to either activate or repress gene transcription. Although they bind DNA through the recognition of the NF1-like target sequence contained on these elements, competition and supershift experiments in electrophoretic mobility shift assays provided evidence that neither of these proteins belong to the NF1 family.
Collapse
Affiliation(s)
- S Leclerc
- Laboratory of Molecular Endocrinology, CHUL Research Center, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|
10
|
Laniel MA, Guérin SL. A nuclear factor other than Sp1 binds the GC-rich promoter of the gene encoding rat poly(ADP-ribose) polymerase in vitro. Biochem Cell Biol 1997. [DOI: 10.1139/o97-051] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Matsumoto K, Okuwaki M, Kawase H, Handa H, Hanaoka F, Nagata K. Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure. J Biol Chem 1995; 270:9645-50. [PMID: 7721897 DOI: 10.1074/jbc.270.16.9645] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenovirus (Ad) genome DNA is complexed with viral core proteins in the virus particle and in host cells during the early stages of infection. This DNA protein complex, called Ad core, is thought to be the template for transcription and DNA replication in infected cells. The Ad core functioned as template for DNA replication in the cell-free system consisting of viral replication proteins, uninfected HeLa nuclear extracts, and a novel factor, template activating factor-I (TAF-I) that we have isolated from uninfected HeLa cytoplasmic fractions. The Ad core did not function as an efficient template in the cell-free transcription system with nuclear extracts of uninfected HeLa cells. The addition of TAF-I resulted in the stimulation of transcription from E1A and ML promoters on the Ad core. TAF-I was required, at least, for the formation of preinitiation complexes. These observations suggest that, in addition to factors essential for transcription on naked DNA template, the factor such as TAF-I needed for replication of the Ad core is also required for transcription from the Ad genome in a chromatin-like structure.
Collapse
Affiliation(s)
- K Matsumoto
- Cellular Physiology Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Roy RJ, Guérin SL. The 30-kDa rat liver transcription factor nuclear factor 1 binds the rat growth-hormone proximal silencer. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:799-806. [PMID: 8112331 DOI: 10.1111/j.1432-1033.1994.tb18560.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcription of the gene encoding rat growth hormone is under the influence of cis-acting negative regulatory elements termed silencers. We showed previously that one such element, designated the rat growth hormone proximal silencer-1 site, binds a nuclear protein, the nuclear-factor-1-like protein that is probably a member of the CAAT transcription factor/nuclear-factor-1 (CTF/NF-I) family of transcription factors. This nuclear protein possesses DNA-binding activity as well as biochemical properties similar to those reported for the 30-kDa rat liver form of nuclear factor 1 (NF1-L). Results from both gel mobility supershift assays and Western-blot analyses, performed in combination with a polyclonal antibody directed against the DNA-binding domain of NF1-L, indicated that rat liver nuclear factor 1 might indeed correspond to one of the transcription factors interacting with the rat growth-hormone proximal silencer element. Further experiments using gel mobility shift assays also indicated that, as for NF1-L, multiple proteins among the 52-66-kDa CTF/NF-I isoforms from human HeLa cells also possess the ability to bind the rat growth-hormone silencer.
Collapse
Affiliation(s)
- R J Roy
- Laboratory of Molecular Endocrinology, Laval University Medical Research Center, Québec, Canada
| | | |
Collapse
|
13
|
Roy RJ, Gosselin P, Anzivino MJ, Moore DD, Guérin SL. Binding of a nuclear protein to the rat growth hormone silencer element. Nucleic Acids Res 1992; 20:401-8. [PMID: 1741274 PMCID: PMC310399 DOI: 10.1093/nar/20.3.401] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The rat growth hormone (rGH) gene is uniquely expressed in a subset of cells from the anterior pituitary. This strongly cell type specific expression is controlled by both cis-acting positive sequences that bind the pituitary specific transcription factor Pit-1 and cis-acting negative regulatory elements that lie upstream of the Pit-1 sites. The negative elements act to prevent expression of the gene in inappropriate cell types. Here we report that the most proximal rGH silencer element is specifically bound by a protein found in a number of rGH non-expressing cell types and which exerts a negative regulatory effect through the recognition of this rGH element in transient transfection assays. The sequence recognized by this protein is similar to sequences of several other negative regulatory elements as well as to the consensus binding site for the transcription factor NF1. However, the 45 KDa molecular weight identified for this protein does not correspond to any of the sizes previously reported for NF1 suggesting that it is likely to represent a new member amongst this family of transcription factors.
Collapse
Affiliation(s)
- R J Roy
- Centre de Recherche en Endocrinologie Moléculaire, Centre Hospitalier de l'Université Laval (CHUL), Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
14
|
Matsumoto K, Nagata K, Hanaoka F, Ui M. The repression of the reverse-oriented transcription from the adenovirus terminus by NFI in competition with TFIID. FEBS Lett 1991; 280:53-6. [PMID: 2009968 DOI: 10.1016/0014-5793(91)80202-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear factor I (NF) represses the transcription which is promoted by the cloned adenovirus (Ad) type 5 DNA replication origin and is reverse-oriented with respect to the direction of the replication. The mechanism of this repression by NFI was investigated. In the cell-free transcription system, the repression was observed only when NFI was present during the formation of the transcription initiation complex. From the results of DNase I protection experiments, it was indicated that NFI bound to its binding site in the Ad replication origin prevents TFIID from proper binding to the adjacent AT-rich region and consequently represses the transcription.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | |
Collapse
|