1
|
Keir G, Mashriqi F, Caravella C, Clouston SAP, Rini JN, Franceschi AM. Optimization of [ 18F]-FDOPA Brain PET Acquisition Times for Assessment of Parkinsonism in the Clinical Setting. AJNR Am J Neuroradiol 2024; 45:781-787. [PMID: 38663986 PMCID: PMC11288601 DOI: 10.3174/ajnr.a8207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND PURPOSE Fluorine 18-fluoro-L-dopa ([18F]-FDOPA) was approved by the FDA in 2019 and reimbursed by the Centers for Medicare & Medicaid Services in 2022 for use with PET to visualize dopaminergic nerve terminals in the striatum for evaluation of parkinsonism. We sought to determine the optimal image acquisition time for [18F]-FDOPA PET by evaluating rater-estimated FDOPA positivity and image quality across 4 time points. MATERIALS AND METHODS Brain PET/CT was acquired 90 minutes following injection of 185 megabecquerel (5 mCi) of [18F]-FDOPA. PET was acquired in list mode for 20 minutes, and data were replayed to represent 15-, 10-, and 5-minute acquisitions. By means of MIMneuro, PET/MR imaging or PET/CT was independently graded for FDOPA positivity and image quality by 2 readers, blinded to the clinical report and diagnosis. Expert neuroradiologist clinical reads were used as the criterion standard. RESULTS Twenty patients were included, average age 65.6 years, 55% women. Image-quality ratings decreased with shorter acquisition times for both readers (reader 1, ρ = 0.23, P = .044; reader 2, ρ = 0.24, P = .036), but there was no association between abnormality confidence scores and acquisition time (reader 1, ρ = -0.13, P = .250; reader 2, ρ = -0.19, P = .100). There was a high degree of consistency in intra- and interrater agreement and agreement with the expert reads when using acquisition times of ≥10 minutes (maximal confidence score consistency [ρ = 0.92] and interrater agreement [κ = 0.90] were observed at 15 minutes), while image quality was consistently rated as low and FDOPA positivity ratings were inconsistent when using a 5-minute acquisition time. CONCLUSIONS Our study suggests that image-quality ratings were stable after 15 minutes and that between-subject abnormality detection rates were highly consistent between the 2 readers when acquired for at least 10 and up to 20 minutes but were inconsistent at 5 minutes. Shorter [18F]-FDOPA PET acquisition times may help maximize patient comfort while increasing throughput in the clinical setting.
Collapse
Affiliation(s)
- Graham Keir
- From the Neuroradiology Division (G.K., F.M., A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| | - Faizullah Mashriqi
- From the Neuroradiology Division (G.K., F.M., A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| | - Christopher Caravella
- Nuclear Medicine Division (C.C., J.N.R.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Sean A P Clouston
- Department of Family, Population and Preventive Medicine (S.A.P.C.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Josephine N Rini
- Nuclear Medicine Division (C.C., J.N.R.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ana M Franceschi
- From the Neuroradiology Division (G.K., F.M., A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| |
Collapse
|
2
|
Rooney KE, Wallace LJ. Computational modeling of extracellular dopamine kinetics suggests low probability of neurotransmitter release. Synapse 2015; 69:515-25. [PMID: 26248886 DOI: 10.1002/syn.21845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 07/11/2015] [Indexed: 02/03/2023]
Abstract
Dopamine in the striatum signals the saliency of current environmental input and is involved in learned formation of appropriate responses. The regular baseline-firing rate of dopaminergic neurons suggests that baseline dopamine is essential for proper brain function. The first goal of the study was to estimate the likelihood of full exocytotic dopamine release associated with each firing event under baseline conditions. A computer model of extracellular space associated with a single varicosity was developed using the program MCell to estimate kinetics of extracellular dopamine. Because the literature provides multiple kinetic values for dopamine uptake depending on the system tested, simulations were run using different kinetic parameters. With all sets of kinetic parameters evaluated, at most, 25% of a single vesicle per varicosity would need to be released per firing event to maintain a 5-10 nM extracellular dopamine concentration, the level reported by multiple microdialysis experiments. The second goal was to estimate the fraction of total amount of stored dopamine released during a highly stimulated condition. This was done using the same model system to simulate published measurements of extracellular dopamine following electrical stimulation of striatal slices in vitro. The results suggest the amount of dopamine release induced by a single electrical stimulation may be as large as the contents of two vesicles per varicosity. We conclude that dopamine release probability at any particular varicosity is low. This suggests that factors capable of increasing release probability could have a powerful effect on sculpting dopamine signals.
Collapse
Affiliation(s)
- Katherine E Rooney
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210
| | - Lane J Wallace
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210.,500 West 12th Avenue Columbus, Ohio, 43210
| |
Collapse
|
3
|
Szymańska K, Kuśmierska K, Demkow U. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 837:1-8. [PMID: 25310959 DOI: 10.1007/5584_2014_86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurotransmitters (NTs) play a central role in the efficient communication between neurons necessary for normal functioning of the nervous system. NTs can be divided into two groups: small molecule NTs and larger neuropeptide NTs. Inherited disorders of NTs result from a primary disturbance of NTs metabolism or transport. This group of disorders requires sophisticated diagnostic procedures. In this review we discuss disturbances in the metabolism of tetrahydrobiopterin, biogenic amines, γ-aminobutyric acid, foliate, pyridoxine-dependent enzymes, and also the glycine-dependent encephalopathy. We point to pathologic alterations of proteins involved in synaptic neurotransmission that may cause neurological and psychiatric symptoms. We postulate that synaptic receptors and transporter proteins for neurotransmitters should be investigated in unresolved cases. Patients with inherited neurotransmitters disorders present various clinical presentations such as mental retardation, refractory seizures, pyramidal and extrapyramidal syndromes, impaired locomotor patterns, and progressive encephalopathy. Every patient with suspected inherited neurotransmitter disorder should undergo a structured interview and a careful examination including neurological, biochemical, and imaging.
Collapse
Affiliation(s)
- Krystyna Szymańska
- Department of Experimental and Clinical Neuropathology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
4
|
Alam MR, Yoshizawa F, Sugahara K. Local administration of L-DOPA in the chicken ventromedial hypothalamus increases dopamine release in a dose-dependent manner. Neurosci Lett 2012; 529:150-4. [PMID: 22982146 DOI: 10.1016/j.neulet.2012.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/21/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022]
Abstract
L-DOPA induced extracellular dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the ventromedial hypothalamus (VMH) of chickens were measured by in vivo microdialysis. Several doses of 3,4-dihydroxy-l-phenylalanine (l-DOPA) were administered locally through the microdialysis probe into the VMH of chickens for 10 min. Local perfusion of l-DOPA increased the extracellular levels of DA. The increased DA was dose-related and was significantly higher compared to the baseline and control group. The maximal level of DA was 212% and 254%, respectively, of the baseline following administration of 1 and 2 μg/ml l-DOPA. There were no changes in NE and 5-HT levels from baseline after l-DOPA perfusion. l-DOPA (1 μg/ml) was mixed with Ca(2+)-free Ringer, tetrodotoxin (TTX) (2 μM) and high K(+) and was perfused for 30 min into the chicken VMH. TTX and Ca(2+)-free Ringer's solution inhibited the effectiveness of l-DOPA in increasing DA release. The NE and 5-HT levels were significantly lower than the baseline. After administration of K(+) a significant increase of DA, NE and 5-HT was observed. The microdialysis results are consistent with our objective that l-DOPA induced extracellular DA increases in the VMH in a dose-dependent manner and the released DA, NE and 5-HT within the dialysate were related to neuronal activity.
Collapse
Affiliation(s)
- Mohammad Rashedul Alam
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | | |
Collapse
|
5
|
Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction. J Neurosci 2011; 31:15742-50. [PMID: 22049417 DOI: 10.1523/jneurosci.2989-11.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT)-selective reuptake inhibitors (SSRIs) are widely administered for the treatment of depression, anxiety, and other neuropsychiatric disorders, but response rates are low, and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs inhibit dopaminergic activity, but mechanistic insight remains scarce. Here we show that in mice, chronic 5-HT transporter (5-HTT) blockade during adulthood but not during development impairs basal ganglia-dependent behaviors in a dose-dependent and reversible fashion. Furthermore, chronic 5-HTT blockade reduces striatal dopamine (DA) content and metabolism. A causal relationship between reduced DA signaling and impaired basal ganglia-dependent behavior is indicated by the reversal of behavioral deficits through L-DOPA administration. Our data suggest that augmentation of DA signaling would reduce side effects and increase efficacies of SSRI-based therapy.
Collapse
|
6
|
Wallace LJ, Traeger JS. Dopac distribution and regulation in striatal dopaminergic varicosities and extracellular space. Synapse 2011; 66:160-73. [PMID: 21987292 DOI: 10.1002/syn.20996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/24/2011] [Indexed: 11/06/2022]
Abstract
DOPAC, the major intermediate metabolite of dopamine, is found in the cytosolic compartment of dopaminergic terminals/varicosities and in the extracellular space. It has been proposed that extracellular DOPAC is derived from newly synthesized dopamine rather than from dopamine in the signaling pool. On the basis of literature data supporting such a concept, we hypothesize a DOPAC synthesis/secretory complex producing extracellular DOPAC and use a computational simulation model of dopaminergic varicosities to estimate the distribution of DOPAC between cytosolic and extracellular compartments, amount of newly synthesized dopamine entering the DOPAC synthesis/secretory complex, and potential regulatory processes in the complex. Results suggest that about two-thirds of DOPAC is in the extracellular space. Approximately one-third of newly synthesized dopamine is immediately processed to DOPAC, which is then secreted into extracellular space. Extracellular DOPAC concentration is approximately 300 times higher than extracellular dopamine, and cytosolic DOPAC is ∼18-fold higher than cytosolic dopamine. We suggest that the high levels of extracellular DOPAC coupled with evidence for its production from newly synthesized dopamine imply the existence of an as yet undiscovered regulatory/signaling role for DOPAC.
Collapse
Affiliation(s)
- Lane J Wallace
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
7
|
Alam MR, Yoshizawa F, Sugahara K. L-DOPA induced extracellular dopamine increases in the ventromedial hypothalamus affects food intake by chickens on a lysine-free diet. Neurosci Lett 2011; 495:126-9. [DOI: 10.1016/j.neulet.2011.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
8
|
Kilbourn MR, Butch ER, Desmond T, Sherman P, Harris PE, Frey KA. In vivo [11C]dihydrotetrabenazine binding in rat striatum: sensitivity to dopamine concentrations. Nucl Med Biol 2009; 37:3-8. [PMID: 20122661 DOI: 10.1016/j.nucmedbio.2009.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The sensitivity of the in vivo binding of [(11)C]dihydrotetrabenazine ([(11)C]DTBZ) and [(11)C]methylphenidate ([(11)C]MPH) to their respective targets - vesicular monoamine transporter type 2 (VMAT2) and neuronal membrane dopamine transporter - after alterations in endogenous levels of dopamine was examined in the rat brain. METHODS In vivo binding of [(11)C]DTBZ and [(11)C]MPH was determined using a bolus+infusion protocol. The in vitro number of VMAT2 binding sites was determined by autoradiography. RESULTS Repeated dosing with alpha-methyl-p-tyrosine (AMPT) at doses that significantly (-75%) depleted brain tissue dopamine levels resulted in increased (+36%) in vivo [(11)C]DTBZ binding to VMAT2 in the striatum. The increase in binding could be completely reversed via treatment with L-DOPA/benserazide to restore dopamine levels. There were no changes in the total number of VMAT2 binding sites, as measured using in vitro autoradiography. No changes were observed for in vivo [(11)C]MPH binding to the dopamine transporter in the striatum following AMPT pretreatment. CONCLUSION These results indicate that large reductions in dopamine concentrations in the rat brain can produce modest but significant changes in the binding of radioligands to VMAT2, which can be reversed by replenishment of dopamine using exogenous L-DOPA.
Collapse
Affiliation(s)
- Michael R Kilbourn
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The Roborovskii hamster (Phodopus roborovskii) has been shown to have high locomotor activity (hyperactivity) and low dopamine concentrations in the brain. We hypothesized that low brain dopamine concentrations play a role in the pathogenesis of hyperactivity. In this study, therefore, we investigated the effects of L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, on the locomotor activity of Roborovskii hamster to verify the above hypothesis. An open field test was employed to measure the locomotor activity. Administration of L-DOPA dose-dependently decreased locomotor activity including distance of path and time spent moving. L-DOPA increased the brain concentration of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid. Concurrently, L-DOPA caused increase of norepinephrine, decrease of serotonin, and atypical alteration of their metabolite concentrations. These findings mainly suggest that in Roborovskii hamsters, a low level of brain dopamine neurotransmission is one of the reasons for hyperactivity, and hyperactivity can be attenuated by L-DOPA.
Collapse
|
10
|
Lee WT, Weng WC, Peng SF, Tzen KY. Neuroimaging findings in children with paediatric neurotransmitter diseases. J Inherit Metab Dis 2009; 32:361-70. [PMID: 19455403 DOI: 10.1007/s10545-009-1106-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Paediatric neurotransmitter diseases consist of a group of inherited neurometabolic diseases in children, and include disorders related to gamma-amino butyric acid (GABA) metabolism, monoamine biosynthesis, etc. The diagnosis of paediatric neurotransmitter diseases remain a great challenge for paediatricians and child neurologists. In addition to clinical manifestations and CSF neurotransmitter measurement, neuroimaging findings can also be very informative for the diagnosis and evaluation of the patients. For patients with monoamine biosynthesis disorders, the functional evaluation of dopaminergic transmission also plays an important role. Understanding of the possible neuroimaging changes in paediatric neurotransmitter diseases is therefore of great value for the investigation of these patients.
Collapse
Affiliation(s)
- Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei 100, Taiwan.
| | | | | | | |
Collapse
|
11
|
Nicholas AP, Buck K, Ferger B. Effects of levodopa on striatal monoamines in mice with levodopa-induced hyperactivity. Neurosci Lett 2008; 443:204-8. [DOI: 10.1016/j.neulet.2008.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 01/07/2023]
|
12
|
Ismayilova N, Verkhratsky A, Dascombe MJ. Changes in mGlu5 receptor expression in the basal ganglia of reserpinised rats. Eur J Pharmacol 2006; 545:134-41. [PMID: 16890937 DOI: 10.1016/j.ejphar.2006.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022]
Abstract
Dopamine depletion in Parkinson's disease results in a series of pathophysiological changes in the basal ganglia circuitry. Increased release of glutamate plays an important role in this motor disorder, therefore, agents interacting with glutamatergic transmission may have therapeutic potential. In this study we investigated changes in both mRNA expression and the number of binding sites of the mGlu5 receptor in a reserpinised rat model of Parkinson's disease. The in situ hybridisation demonstrated that acute reserpine treatment caused a significant decrease in the expression of mGlu5 receptor mRNA in the rostral and caudal parts of the rat striatum. At the same time, tritium-labelled 2-ethyl-6-(phenylethynyl)-pyridine ([(3)H]MPEP) ligand binding experiments detected a significant increase in the total number of mGlu5 receptors in the same region of the motor loop. These apparently contradictory data can be explained by mGlu5 receptor turnover being down-regulated in reserpinised rats, due possibly to an imbalance in the rates of synthesis/insertion and internalisation/degradation of the receptor. These findings suggest that changes such as these affecting mGlu5 receptors may be involved in the pathophysiological consequences of dopamine depletion in the brain.
Collapse
Affiliation(s)
- Naila Ismayilova
- The University of Manchester, Faculty of Life Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
13
|
Jaskiw GE, Popli AP. A meta-analysis of the response to chronic L-dopa in patients with schizophrenia: therapeutic and heuristic implications. Psychopharmacology (Berl) 2004; 171:365-74. [PMID: 14668973 DOI: 10.1007/s00213-003-1672-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 10/01/2003] [Indexed: 11/26/2022]
Abstract
RATIONALE While it is generally believed that administration of the dopamine precursor levodopa ( L-dopa) exacerbates symptoms of schizophrenia, numerous reports suggest that adjunctive L-dopa may be beneficial. This body of literature has not been critically reviewed. OBJECTIVES On the basis of published studies, to determine whether L-dopa administered concomitantly with antipsychotic drugs provides a beneficial response in patients with schizophrenia. METHODS This review examined 30 studies involving 716 patients. Due to wide methodological variability and limited statistical information, only five studies encompassing 160 patients could be included in a meta-analysis. The others were evaluated qualitatively. RESULTS When L-dopa was added to antipsychotic drugs, the overall improvement was moderate ( d=0.71) and highly significant ( P<0.0001). There were 16 other studies in which L-dopa was added to antipsychotic drugs, but which did not meet criteria for inclusion in the meta-analysis. In these, worsening occurred in less than 20% of patients; the percentage of improved patients varied widely but had a central tendency around 50%. CONCLUSIONS . In patients already on antipsychotic drugs, the addition of L-dopa can be beneficial. Dopamine agonists merit further consideration as adjuncts to antipsychotic drugs in the treatment of schizophrenia.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service 116 A(B), Louis Stokes Cleveland VAMC, 10000 Brecksville Road, Brecksville, OH 44141, USA.
| | | |
Collapse
|
14
|
Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, De La Fuente-Fernandez R, Calne DB, Stoessl AJ. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200004)47:4<493::aid-ana13>3.0.co;2-4] [Citation(s) in RCA: 398] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Shui H, Peng Y, Wu R, Tsai Y. Evaluation of L-DOPA biotransformation during repeated L-DOPA infusion into the striatum in freely-moving young and old rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 121:123-31. [PMID: 10837901 DOI: 10.1016/s0165-3806(00)00038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to assess changes in L-3, 4-dihydroxyphenylalanine (L-DOPA) biotransformation in response to two-pulse infusion of L-DOPA into the striatum of freely-moving young (3-4 month) and old (21-26 month) male Wistar rats. In addition, the effects of L-DOPA infusion on the vesicular dopamine (DA) store in young rats were also studied. Both L-DOPA-induced DA overflow and uptake of the perfused L-DOPA by the striatum were used to study L-DOPA biotransformation during microdialysis. High potassium-induced DA depletion was performed to assess the dynamics of the vesicular DA store following L-DOPA infusion. Concentric microdialysis probes were stereotaxically implanted in the lateral striatum of rats of both age groups and microdialysis was begun 24 h later. All rats received 2x20 min infusions of 3 mgr L-DOPA separated by an interval of 60 min. In the striatum of both groups, L-DOPA-induced DA overflow and uptake of exogenous L-DOPA were both significantly enhanced during the second infusion compared to the first. In young rats, when a 20-min infusion of 3 mgr L-DOPA was given between 2x20 min infusions of 100 mM potassium, no increased DA release was seen at the second high potassium challenge compared with the first. Our results suggest that the enhancement of DA overflow induced by the second L-DOPA infusion is, at least partially, due to an increase in L-DOPA biotransformation, and not simply to an enlarged DA pool. In contrast to the in vitro results, our own in vivo results show that L-DOPA utilization in the aging striatum does not deteriorate with age.
Collapse
Affiliation(s)
- H Shui
- Department of Physiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, 10018, Taipei, Taiwan
| | | | | | | |
Collapse
|
16
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
17
|
Gatley SJ, Ding YS, Volkow ND, Chen R, Sugano Y, Fowler JS. Binding of d-threo-[11C]methylphenidate to the dopamine transporter in vivo: insensitivity to synaptic dopamine. Eur J Pharmacol 1995; 281:141-9. [PMID: 7589201 DOI: 10.1016/0014-2999(95)00233-b] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regional distribution of [11C]d-threo-methylphenidate in mouse brain was very similar to that of [3H]WIN 35,428 ((-)-2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane), and the two radioligands were displaced from striatum similarly after administration of the potent cocaine analog RTI-55 ((-)-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane). However, while striatal [3H]WIN 35,428 increased between 5 and 30 min, striatal [11C]d-threo-methylphenidate halved. Thus [11C]d-threo-methylphenidate binds similarly to but more reversibly than [3H]WIN 35,428. The methyl ester of L-DOPA (L-3,4-dihydroxyphenylalanine; 200 mg/kg) plus benserazide plus clorgyline, which markedly elevates rat striatal extracellular dopamine (Wachtel and Abercrombie, 1994, J. Neurochem. 63, 108), decreased the mouse striatum-to-cerebellum ratio for [11C]d-threo-methylphenidate at 30 min by 13% (P < 0.05). In positron emission tomographic (PET) baboon studies [11C]d-threo-methylphenidate binding was insensitive to drugs expected to lower endogenous dopamine. These experiments suggest that normal synaptic dopamine does not compete for binding with [11C]d-threo-methylphenidate, and will not affect PET measures of dopamine transporter availability.
Collapse
Affiliation(s)
- S J Gatley
- Medical Department, Brookhaven National Laboratory Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gatley SJ, Volkow ND, Fowler JS, Dewey SL, Logan J. Sensitivity of striatal [11C]cocaine binding to decreases in synaptic dopamine. Synapse 1995; 20:137-44. [PMID: 7570343 DOI: 10.1002/syn.890200207] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously shown that tracer concentrations of [11C]cocaine binding to the dopamine transporter (DAT) in human and baboon striatum can be visualized using positron emission tomography (PET). To determine whether the concentration of dopamine normally present in the synaptic cleft can compete with [11C]cocaine for transporter binding sites, we conducted baboon PET studies with drugs (sodium 4-hydroxybutyrate, four studies, 200 mg/kg; gamma-vinylGABA, three studies, 300 mg/kg; and citalopram, three studies, 2 mg/kg) expected to decrease synaptic dopamine. Each study involved two [11C]cocaine injections and PET scans separated by 2-4 h, with drug administration after the first injection, and without movement of the subject between scans. Time-activity data from striatum and from cerebellum were used with the arterial plasma input function to determine graphically by Logan plotting [11C]cocaine distribution volumes for the brain regions. Specific binding of [11C]cocaine to DAT in striatum was calculated as the distribution volume ratio (DVR) for striatum and cerebellum. In nine of the ten studies drug treatment produced a small increase in DVR (range, 1-11%), and in seven of these studies the increase was > or = 7%. The mean increase was 6.2 +/- 4.1%. The reproducibility of the DVR measure was assessed by comparing [11C]cocaine studies conducted without pharmacological treatments using individual baboons on separate days, and thus involving possible repositioning errors, as well as long-term changes in the state of the striatal dopamine system.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S J Gatley
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | |
Collapse
|
19
|
Dluzen DE, Liu B. The effect of reserpine treatment in vivo upon L-dopa and amphetamine evoked dopamine and DOPAC efflux in vitro from the corpus striatum of male rats. J Neural Transm (Vienna) 1994; 95:209-22. [PMID: 7865176 DOI: 10.1007/bf01271567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present experiment we tested the effects of L-DOPA and amphetamine upon dopamine and DOPAC efflux in vitro from superfused corpus striatal tissue fragments of male rats who had been pretreated with reserpine. Male rats were treated with reserpine (5 mg/kg) or its vehicle at 24 hours prior to sacrifice and superfusion of the corpus striatum. Two different modes of L-DOPA (5 microM) and amphetamine (10 microM) stimulation, a brief 10-minute and a continuous 60-minute infusion, were tested for their ability to evoke striatal dopamine and DOPAC efflux. Depletion of monoamine storage capacity as achieved with reserpine significantly reduced the amount of basal dopamine and DOPAC released from superfused striatal tissue fragments of male rats. Although basal release rates were significantly reduced, the amount of dopamine and DOPAC released in response to in vitro L-DOPA infusions (10 or 60 minute infusions) was equivalent between reserpine and vehicle treated animals. In contrast, amphetamine stimulated DA release was significantly reduced in male rats treated with reserpine. For both L-DOPA and amphetamine, significantly greater amounts of dopamine were obtained with the 60- versus 10-minute infusion modes. These results demonstrate that the capacity for L-DOPA, but not amphetamine, to evoke dopamine efflux is unaltered under conditions when monoamine storage ability is diminished.
Collapse
Affiliation(s)
- D E Dluzen
- Department of Anatomy, Northeastern Ohio Universities, College of Medicine, Rootstown
| | | |
Collapse
|
20
|
Männistö PT, Ulmanen I, Lundström K, Taskinen J, Tenhunen J, Tilgmann C, Kaakkola S. Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1992; 39:291-350. [PMID: 1475365 DOI: 10.1007/978-3-0348-7144-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P T Männistö
- Department of Pharmacology and Toxicology, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Koshimura K, Ohue T, Akiyama Y, Itoh A, Miwa S. L-dopa administration enhances exocytotic dopamine release in vivo in the rat striatum. Life Sci 1992; 51:747-55. [PMID: 1325018 DOI: 10.1016/0024-3205(92)90484-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peripheral administration of L-3,4-dihydroxyphenylalanine (L-DOPA) methylester increased extracellular levels of DOPA and dopamine (DA) in the rat striatum monitored by in vivo brain microdialysis. The increase in DA levels persisted after inhibition of DA reuptake by nomifensine. Administration of blockers of voltage-dependent Na+ (tetrodotoxin) or Ca2+ (NKY-722) channels through the dialysis membrane completely eliminated the increase in DA levels. These results demonstrate that the L-DOPA-induced DA release is exocytotic in nature and hence, derived from neurons in the striatum.
Collapse
Affiliation(s)
- K Koshimura
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
This study analyzed dopamine (DA) and norepinephrine (NE) in the synaptic vesicles and cytoplasm of brains of rats of 2 months and 14 months. The data revealed a clear NE increase in the synaptic vesicles of the 14-month-old rats, contrasting with NE in the cytoplasmic fraction of the rat brain, which remained unchanged with age. Synaptic vesicles from different regions of rat brain, including those from the striatum, consistently exhibited higher NE than DA concentrations, suggesting that they are predominantly noradrenergic. In the brain, DA concentrations in vesicular and cytoplasmic fractions did not vary with age, whereas in the superior cervical ganglia DA and NE concentrations increased in the older rats. L-3,4-Dihydroxyphenylalanine administration significantly increased DA without affecting NE in the ganglia of rats of all ages. In the brain, such a treatment significantly raised DA only in the synaptic vesicles of the older rats, suggesting an increased facilitation of DA transport into the synaptic vesicles with age, which may account for the higher vesicular NE in the older rats.
Collapse
Affiliation(s)
- N T Buu
- Laboratory of the Autonomic Nervous System, Clinical Research Institute of Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Buu NT. Modification of vesicular dopamine and norepinephrine by monoamine oxidase inhibitors. Biochem Pharmacol 1989; 38:1685-92. [PMID: 2730683 DOI: 10.1016/0006-2952(89)90318-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The possible effects of inhibitors of the two forms of monoamine oxidase (types A and B) on dopamine (DA) and norepinephrine (NE) accumulation and metabolism in the cytoplasmic and microsomal (vesicular) fractions of the rat brain have been examined. It was found that, while L-DOPA treatment raised only cytoplasmic DA without affecting vesicular DA and NE, clorgyline and pargyline treatments caused significant increases in DA and NE concentrations in both cytoplasmic and vesicular fractions. The DA increase in the synaptic vesicles (200-600%) was much more pronounced than that (150%) in the cytoplasm. In contrast, deprenyl treatment increased vesicular DA only slightly without any effect on either vesicular or cytoplasmic NE. L-DOPA administration to rats pretreated with clorgyline and pargyline, but not with deprenyl, further increased cytoplasmic and vesicular DA and NE concentrations. However, excessive increases in vesicular DA lowered vesicular NE. Reserpine drastically reduced vesicular and cytoplasmic DA and NE, and L-DOPA administration to the reserpine-treated rats caused a DA increase only in the cytoplasmic fraction without affecting vesicular DA or NE. The effect of reserpine was abolished by pargyline treatment, which suggests that pargyline may interact with the reserpine-sensitive vesicular uptake. There was a significant correlation between vesicular DA and NE increase.
Collapse
Affiliation(s)
- N T Buu
- Laboratory of the Autonomic Nervous System, Clinical Research Institute of Montreal, Quebec, Canada
| |
Collapse
|
24
|
Buu NT, Lussier C. Consequences of monoamine oxidase inhibition: increased vesicular accumulation of dopamine and norepinephrine and increased metabolism by catechol-O-methyltransferase and phenolsulfotransferase. Prog Neuropsychopharmacol Biol Psychiatry 1989; 13:563-8. [PMID: 2748880 DOI: 10.1016/0278-5846(89)90147-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Male Sprague-Dawley rats were injected with saline, L-Dopa or pargyline. 2. Synaptic vesicles were prepared from whole brain homogenates. Catecholamines and their metabolites in brain tissues and in synaptic vesicles were measured by high performance liquid chromatography with electrochemical detection. 3. L-Dopa administration raised brain dopamine markedly but did not significantly change dopamine and norepinephrine in the vesicular fraction. 4. The dopamine increase following L-Dopa was not accompanied by any change in normetanephrine, 3-methoxytyramine or dopamine sulfate. 5. In comparison to the control rats and rats injected with L-Dopa, pargyline-treated rats exhibited significantly higher vesicular norepinephrine and dopamine. 6. The dopamine and norepinephrine increases following pargyline treatment were accompanied by significant increases in 3-methoxytyramine, normetanephrine and dopamine sulfate. 7. The increases in vesicular dopamine and norepinephrine may be the origin of their increased metabolism by extraneuronal enzymes, catechol-O-methyltransferase and phenolsulfotransferase.
Collapse
Affiliation(s)
- N T Buu
- Laboratory of the Autonomic Nervous System, Institut de Recherches Cliniques de Montreal, Qc, Canada
| | | |
Collapse
|