1
|
Wang H, Li Q, Kuang X, Xiao D, Han X, Hu X, Li X, Ma M. Functions of aldehyde reductases from Saccharomyces cerevisiae in detoxification of aldehyde inhibitors and their biotechnological applications. Appl Microbiol Biotechnol 2018; 102:10439-10456. [PMID: 30306200 DOI: 10.1007/s00253-018-9425-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022]
Abstract
Bioconversion of lignocellulosic biomass to high-value bioproducts by fermentative microorganisms has drawn extensive attentions worldwide. Lignocellulosic biomass cannot be efficiently utilized by microorganisms, such as Saccharomyces cerevisiae, but has to be pretreated prior to fermentation. Aldehyde compounds, as the by-products generated in the pretreatment process of lignocellulosic biomass, are considered as the most important toxic inhibitors to S. cerevisiae cells for their growth and fermentation. Aldehyde group in the aldehyde inhibitors, including furan aldehydes, aliphatic aldehydes, and phenolic aldehydes, is identified as the toxic factor. It has been demonstrated that S. cerevisiae has the ability to in situ detoxify aldehydes to their corresponding less or non-toxic alcohols. This reductive reaction is catalyzed by the NAD(P)H-dependent aldehyde reductases. In recent years, detoxification of aldehyde inhibitors by S. cerevisiae has been extensively studied and a huge progress has been made. This mini-review summarizes the classifications and structural features of the characterized aldehyde reductases from S. cerevisiae, their catalytic abilities to exogenous and endogenous aldehydes and effects of metal ions, chemical protective additives, and salts on enzyme activities, subcellular localization of the aldehyde reductases and their possible roles in protection of the subcellular organelles, and transcriptional regulation of the aldehyde reductase genes by the key stress-response transcription factors. Cofactor preference of the aldehyde reductases and their molecular mechanisms and efficient supply pathways of cofactors, as well as biotechnological applications of the aldehyde reductases in the detoxification of aldehyde inhibitors derived from pretreatment of lignocellulosic biomass, are also included or supplemented in this mini-review.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qian Li
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiaolin Kuang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Difan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xuebing Han
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiangdong Hu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Menggen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Wang HY, Xiao DF, Zhou C, Wang LL, Wu L, Lu YT, Xiang QJ, Zhao K, Li X, Ma MG. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity. Appl Microbiol Biotechnol 2017; 101:4507-4520. [PMID: 28265724 DOI: 10.1007/s00253-017-8209-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Di-Fan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Chang Zhou
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Lin-Lu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Lan Wu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Ya-Ting Lu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Quan-Ju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Meng -Gen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China. .,Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Yuan Z, Adam Yuan Y, Lin J, Wei D. Biochemical and structural analysis of Gox2181, a new member of the SDR superfamily from Gluconobacter oxydans. Biochem Biophys Res Commun 2011; 415:410-5. [DOI: 10.1016/j.bbrc.2011.10.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
|
4
|
Chen XM, Kobayashi H, Sakai M, Hirata H, Asai T, Ohnishi T, Baldermann S, Watanabe N. Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:88-95. [PMID: 20650544 DOI: 10.1016/j.jplph.2010.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 05/09/2023]
Abstract
2-Phenylethanol (2PE) is a prominent scent compound released from flowers of Damask roses (Rosa×damascena) and some hybrid roses (Rosa 'Hoh-Jun' and Rosa 'Yves Piaget'). 2PE is biosynthesized from l-phenylalanine (l-Phe) via the intermediate phenylacetaldehyde (PAld) by two key enzymes, aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). Here we describe substrate specificity and cofactor preference in addition to molecular characterization of rose-PAR and recombinant PAR from R.×damascena. The deduced amino acid sequence of the full-length cDNA encoded a protein exhibiting 77% and 75% identity with Solanum lycopersicum PAR1 and 2, respectively. The transcripts of PAR were higher in petals than calyxes and leaves and peaking at the unfurling stage 4. Recombinant PAR and rose-PAR catalyzed reduction of PAld to 2PE using NADPH as the preferred cofactor. Reductase activity of rose-PAR and recombinant PAR were higher for aromatic and aliphatic aldehydes than for keto-carbonyl groups. Both PARs showed that (S)-[4-(2)H] NADPH was preferentially used over the (R)-[4-(2)H] isomer to give [1-(2)H]-2PE from PAld, indicating that PAR can be classified as short-chain dehydrogenase reductase (SDR).
Collapse
Affiliation(s)
- Xiao-Min Chen
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2009; 65:3895-906. [PMID: 19011750 PMCID: PMC2792337 DOI: 10.1007/s00018-008-8588-y] [Citation(s) in RCA: 661] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an α/β folding pattern with a central beta sheet flanked by 2–3 α-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.
Collapse
|
6
|
Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase. Chem Biol Interact 2008; 178:274-82. [PMID: 18983992 DOI: 10.1016/j.cbi.2008.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022]
Abstract
Functional genomics data suggests that the metabolism of mannitol in the human pathogen Aspergillus fumigatus involves the action of two polyol-specific long-chain dehydrogenases/reductases, mannitol-1-phosphate 5-dehydrogenase (M1PDH) and mannitol 2-dehydrogenase (M2DH). The gene encoding the putative M2DH was expressed in Escherichia coli, and the purified recombinant protein was characterized biochemically. The predicted enzymatic function of a NAD(+)-dependent M2DH was confirmed. The enzyme is a monomer of 58kDa in solution and does not require metals for activity. pH profiles for M2DH and the previously isolated M1PDH were recorded in the pH range 6.0-10.0 for the oxidative and reductive direction of the reactions under conditions where substrate was limiting (k(cat)/K) or saturating (k(cat)). The pH-dependence of logk(cat) was usually different from that of log(k(cat)/K), suggesting that more than one step of the enzymatic mechanism was affected by changes in pH. The greater complexity of the pH profiles of log(k(cat)/K) for the fungal enzymes as compared to the analogous pH profiles for M2DH from Pseudomonas fluorescens may reflect sequence changes in vicinity of the conserved catalytic lysine.
Collapse
|
7
|
Ceccaroli P, Saltarelli R, Guescini M, Polidori E, Buffalini M, Menotta M, Pierleoni R, Barbieri E, Stocchi V. Identification and characterization of the Tuber borchii D-mannitol dehydrogenase which defines a new subfamily within the polyol-specific medium chain dehydrogenases. Fungal Genet Biol 2007; 44:965-78. [PMID: 17317242 DOI: 10.1016/j.fgb.2007.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/28/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
A novel NADP(+)-dependent D-mannitol dehydrogenase and the corresponding gene from the plant symbiotic ascomycete fungus Tuber borchii was identified and characterized. The enzyme, called TbMDH, is a homotetramer with two zinc atoms per subunit. It catalyzed both D-fructose reduction and D-mannitol oxidation, although it showed the highest substrate specificity and catalytic efficiency for D-fructose. Co-factor specificity was restricted to NADP(H) and the reaction proceeded via a sequential ordered Bi Bi mechanism. The carbon responsive transcriptional pattern showed that Tbmdh is up-regulated when mycelia are transferred to a culture medium containing D-mannitol or D-fructose. The phylogenetic analysis showed TbMDH to be the first example of a fungal D-mannitol-2-dehydrogenase belonging to the medium-chain dehydrogenase/reductases (MDRs). The enzyme identified a new group of proteins, most of them annotated in databases as hypothetical zinc-dependent dehydrogenases, forming a distinct subfamily among the polyol dehydrogenase family.
Collapse
Affiliation(s)
- Paola Ceccaroli
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino Carlo Bo, Via A Saffi 2, 61029, Urbino (PU), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cheng H, Jiang N, Shen A, Feng Y. Molecular cloning and functional expression of d-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli. FEMS Microbiol Lett 2005; 252:35-42. [PMID: 16165327 DOI: 10.1016/j.femsle.2005.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/11/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022] Open
Abstract
A NADP-dependent d-arabitol dehydrogenase gene was cloned from Gluconobacter oxydans CGMCC 1.110 and functionally expressed in Escherichia coli. With d-arabitol as sole carbon source, E. coli transformants grew rapidly in minimal medium, and produced d-xylulose. The enzymatic properties of the 29kDa enzyme were documented. The DNA sequence surrounding the gene suggested that it is part of an operon with several components of a sugar alcohol transporter system, and the d-arabitol dehydrogenase gene belongs to the short-chain dehydrogenase family.
Collapse
Affiliation(s)
- Hairong Cheng
- Center for Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
9
|
Hoffmeister M, Piotrowski M, Nowitzki U, Martin W. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 2004; 280:4329-38. [PMID: 15569691 DOI: 10.1074/jbc.m411010200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (km=68 microm) and trans-2-hexenoyl-CoA (km=91 microm). In the crotonyl-CoA-dependent reaction, both NADH (km=109 microm) or NADPH (km=119 microm) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoyl-CoA, to one member of this gene family of previously unknown function.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute of Botany III, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
10
|
Klimacek M, Kavanagh KL, Wilson DK, Nidetzky B. Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure-function relationships. Chem Biol Interact 2003; 143-144:559-82. [PMID: 12604242 DOI: 10.1016/s0009-2797(02)00219-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple sequence alignment and analysis of evolutionary relationships have been used to characterize a family of polyol-specific long-chain dehydrogenases/reductases (PSLDRs). At the present time, 66 known and putative NAD(P)H-dependent oxidoreductases of mainly prokaryotic origin and between 357 and 544 amino acids in length constitute this family. The family is shown to include D-mannitol 2-dehydrogenase, D-mannonate 5-oxidoreductase, D-altronate 5-oxidoreductase, D-arabinitol 4-dehydrogenase, and D-mannitol-1-phosphate 5-dehydrogenase which form individual sub-families (defined by internal sequence identity of >/=30%) having distant origin and divergent substrate specificity but clearly displaying entire-chain relationship. When all forms are aligned, only three residues, Gly-33, Asp-230, and Lys-295 (in the numbering of Pseudomonas fluorescens D-mannitol 2-dehydrogenase (PsM2DH)) are strictly conserved. By combining sequence alignment with the known structure of PsM2DH and results from site-directed mutagenesis, we have developed a structure/function analysis for the family. Gly-33 is in the N-terminal coenzyme-binding domain and part of a nucleotide fingerprint region for the family, and Asp-230 and Lys-295 are at an interdomain segment contributing to the active site in which the lysine likely functions as the catalytic general acid/base. PSLDRs do not require a metal cofactor for activity and are specific for transferring the 4-pro-S hydrogen from NAD(P)H. Comparisons reveal that the core part of the two-domain fold has been conserved throughout all family members, perhaps reflecting the recruitment of a stable oxidoreductase structure and extensive trimming thereof to acquire functional properties specific to each sub-family. They also identify interactions that define the chemical mechanism of oxidoreduction and likely contribute to substrate and co-substrate specificities and are thus relevant for protein engineering.
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology, Graz University of Technology, Petersgasse 12/I, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
11
|
Klimacek M, Nidetzky B. A catalytic consensus motif for D-mannitol 2-dehydrogenase, a member of a polyol-specific long-chain dehydrogenase family, revealed by kinetic characterization of site-directed mutants of the enzyme from Pseudomonas fluorescens. Biochem J 2002; 367:13-8. [PMID: 12175334 PMCID: PMC1222881 DOI: 10.1042/bj20020932] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 08/07/2002] [Accepted: 08/13/2002] [Indexed: 11/17/2022]
Abstract
Lys-295, Asn-300 and His-303 of D-mannitol 2-dehydrogenase from Pseudomonas fluorescens were mutated individually into alanine (K295A, N300A and H303A respectively). Purified mutants displayed catalytic efficiencies for NAD(+)-dependent oxidation of D-mannitol 300-fold (H303A), 1000-fold (N300A) and approx. 400000-fold (K295A) below the wild-type level. Comparison of primary kinetic isotope effects on kinetic parameters for D-fructose reduction by wild-type and mutants at pH 10.0 demonstrate that Asn-300 has an auxiliary role in stabilization of the transition state of hydride transfer, and His-303 contributes to substrate positioning. The large solvent isotope effect of 11+/-1 on k (cat) for mannitol oxidation by K295A at pH((2)H) 10.5 suggests a role for Lys-295 in general base enzymic catalysis. Positional conservation of Lys-295, Asn-300 and His-303 across a family of polyol-specific long-chain dehydrogenases suggests a unique catalytic signature: Lys-Xaa(4)-Asn-Xaa(2)-His (where 'Xaa' denotes 'any amino acid').
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | | |
Collapse
|
12
|
Otte S, Lengeler JW. The mtl genes and the mannitol-1-phosphate dehydrogenase from Klebsiella pneumoniae KAY2026. FEMS Microbiol Lett 2001; 194:221-7. [PMID: 11164312 DOI: 10.1111/j.1574-6968.2001.tb09473.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mtl operon of Klebsiella pneumoniae KAY2026 (formerly Aerobacter aerogenes 1033-5P14) was shown to contain as the promoter-proximal gene mtlA, encoding a D-mannitol-specific enzyme II transporter (IICBA(Mtl)). This gene is followed by mtlD, coding for a mannitol-1-phosphate dehydrogenase (MtlD, 382 amino acid residues), and mtlR (MtlR, 195 amino acid residues) coding for a putative repressor, gene mtlR overlaps the termination codon of mtlD. The DNA and protein sequences are highly similar to the corresponding genes (81% identical bp) and proteins (79-85% identical amino acids) of Escherichia coli K-12. A truncated form of MtlD lacking the 162 C-terminal amino acid residues still shows 10% dehydrogenase activity which may explain the controversy in the literature concerning the properties of mannitol-phosphate and other medium-length dehydrogenases.
Collapse
Affiliation(s)
- S Otte
- Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069, Osnabrück, Germany
| | | |
Collapse
|
13
|
Heuel H, Shakeri-Garakani A, Turgut S, Lengeler JW. Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 6):1631-1639. [PMID: 9639934 DOI: 10.1099/00221287-144-6-1631] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enzymes for catabolism of the pentitols D-arabinitol (Dal) and ribitol (Rbt) and the corresponding genes from Klebsiella pneumoniae (dal and rbt) and Escherichia coli (atl and rtl) have been used intensively in experimental evolutionary studies. Four dal and four rbt genes from the chromosome of K. pneumoniae 1033-5P14 were cloned and sequenced. These genes are clustered in two adjacent but divergently transcribed operons and separated by two convergently transcribed repressor genes, dalR and rbtR. Each operon encodes an NAD-dependent pentose dehydrogenase (dalD and rbtD), and ATP-dependent pentulose kinase (dalK and rbtK) and a pentose-specific ion symporter (dalT and rbtT). Although the biochemical reactions which they catalyse are highly similar, the enzymes showed interesting deviations. Thus, DalR (313 aa) and RbtR (270 aa) belong to different repressor families, and DalD (455 aa) and RbtD (248 aa), which are active as a monomer or as tetramers, respectively, belong to different dehydrogenase families. Of the two kinases (19.3% identity), DalK (487 aa) belongs to the subfamily of short D-xylulokinases and RbtK (D-ribulokinase; 535 aa) to the subfamily of long kinases. The repressor, dehydrogenase and kinase genes did not show extensive similarity beyond local motifs. This contrasts with the ion symporters (86.6% identity) and their genes (82.7% identity). Due to their unusually high similarity, parts of dalT and rbtT have previously been claimed erroneously to correspond to 'inverted repeats' and possible remnants of a 'metabolic transposon' comprising the dal and rbt genes. Other characteristic structures, e.g. a secondary att lambda site and chi-like sites, as well as the conservation of this gene group in E. coli C are also discussed.
Collapse
Affiliation(s)
- H Heuel
- Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany
| | - A Shakeri-Garakani
- Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany
| | - S Turgut
- Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany
| | - J W Lengeler
- Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany
| |
Collapse
|
14
|
Abstract
Basic principles underlying enzyme action are considered. Catalytic antibodies (abzymes), catalytic RNA (ribozymes), and non-biological counterparts of enzyme-catalyzed reactions are mentioned. Enzyme evolution is considered in terms of divergence, convergence, and lateral gene transfer.
Collapse
Affiliation(s)
- J Jeffery
- Department of Molecular and Cell Biology, University of Aberdeen, Marischal College, Scotland, UK
| |
Collapse
|
15
|
Jeffery J, Persson B, Wood I, Bergman T, Jeffery R, Jörnvall H. Glucose-6-phosphate dehydrogenase. Structure-function relationships and the Pichia jadinii enzyme structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:41-9. [PMID: 8444164 DOI: 10.1111/j.1432-1033.1993.tb17630.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The primary structure of glucose-6-phosphate dehydrogenase from the yeast Pichia jadinii (formerly Candida utilis) has been determined. It consists of a 495-residue, N-terminally acetylated protein chain. The structure shows extensive differences from those of the corresponding mammalian, fruit fly, and bacterial enzymes (52-68% residue non-identities), but also from that of another yeast, Saccharomyces cerevisiae (38%). A eubacterial type and a yeast type of glucose-6-phosphate dehydrogenase are discerned, in addition to the known mammalian type. They are distinguished from each other, from the mammalian type, and the insect enzyme, on the basis of both specific residues and pattern differences. The distribution of residues conserved in all forms locates short segments in which identities are closely grouped. Approximately 50% of these segments correspond to predicted turns and appear to mark the principal folds characteristic of the enzyme's tertiary structure. A region in the N-terminal part of the protein chain has characteristics suggestive of a coenzyme-binding site, while, in the middle third, another functionally important segment may be related to glucose-6-phosphate binding and catalysis.
Collapse
Affiliation(s)
- J Jeffery
- Department of Molecular and Cell Biology, University of Aberdeen, Marischal College, Scotland
| | | | | | | | | | | |
Collapse
|