1
|
Nakayama Y, Yokoyama O, Hoshi E, Nishimura Y. Premovement neuronal activity in the primary motor cortex is associated with the initiation of ipsilateral hand movements in monkeys. Neurosci Res 2025; 213:95-109. [PMID: 39848467 DOI: 10.1016/j.neures.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The primary motor cortex (M1) is believed to be a cortical center for the execution of limb movements. Although M1 neurons mainly project to the spinal cord on the contralateral side, some M1 neurons project to the ipsilateral side via the uncrossed corticospinal pathway. Moreover, some M1 neurons are activated during ipsilateral forelimb movements. However, the extent to which M1 neurons are involved in ipsilateral movement execution has not been determined. Therefore, we investigated the involvement of M1 neurons in the initiation of ipsilateral and contralateral hand movements by examining trial-by-trial correlations between premovement neuronal spikes and hand movement reaction times in monkeys. Overall, the activity of M1 neurons was more strongly correlated with the reaction times for contralateral hand movements than those for ipsilateral hand movements. However, the activity of some M1 neurons was correlated with reaction times for ipsilateral hand movements, and these correlations were as strong as those between the activity of other M1 neurons and reaction times for contralateral hand movements. This finding suggests that one subset of M1 neurons sends motor commands for ipsilateral hand movements to the same extent as another subset of M1 neurons sends motor commands for contralateral hand movements.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Department of Liberal Arts and Basic Sciences, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8576, Japan; Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
2
|
Blohm G, Cheyne DO, Crawford JD. Parietofrontal oscillations show hand-specific interactions with top-down movement plans. J Neurophysiol 2022; 128:1518-1533. [PMID: 36321728 DOI: 10.1152/jn.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To generate a hand-specific reach plan, the brain must integrate hand-specific signals with the desired movement strategy. Although various neurophysiology/imaging studies have investigated hand-target interactions in simple reach-to-target tasks, the whole brain timing and distribution of this process remain unclear, especially for more complex, instruction-dependent motor strategies. Previously, we showed that a pro/anti pointing instruction influences magnetoencephalographic (MEG) signals in frontal cortex that then propagate recurrently through parietal cortex (Blohm G, Alikhanian H, Gaetz W, Goltz HC, DeSouza JF, Cheyne DO, Crawford JD. NeuroImage 197: 306-319, 2019). Here, we contrasted left versus right hand pointing in the same task to investigate 1) which cortical regions of interest show hand specificity and 2) which of those areas interact with the instructed motor plan. Eight bilateral areas, the parietooccipital junction (POJ), superior parietooccipital cortex (SPOC), supramarginal gyrus (SMG), medial/anterior interparietal sulcus (mIPS/aIPS), primary somatosensory/motor cortex (S1/M1), and dorsal premotor cortex (PMd), showed hand-specific changes in beta band power, with four of these (M1, S1, SMG, aIPS) showing robust activation before movement onset. M1, SMG, SPOC, and aIPS showed significant interactions between contralateral hand specificity and the instructed motor plan but not with bottom-up target signals. Separate hand/motor signals emerged relatively early and lasted through execution, whereas hand-motor interactions only occurred close to movement onset. Taken together with our previous results, these findings show that instruction-dependent motor plans emerge in frontal cortex and interact recurrently with hand-specific parietofrontal signals before movement onset to produce hand-specific motor behaviors.NEW & NOTEWORTHY The brain must generate different motor signals depending on which hand is used. The distribution and timing of hand use/instructed motor plan integration are not understood at the whole brain level. Using MEG we show that different action planning subnetworks code for hand usage and integrating hand use into a hand-specific motor plan. The timing indicates that frontal cortex first creates a general motor plan and then integrates hand specificity to produce a hand-specific motor plan.
Collapse
Affiliation(s)
- Gunnar Blohm
- Centre of Neuroscience Studies, Departments of Biomedical & Molecular Sciences, Mathematics & Statistics, and Psychology and School of Computing, Queen's University, Kingston, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
4
|
Dixon TC, Merrick CM, Wallis JD, Ivry RB, Carmena JM. Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Comput Biol 2021; 17:e1009615. [PMID: 34807905 PMCID: PMC8648118 DOI: 10.1371/journal.pcbi.1009615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/06/2021] [Accepted: 11/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and execution of unimanual movements. The organizational principles of bi-hemispheric signals and the functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task in monkeys, we identified two components in population responses spanning PMd and M1. A “dedicated” component, which segregated activity at the level of individual units, emerged in PMd during preparation. It was most prominent following movement when M1 became strongly engaged, and principally involved the contralateral hemisphere. In contrast to recent reports, these dedicated signals solely accounted for divergence of arm-specific neural subspaces. The other “distributed” component mixed signals for each arm within units, and the subspace containing it did not discriminate between arms at any stage. The statistics of the population response suggest two functional aspects of the cortical network: one that spans both hemispheres for supporting preparatory and ongoing processes, and another that is predominantly housed in the contralateral hemisphere and specifies unilateral output. The motor cortex of the brain primarily controls the opposite side of the body, yet neural activity in this area is often observed during movements of either arm. To understand the functional significance of these signals we must first characterize how they are organized across the neural network. Are there patterns of activity that are unique to a single arm? Are there other patterns that reflect shared functions? Importantly, these features may change across time as motor plans are developed and executed. In this study, we analyzed the responses of individual neurons in the motor cortex and modeled their patterns of co-activity across the population to characterize the changes that distinguish left and right arm use. Across preparation and execution phases of the task, we found that signals became gradually more segregated. Despite many neurons modulating in association with either arm, those that were more dedicated to a single (typically contralateral) limb accounted for a disproportionately large amount of the variance. However, there were also weaker patterns of activity that did not distinguish between the two arms at any stage. These results reveal a heterogeneity in the motor cortex that highlights both independent and interactive components of reaching signals.
Collapse
Affiliation(s)
- Tanner C. Dixon
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Christina M. Merrick
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
| | - Joni D. Wallis
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Richard B. Ivry
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Jose M. Carmena
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, California, United States of America
| |
Collapse
|
5
|
Fischer P, Lipski WJ, Neumann WJ, Turner RS, Fries P, Brown P, Richardson RM. Movement-related coupling of human subthalamic nucleus spikes to cortical gamma. eLife 2020; 9:51956. [PMID: 32159515 PMCID: PMC7096181 DOI: 10.7554/elife.51956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cortico-basal ganglia interactions continuously shape the way we move. Ideas about how this circuit works are based largely on models those consider only firing rate as the mechanism of information transfer. A distinct feature of neural activity accompanying movement, however, is increased motor cortical and basal ganglia gamma synchrony. To investigate the relationship between neuronal firing in the basal ganglia and cortical gamma activity during movement, we analysed human ECoG and subthalamic nucleus (STN) unit activity during hand gripping. We found that fast reaction times were preceded by enhanced STN spike-to-cortical gamma phase coupling, indicating a role in motor preparation. Importantly, increased gamma phase coupling occurred independent of changes in mean STN firing rates, and the relative timing of STN spikes was offset by half a gamma cycle for ipsilateral vs. contralateral movements, indicating that relative spike timing is as relevant as firing rate for understanding cortico-basal ganglia information transfer.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Witold J Lipski
- Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Wolf-Julian Neumann
- Department of Neurology, Campus Mitte, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| |
Collapse
|
6
|
Ames KC, Churchland MM. Motor cortex signals for each arm are mixed across hemispheres and neurons yet partitioned within the population response. eLife 2019; 8:e46159. [PMID: 31596230 PMCID: PMC6785221 DOI: 10.7554/elife.46159] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Motor cortex (M1) has lateralized outputs, yet neurons can be active during movements of either arm. What is the nature and role of activity across the two hemispheres? We recorded muscles and neurons bilaterally while monkeys cycled with each arm. Most neurons were active during movement of either arm. Responses were strongly arm-dependent, raising two possibilities. First, population-level signals might differ depending on the arm used. Second, the same population-level signals might be present, but distributed differently across neurons. The data supported this second hypothesis. Muscle activity was accurately predicted by activity in either the ipsilateral or contralateral hemisphere. More generally, we failed to find signals unique to the contralateral hemisphere. Yet if signals are shared across hemispheres, how do they avoid impacting the wrong arm? We found that activity related to each arm occupies a distinct subspace, enabling muscle-activity decoders to naturally ignore signals related to the other arm.
Collapse
Affiliation(s)
- Katherine Cora Ames
- Department of NeuroscienceColumbia UniversityNew YorkUnited States
- Zuckerman InstituteColumbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of MindColumbia UniversityNew YorkUnited States
- Center for Theoretical NeuroscienceColumbia UniversityNew YorkUnited States
| | - Mark M Churchland
- Department of NeuroscienceColumbia UniversityNew YorkUnited States
- Zuckerman InstituteColumbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of MindColumbia UniversityNew YorkUnited States
- Kavli Institute for Brain ScienceColumbia UniversityNew YorkUnited States
| |
Collapse
|
7
|
Fujiwara Y, Matsumoto R, Nakae T, Usami K, Matsuhashi M, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Mima T, Ikeda A, Osu R. Neural pattern similarity between contra- and ipsilateral movements in high-frequency band of human electrocorticograms. Neuroimage 2016; 147:302-313. [PMID: 27890491 DOI: 10.1016/j.neuroimage.2016.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023] Open
Abstract
The cortical motor areas are activated not only during contralateral limb movements but also during ipsilateral limb movements. Although these ipsilateral activities have been observed in several brain imaging studies, their functional role is poorly understood. Due to its high temporal resolution and low susceptibility to artifacts from body movements, the electrocorticogram (ECoG) is an advantageous measurement method for assessing the human brain function of motor behaviors. Here, we demonstrate that contra- and ipsilateral movements share a similarity in the high-frequency band of human ECoG signals. The ECoG signals were measured from the unilateral sensorimotor cortex while patients conducted self-paced movements of different body parts, contra- or ipsilateral to the measurement side. The movement categories (wrist, shoulder, or ankle) of ipsilateral movements were decoded as accurately as those of contralateral movements from spatial patterns of the high-frequency band of the precentral motor area (the primary motor and premotor areas). The decoder, trained in the high-frequency band of ipsilateral movements generalized to contralateral movements, and vice versa, confirmed that the activity patterns related to ipsilateral limb movements were similar to contralateral ones in the precentral motor area. Our results suggest that the high-frequency band activity patterns of ipsilateral and contralateral movements might be functionally coupled to control limbs, even during unilateral movements.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507.
| | - Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon City 791-0295, Ehime, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Core Ethics and Frontier Sciences. Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto 603-8577, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Rieko Osu
- ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|
8
|
Milovanovic I, Robinson R, Fetz EE, Moritz CT. Simultaneous and independent control of a brain-computer interface and contralateral limb movement. BRAIN-COMPUTER INTERFACES 2015; 2:174-185. [PMID: 27148554 DOI: 10.1080/2326263x.2015.1080961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Toward expanding the population of potential BCI users to the many individuals with lateralized cortical stroke, here we examined whether the cortical hemisphere controlling ongoing movements of the contralateral limb can simultaneously generate signals to control a BCI. A monkey was trained to perform a simultaneous BCI and manual control task designed to test whether one hemisphere could effectively differentiate its output and provide independent control of two tasks. Pairs of well-isolated single units were used to control a BCI cursor in one dimension, while isometric wrist torque of the contralateral forelimb controlled the cursor in a second dimension. The monkey could independently modulate cortical units and contralateral wrist torque regardless of the strength of directional tuning of the units controlling the BCI. When the presented targets required explicit decoupling of unit activity and wrist torque, directionally tuned units exhibited significantly less efficient cursor trajectories compared to when unit activity and wrist torque could remain correlated. The results indicate that neural activity from a single hemisphere can be effectively decoupled to simultaneously control a BCI and ongoing limb movement, suggesting that BCIs may be a viable future treatment for individuals with lateralized cortical stroke.
Collapse
Affiliation(s)
- Ivana Milovanovic
- Departments of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Robert Robinson
- Physiology & Biophysics, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Eberhard E Fetz
- Physiology & Biophysics, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA; Graduate program in Neuroscience, University of Washington, Seattle, WA, USA; Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA, USA
| | - Chet T Moritz
- Departments of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Physiology & Biophysics, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA; Graduate program in Neuroscience, University of Washington, Seattle, WA, USA; Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Ibey RJ, Staines WR. Corticomotor excitability changes seen in the resting forearm during contralateral rhythmical movement and force manipulations: a TMS study. Behav Brain Res 2013; 257:265-74. [PMID: 24070855 DOI: 10.1016/j.bbr.2013.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to examine changes in corticomotor excitability to a resting wrist extensor muscle during contralateral rhythmical isotonic and static isometric wrist contractions (flexion/extension) at different loads and positions, using transcranial magnetic stimulation (TMS). TMS-induced motor-evoked potentials (MEPs) were recorded from the relaxed right extensor carpi radialis (ECR) and flexor carpi radialis (FCR) respectively, while the left arm underwent unimanual manipulations. Rhythmical isotonic (0.5 Hz) flexion and extension movements of the left wrist under 3 load conditions (no, low and high force) and a frequency matched passive movement condition were collected, along with isometric flexion/extension contractions in each position (low and high force). TMS was delivered at eight positions (4 in the flexion phase and 4 in the extension phase) during the continuous movement conditions and each of these positions was sampled with isometric contraction. The potentials evoked by TMS in right ECR were potentiated when the left ECR was engaged, independent of position within that phase of contraction or contraction type (isotonic and isometric). Motor cortical excitability of the resting right ECR increased as load demands increased to the left wrist. Passive rhythmical movement did not influence excitability to the resting ECR implying that voluntary motor drive is required. Our findings indicated that the increase in corticomotor drive during both rhythmic isotonic and static isometric contractions of the opposite limb is likely mediated by interhemispheric interactions between cortical motor areas. Improving our understanding of these cortical networks can be useful in future methods to enhance neuroplasticity through neurorehabilitation methods.
Collapse
Affiliation(s)
- R J Ibey
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | | |
Collapse
|
10
|
Waldert S, Tüshaus L, Kaller CP, Aertsen A, Mehring C. fNIRS exhibits weak tuning to hand movement direction. PLoS One 2012; 7:e49266. [PMID: 23145138 PMCID: PMC3493542 DOI: 10.1371/journal.pone.0049266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) has become an established tool to investigate brain function and is, due to its portability and resistance to electromagnetic noise, an interesting modality for brain-machine interfaces (BMIs). BMIs have been successfully realized using the decoding of movement kinematics from intra-cortical recordings in monkey and human. Recently, it has been shown that hemodynamic brain responses as measured by fMRI are modulated by the direction of hand movements. However, quantitative data on the decoding of movement direction from hemodynamic responses is still lacking and it remains unclear whether this can be achieved with fNIRS, which records signals at a lower spatial resolution but with the advantage of being portable. Here, we recorded brain activity with fNIRS above different cortical areas while subjects performed hand movements in two different directions. We found that hemodynamic signals in contralateral sensorimotor areas vary with the direction of movements, though only weakly. Using these signals, movement direction could be inferred on a single-trial basis with an accuracy of ∼65% on average across subjects. The temporal evolution of decoding accuracy resembled that of typical hemodynamic responses observed in motor experiments. Simultaneous recordings with a head tracking system showed that head movements, at least up to some extent, do not influence the decoding of fNIRS signals. Due to the low accuracy, fNIRS is not a viable alternative for BMIs utilizing decoding of movement direction. However, due to its relative resistance to head movements, it is promising for studies investigating brain activity during motor experiments.
Collapse
Affiliation(s)
- Stephan Waldert
- Bernstein Center Freiburg, University of Freiburg, Faculty of Biology, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
11
|
Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci 2011; 31:11208-19. [PMID: 21813682 DOI: 10.1523/jneurosci.0257-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong experimental evidence implicates the corticospinal tract in voluntary control of the contralateral forelimb. Its potential role in controlling the ipsilateral forelimb is less well understood, although anatomical projections to ipsilateral spinal circuits are identified. We investigated inputs to motoneurons innervating hand and forearm muscles from the ipsilateral corticospinal tract using multiple methods. Intracellular recordings from 62 motoneurons in three anesthetized monkeys revealed no monosynaptic and only one weak oligosynaptic EPSP after stimulation of the ipsilateral corticospinal tract. Single stimulus intracortical microstimulation of the primary motor cortex (M1) in awake animals failed to produce any responses in ipsilateral muscles. Strong stimulation (>500 μA, single stimulus) of the majority of corticospinal axons at the medullary pyramids revealed only weak suppressions in ipsilateral muscles at longer latencies than the robust facilitations seen contralaterally. Spike-triggered averaging of ipsilateral muscle activity from M1 neural discharge (184 cells) did not reveal any postspike effects consistent with monosynaptic corticomotoneuronal connections. We also examined the activity of 191 M1 neurons during ipsilateral or contralateral "reach to precision grip" movements. Many cells (67%) modulated their activity during ipsilateral limb movement trials (compared with 90% with contralateral trials), but the timing of this activity was best correlated with weak muscle activity in the contralateral nonmoving arm. We conclude that, in normal adults, any inputs to forelimb motoneurons from the ipsilateral corticospinal tract are weak and indirect and that modulation of M1 cell firing seems to be related primarily to control of the contralateral limb.
Collapse
|
12
|
Bashir S, Kaeser M, Wyss A, Hamadjida A, Liu Y, Bloch J, Brunet JF, Belhaj-Saif A, Rouiller EM. Short-term effects of unilateral lesion of the primary motor cortex (M1) on ipsilesional hand dexterity in adult macaque monkeys. Brain Struct Funct 2011; 217:63-79. [PMID: 21597965 PMCID: PMC3249543 DOI: 10.1007/s00429-011-0327-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/01/2011] [Indexed: 02/05/2023]
Abstract
Although the arrangement of the corticospinal projection in primates is consistent with a more prominent role of the ipsilateral motor cortex on proximal muscles, rather than on distal muscles involved in manual dexterity, the role played by the primary motor cortex on the control of manual dexterity for the ipsilateral hand remains a matter a debate, either in the normal function or after a lesion. We, therefore, tested the impact of permanent unilateral motor cortex lesion on the manual dexterity of the ipsilateral hand in 11 macaque monkeys, within a time window of 60 days post-lesion. For comparison, unilateral reversible pharmacological inactivation of the motor cortex was produced in an additional monkey. Manual dexterity was assessed quantitatively based on three motor parameters derived from two reach and grasp manual tasks. In contrast to the expected dramatic, complete deficit of manual dexterity of the contralesional hand that persists for several weeks, the impact on the manual dexterity of the ipsilesional hand was generally moderate (but statistically significant) and, when present, lasted less than 20 days. Out of the 11 monkeys, only 3 showed a deficit of the ipsilesional hand for 2 of the 3 motor parameters, and 4 animals had a deficit for only one motor parameter. Four monkeys did not show any deficit. The reversible inactivation experiment yielded results consistent with the permanent lesion data. In conclusion, the primary motor cortex exerts a modest role on ipsilateral manual dexterity, most likely in the form of indirect hand postural control.
Collapse
Affiliation(s)
- Shahid Bashir
- Department of Medicine and Program in Neurosciences, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. Interestingly, this representation was more correlated with joint angles than hand position. Using bilateral electromyography recordings, we excluded the possibility that postural or mirror movements could exclusively account for these findings. In addition, linear methods could decode limb position from cortical field potentials in both monkeys. We also found that M1 spiking activity could control a biomimetic brain-machine interface reflecting ipsilateral kinematics. Finally, we recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.
Collapse
|
14
|
Abstract
The cerebellum is normally assumed to represent ipsilateral movements. We tested this by making microelectrode penetrations into the deep cerebellar nuclei (mainly nucleus interpositus) of monkeys trained to perform a reach and grasp task with either hand. Following weak single electrical stimuli, many sites produced clear bilateral facilitation of multiple forelimb muscles. The short onset latencies, which were similar for each side, suggested that at least some of the muscle responses were mediated by descending tracts originating in the brainstem, rather than via the cerebral cortex. Additionally, cerebellar neurones modulated their discharge with both ipsilateral and contralateral movements. This was so, even when we carefully excluded contralateral trials with evidence of electromyogram modulation on the ipsilateral side. We conclude that the deep cerebellar nuclei have a bilateral movement representation, and relatively direct, powerful access to limb muscles on both sides of the body. This places the cerebellum in an ideal position to coordinate bilateral movements.
Collapse
Affiliation(s)
- Demetris S Soteropoulos
- Institute of Neuroscience, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | | |
Collapse
|
15
|
Wang J, Sainburg RL. Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 2006; 175:223-30. [PMID: 16733695 PMCID: PMC10705045 DOI: 10.1007/s00221-006-0543-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
We previously reported that opposite arm adaptation to visuomotor rotations improved the initial direction of right arm movements in right-handers, whereas it only improved the final position accuracy of their left arm movements. We now investigate the pattern of interlimb transfer following adaptation to 30 degrees visuomotor rotations in left-handers to determine whether the direction of transfer depends on handedness. Our results indicate unambiguous transfer across the arms. In terms of final position accuracy, the direction of transfer is opposite to that observed in right-handers, such that transfer only occurred from the left to the right arm movements. Directional accuracy also showed the opposite pattern of transfer to that of right-handers: initial movement direction, calculated at peak tangential acceleration, transferred only from right to left arms. When movement direction was measured later in the movement, at peak tangential velocity, asymmetrical transfer also occurred, such that greater transfer occurred from right to left arms. However, a small, but significant influence of opposite arm adaptation also occurred for the left arm, which might reflect differences in the use of the nondominant arm between left- and right-handers. Overall, our results indicate that left-handers show a mirror-imaged pattern of interlimb transfer in visuomotor adaptation to that previously reported for right-handers. This pattern of transfer is consistent with the hypothesis that asymmetry in interlimb transfer is dependent on differential specialization of the dominant and nondominant hemisphere/limb systems for trajectory and positional control, respectively.
Collapse
Affiliation(s)
- Jinsung Wang
- Department of Kinesiology, The Pennsylvania State University, 266 Recreation Bldg, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
16
|
Hwang IS, Wang CH, Chen YC, Cho CY, Yeung KT. Electromyographic analysis of joint-dependent global synkinesis in the upper limb of healthy adults: Laterality of intensity and symmetry of spatial representation. J Electromyogr Kinesiol 2006; 16:313-23. [PMID: 16243541 DOI: 10.1016/j.jelekin.2005.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The intensity and spatial representation of electromyographical (EMG) activity were examined to characterize the effects of limb dominance and movement direction upon global synkinesis (GS). Twenty-two healthy young subjects (11 men, 11 women) with a mean age of 24.7 years participated in this study. Three trials of EMG activities from eight primary muscles in the unexercised limb were recorded when a maximal isometric contraction in various directions was performed by the shoulder, elbow, and wrist of the dominant and non-dominant upper limbs. The features of GS, including intensity and spatial representation, were quantified with standardized net excitation levels (SNE) and relative excitation (RE), respectively. Our data indicated that (1) GS intensity was strongly limb-dependent with a larger SNE level arising when target joints of the non-dominant upper limb were active, (2) the GS intensity was more influenced by movement direction of the non-dominant limb than by that of the dominant limb, (3) the gradient change in GS intensity was observed bilaterally with a larger SNE level associated with contralateral movements of a proximal joint than a distal joint, and (4) GS spatial representations of the upper limbs were patterned and symmetrical, but seemly insensitive to movement direction. Laterality in GS intensity and structured GS spatial representation with symmetry could be a consequence of use-dependent hemispheric organization.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- Department of Physical Therapy, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Perfiliev S. Bilateral Processing of Motor Commands in the Motor Cortex of the Cat During Target-Reaching. J Neurophysiol 2005; 93:2489-506. [PMID: 15601740 DOI: 10.1152/jn.00720.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-unit activity of the motor cortex (area 4γ) was studied in cats performing reaching with the contra- versus ipsilateral forelimb. Reaching was initiated by a tone burst (Go cue), different limbs were used in separate blocks of trials. During reaching performed with the contralateral limb, three types of neurons were observed. The first type had biphasic pattern with an initial component locked to the Go cue followed by a component locked to the onset of reaching. The second type of neurons had monophasic discharges correlated both with the onset of the stimulus and with the movement. The third type showed responses related to the movement. Activity of the same cells investigated during reaching performed with the ipsilateral limb revealed that the cue-locked responses of the cells of the first type were effector independent, i.e., similar discharges locked to the Go cue were generated. The movement-related component of these cells was drastically reduced. The activity of some cells of the second type was suppressed during reaching with the ipsilateral limb. When performance was switched between limbs, a significant change of background discharge frequency was observed in 31% of the cells. The present results suggest that the sensory cue triggers elaboration of motor commands for reaching in both motor cortices, but further sensorimotor transformation is completed in only one hemisphere but is aborted actively in the other. It is also suggested that a certain pattern of background activity may serve a tuning function for elaboration of the command in the proper hemisphere.
Collapse
Affiliation(s)
- S Perfiliev
- Department of Physiology, Sahlgrenska Academy at Göteborg University, P.O. Box 432, SE 40530 Göteborg, Sweden.
| |
Collapse
|
18
|
Huang MX, Harrington DL, Paulson KM, Weisend MP, Lee RR. Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Hum Brain Mapp 2004; 23:26-39. [PMID: 15281139 PMCID: PMC6872033 DOI: 10.1002/hbm.20038] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 02/27/2004] [Indexed: 11/06/2022] Open
Abstract
The role of motor activity ipsilateral to movement remains a matter of debate, due in part to discrepancies among studies in the localization of this activity, when observed, and uncertainty about its time course. The present study used magnetoencephalography (MEG) to investigate the spatial localization and temporal dynamics of contralateral and ipsilateral motor activity during the preparation of unilateral finger movements. Eight right-handed normal subjects carried out self-paced finger-lifting movements with either their dominant or nondominant hand during MEG recordings. The Multi-Start Spatial Temporal multi-dipole method was used to analyze MEG responses recorded during the movement preparation and early execution stage (-800 msec to +30 msec) of movement. Three sources were localized consistently, including a source in the contralateral primary motor area (M1) and in the supplementary motor area (SMA). A third source ipsilateral to movement was located significantly anterior, inferior, and lateral to M1, in the premotor area (PMA) (Brodmann area [BA] 6). Peak latency of the SMA and the ipsilateral PMA sources significantly preceded the peak latency of the contralateral M1 source by 60 msec and 52 msec, respectively. Peak dipole strengths of both the SMA and ipsilateral PMA sources were significantly weaker than was the contralateral M1 source, but did not differ from each other. Altogether, the results indicated that the ipsilateral motor activity was associated with premotor function, rather than activity in M1. The time courses of activation in SMA and ipsilateral PMA were consistent with their purported roles in planning movements.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Center for Functional Brain Imaging, New Mexico VA Health Care System, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | |
Collapse
|
19
|
Dirnberger G, Greiner K, Duregger C, Endl W, Lindinger G, Lang W. The effects of alteration of effector and side of movement on the contingent negative variation. Clin Neurophysiol 2003; 114:2018-28. [PMID: 14580599 DOI: 10.1016/s1388-2457(03)00197-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The contingent negative variation (CNV) is a widespread electroencephalographic (EEG) potential that occurs during the interval between a warning stimulus and a subsequent imperative stimulus if a mental or motor response is required. The present study was designed to explore the impact of the previous trial on the CNV of the forthcoming trial, that is, how a previous movement affects brain activation preparing the next movement. Effects of alteration of finger (from index to middle, and vice versa) and hand (from left to right, and vice versa) were examined independently from each other. METHODS CNV was recorded in 20 right-handed healthy subjects with electrodes placed at F7, F5, F3, F4, F6, F8, FC5, FC3, FC1, FC2, FC4, FC6, T7, C5, C3, C1, C2, C4, C6, T8, CP5, CP1, CP2, CP6, P7, P3, P4 and P8. In a visual/visual S1-choice paradigm, an earlier informative (S1) stimulus which instructed for side and finger of the following movement was followed 3 s later by an imperative (S2) stimulus providing the command to move. Subjects had to respond to each imperative stimulus with an appropriate button press made by brisk flexion movements with the index or middle finger of each hand. The CNV recorded in the interval between the informative and the imperative stimulus was analysed with respect to finger and hand of the present and the preceding movement. RESULTS/CONCLUSIONS (1) A change of the side of movement is associated with a widespread increase of negativity contralateral to the currently prepared movement. (2) A change of finger is associated with a focal increase of negativity contralateral to the side of the current movement over temporoparietal and mid-parietal areas. (3) A change of finger results in a widespread increase of negativity over the left hemisphere.
Collapse
Affiliation(s)
- G Dirnberger
- Department of Neurology, University of Vienna, AKH Wien, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This study examines the activity of different classes of neurons of the motor cortex in the rabbit during two locomotion tasks: a simple (on a flat surface) and a complex (overstepping a series of barriers) locomotion. Four classes of efferent neurons were studied: corticocortical (CC) neurons with ipsilateral projection (CCIs), those with contralateral projection (CCCs), descending corticofugal neurons of layer V (CF5s), and those of layer VI (CF6s). In addition, one class of inhibitory interneurons (SINs) was investigated. CF5 neurons and SINs were the only groups that were strongly active during locomotion. In most of these neurons a clear-cut modulation of discharge in the locomotion rhythm was observed. During simple locomotion, CF5s and SINs were preferentially active in opposite phases of the step cycle, suggesting that SINs contribute to formation of the step-related pattern of CF5s. Transition from simple to complex locomotion was associated with changes of the discharge pattern of the majority of CF5 neurons and SINs. In contrast to CF5 neurons, other classes of efferent neurons (CCI, CCC, CF6) were much less active during both simple and complex locomotion. That suggests that CC interactions, both within a hemisphere (mediated by CCIs) and between hemispheres (mediated by CCCs), as well as corticothalamic interactions via CF6 neurons are not essential for motor coordination during either simple or complex locomotion tasks.
Collapse
|
21
|
Kilner JM, Salenius S, Baker SN, Jackson A, Hari R, Lemon RN. Task-dependent modulations of cortical oscillatory activity in human subjects during a bimanual precision grip task. Neuroimage 2003; 18:67-73. [PMID: 12507444 DOI: 10.1006/nimg.2002.1322] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oscillations are a widespread feature of normal brain activity and have been reported at a variety of different frequencies in different neuronal systems. The demonstration that oscillatory activity is present in motor command signals has prompted renewed interest in the possible functions of synchronous oscillatory activity within the primate sensorimotor system. In the current study, we investigated task-dependent modulations in coupling between sensorimotor cortical oscillators during a bimanual precision grip task. The task required a hold-ramp-hold pattern of grip force to be exerted on a compliant object with the dominant right hand, while maintaining a steady grip with the nondominant hand. We found significant task-related modulation of 15- to 30-Hz coherence between magnetoencephalographic (MEG) activity recorded from the left sensorimotor cortex and electromyographic (EMG) activity in hand muscles on the right side. This coherence was maximal during steady hold, but disappeared during the ramp movements. Interestingly coherence between the right sensorimotor MEG and left-hand EMG showed a similar, although less deeply modulated, task-related pattern, even though this hand was maintaining a simple steady grip. No significant ipsilateral MEG-EMG coherence was observed in the 15- to 30-Hz passband for either hand. These results suggest that the cortical oscillators in the two sensorimotor cortices are independent to some degree but that they may share a common mechanism that attenuates the cortical power in both hemispheres in the 15- to 30-Hz range during movements of one hand. The results are consistent with the hypothesis that oscillatory activity in the motor system is important in resetting the descending motor commands needed for changes in motor state, such as those that occur in the transition from movement to steady grip.
Collapse
Affiliation(s)
- J M Kilner
- Sobell Department of Neurophysiology, Institute of Neurology, Queen Square, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Inui N, Hatta H. Asymmetric control of force and symmetric control of timing in bimanual finger tapping. Hum Mov Sci 2002; 21:131-46. [PMID: 12167295 DOI: 10.1016/s0167-9457(02)00094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An experiment was conducted to examine the control of force and timing in bimanual finger tapping. Participants were trained to produce both unimanual (left or right hand) and bimanual finger-tapping sequences with a peak force of 200 g and an intertap interval (ITI) of 400 ms. During practice, visual force feedback was provided pertaining to the hand performing the unimanual tapping sequences and to either the dominant or the nondominant hand in the bimanual tapping sequences. After practice, the participants produced the learned unimanual and bimanual tapping sequences in the absence of feedback. In those trials the force produced by the dominant (right) hand was significantly larger than that produced by the nondominant (left) hand, in the absence of a significant difference between the ITIs produced by both hands. Furthermore, after unilateral feedback had been provided of the force produced by the nondominant hand, the force output of the dominant hand was significantly more variable than that of the nondominant hand. In contrast, after feedback had been provided of the force produced by the dominant hand, the variability of the force outputs of the two hands did not differ significantly. These results were discussed in the light of both neurophysiological and anatomical findings, and were interpreted to imply that the control of timing (in bimanual tasks) may be more tightly coupled in the motor system than the control of force.
Collapse
Affiliation(s)
- Nobuyuki Inui
- Department of Human Motor Control, Faculty of Health and Living Sciences, Naruto University of Education, Takashima, Naruto-cho, Naruto-shi 772-8502, Japan.
| | | |
Collapse
|
23
|
Hwang IS, Abraham LD. Quantitative EMG analysis to investigate synergistic coactivation of ankle and knee muscles during isokinetic ankle movement. Part 1: time amplitude analysis. J Electromyogr Kinesiol 2001; 11:319-25. [PMID: 11595551 DOI: 10.1016/s1050-6411(01)00012-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synergy generally refers to the coordinated action of several motor elements to produce a specific motor task, either intentionally or automatically. One example is motor irradiation, a sudden spread of synergistic muscular coactivation resulting from a forceful single joint movement. To investigate this type of synergy pattern, a quantitative EMG approach was employed to characterize explicit neuromuscular synergy in the ankle-knee complex during maximal ankle isokinetic contraction. In the present study, isokinetic ankle contractions, both dorsiflexion and plantarflexion, at four different speeds (30, 60, 120, and 240 degrees/s) were studied in a normal adult population (N=11) to assess synergistic coactivation of the prime movers (tibialis anterior and gastrocnemius) and irradiated muscles (ipsilateral and contralateral rectus femoris and biceps femoris) of the ankle-knee complex. Electromyographic signals were collected with surface EMG electrodes and processed with traditional time-amplitude analysis to examine specific neural control strategies. The data generally supported several empirical assumptions common to neurological facilitation techniques. (1) Motor irradiation to the knee muscles due to ankle muscle isokinetic contraction was strongly directionally dependent. (2) Motor irradiation to the ipsilateral knee muscles due to ankle isokinetic contraction was speed dependent. (3) The prime movers demonstrated a similar control strategy, irrespective of different contraction speeds.
Collapse
Affiliation(s)
- I S Hwang
- Department of Physical Therapy, National Cheng Kung University, 701, ROC, Tainan, Taiwan.
| | | |
Collapse
|
24
|
Miyai I, Suzuki T, Mikami A, Kubota K, Volpe BT. Patients with capsular infarct and Wallerian degeneration show persistent regional premotor cortex activation on functional magnetic resonance imaging. J Stroke Cerebrovasc Dis 2001; 10:210-6. [PMID: 17903826 DOI: 10.1053/jscd.2001.30731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND PURPOSE By using neurorehabilitation outcome measures and functional magnetic resonance imaging (fMRI), we attempted to elucidate the effect of Wallerian degeneration (WD) in the pyramidal tract distal to a posterior capsular stroke on functional recovery. METHODS In 18 patients with pure motor hemiparesis caused by capsular infarct, we identified the presence of WD and then tested whether it affected the rate of motor improvement and the final motor outcome. The discharge T2-weighted MRI (139 +/- 5 days on average after stroke) showed WD in 10 of 18 patients (WD-positive, n = 10; WD-negative, n = 8). All patients performed mass grasping of paretic fingers before and after inpatient neurorehabilitation for the fMRI. RESULTS Demographic characteristics, rate of disability change, final motor status, and volume of lesion were comparable between the groups. On the first fMRI, patterns of fMRI activation in the sensorimotor cortex, premotor cortex (PMC), and supplementary motor area were comparable. However, on the second fMRI, considerably more patients in the WD-positive group (8 out of 10) exhibited persistent contralateral activation in PMC than in the WD-negative group (1 out of 8; P = .0044, chi-square test). Ipsilateral PMC was also more frequently activated (P = .04) in WD-positive patients than in WD-negative patients. CONCLUSIONS Persistent WD had no effect on the impairment or disability outcome; however, it was associated with novel regional activation on repeat fMRI after recovery. To determine whether persistent PMC activation resulted from effort or represents a general effect of WD on motor recovery will require a longer follow-up time and more precise control of functional measurement during imaging.
Collapse
Affiliation(s)
- I Miyai
- Neurorehabilitation Research Institute, Bobath Memorial Hospital, Osaka, Japan
| | | | | | | | | |
Collapse
|
25
|
Sainburg RL, Kalakanis D. Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 2000; 83:2661-75. [PMID: 10805666 PMCID: PMC10709817 DOI: 10.1152/jn.2000.83.5.2661] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compares the coordination patterns employed for the left and right arms during rapid targeted reaching movements. Six right-handed subjects reached to each of three targets, designed to elicit progressively greater amplitude interaction torques at the elbow joint. All targets required the same elbow excursion (20 degrees ), but different shoulder excursions (5, 10, and 15 degrees, respectively). Movements were restricted to the shoulder and elbow and supported on a horizontal plane by a frictionless air-jet system. Subjects received visual feedback only of the final hand position with respect to the start and target locations. For motivation, points were awarded based on final position accuracy for movements completed within an interval of 400-600 ms. For all subjects, the right and left hands showed a similar time course of improvement in final position accuracy over repeated trials. After task adaptation, final position accuracy was similar for both hands; however, the hand trajectories and joint coordination patterns during the movements were systematically different. Right hand paths showed medial to lateral curvatures that were consistent in magnitude for all target directions, whereas the left hand paths had lateral to medial curvatures that increased in magnitude across the three target directions. Inverse dynamic analysis revealed substantial differences in the coordination of muscle and intersegmental torques for the left and right arms. Although left elbow muscle torque contributed largely to elbow acceleration, right arm coordination was characterized by a proximal control strategy, in which movement of both joints was primarily driven by the effects of shoulder muscles. In addition, right hand path direction changes were independent of elbow interaction torque impulse, indicating skillful coordination of muscle actions with intersegmental dynamics. In contrast, left hand path direction changes varied directly with elbow interaction torque impulse. These findings strongly suggest that distinct neural control mechanisms are employed for dominant and non dominant arm movements. However, whether interlimb differences in neural strategies are a consequence of asymmetric use of the two arms, or vice versa, is not yet understood. The implications for neural organization of voluntary movement control are discussed.
Collapse
Affiliation(s)
- R L Sainburg
- School of Health Related Professions, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
26
|
Chen R, Garg R. Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex. J Neurophysiol 2000; 83:1426-34. [PMID: 10712469 DOI: 10.1152/jn.2000.83.3.1426] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of the human motor cortex elicits direct and indirect (I) waves in the corticospinal tract. Facilitatory I wave interaction has been demonstrated with a suprathreshold first stimulus (S1) followed by a subthreshold to threshold second stimulus (S2). Intracortical inhibition (ICI) and intracortical facilitation (ICF) can be studied by another paired TMS paradigm with a subthreshold conditioning stimulus (CS) followed by a suprathreshold test stimulus. Facilitatory I wave interaction in motor representations other than the hand area and its relationship to ICI and ICF has not been studied. We studied I wave interaction, ICI and ICF in an intrinsic hand muscle (abductor pollicis brevis, APB), in a proximal arm muscle (biceps brachii, BB) and in a lower limb muscle (tibialis anterior, TA) in 11 normal subjects. I wave facilitation was studied by paired TMS at 24 interstimulus intervals (ISIs) from 0.5 to 5.1 ms. For APB and TA, facilitation occurred in three distinct peaks at ISIs of 0.9-1.7, 2. 5-3.5, and 4.1-5.1 ms. For BB, facilitation was significant for the first two peaks. The latencies of the peaks were similar among different muscles, but the magnitude of facilitation was much greater for APB and TA compared with BB. For all three muscles, changing the S2 to transcranial electrical stimulation (TES) resulted in much less facilitation of the first peak. For APB, there was significant I wave facilitation with S2 at 72% motor threshold (MT). The same stimulus used as the CS did not elicit ICF at ISI of 15 ms, suggesting that the threshold for eliciting I wave facilitation is lower than that for ICF. For BB and TA, there was no I wave facilitation with S2 at 90% of APB MT, and the same stimulus used as CS led to ICI. Thus in BB and TA the threshold for eliciting ICI is lower than that for I wave facilitation. We conclude that the circuits that mediate I wave interactions are present in the proximal arm and lower limb representations of the motor cortex. I wave facilitation occurs predominately in the cortex and may be primarily related to the monosynaptic corticomotoneuronal (CM) system. The reduced I wave facilitation for BB compared with APB and TA may be related to less extensive CM projection and involvement of other polysynaptic descending pathways. I wave facilitation, ICI, and ICF appears to be mediated by different neuronal circuits.
Collapse
Affiliation(s)
- R Chen
- Division of Neurology and The Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | |
Collapse
|
27
|
Endo H, Kizuka T, Masuda T, Takeda T. Automatic activation in the human primary motor cortex synchronized with movement preparation. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1999; 8:229-39. [PMID: 10556601 DOI: 10.1016/s0926-6410(99)00024-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The human primary motor cortex during a unilateral finger reactive movement to visual stimuli was examined by magnetoencephalography (MEG) measurement. The brain activity related to movement execution (the motor activity contralateral to the movement side) was estimated based on movement onset conditions and reaction times. The movement onset conditions were: (1) a simple reaction time task with a visual stimulus, (2) a Go/NoGo task with different colored stimuli and (3) a Go/NoGo task with different position stimuli. Dipole source estimation was done, and the time course of the motor activity was calculated. The results showed that not only the visual response but also the contralateral motor activity was evoked by the stimulus in all cases, and even when the NoGo stimulus was given. The motor activity in the primary motor cortex was conjectured to consist of two dominant components: the first component for the movement preparation and the second component for the movement execution. Because the first component happened with a constant delay time from the stimulus even in the NoGo case, the first component, coming through a fast pathway for signals from visual stimulus processing to the motor cortex without any intervening cognitive processing, was conjectured to make the motor cortex prepare for the forthcoming movement onset automatically regardless of the stimulus instruction.
Collapse
Affiliation(s)
- H Endo
- Human Informatics Department, National Institute of Bioscience and Human Technology, AIST, MITI, 1-1, Higashi, Tsukuba, Japan.
| | | | | | | |
Collapse
|
28
|
Kazennikov O, Hyland B, Corboz M, Babalian A, Rouiller EM, Wiesendanger M. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences. Neuroscience 1999; 89:661-74. [PMID: 10199603 DOI: 10.1016/s0306-4522(98)00348-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chronic single-unit study of motor cortical activity was undertaken in two monkeys trained to perform a bimanually coordinated task. The hypothesis was tested that the supplementary motor area plays a specific role in coordinating the two hands for common goal-oriented actions. With this objective, a special search was made for neurons that might exhibit properties exclusively related to bimanual task performance. Monkeys learned to reach for and to pull open a spring-loaded drawer with one hand, while the other hand reached out to grasp food from the drawer recess. The two hands were precisely coordinated for achievement of this goal. Monkeys also performed, in separate blocks of trials, only the pulling or grasping movements, using the same hands as in the bimanual task. Task-related activity of 348 neurons from the supplementary motor area and 341 neurons from the primary motor area, each examined in the bimanual and in both unimanual tasks, was recorded in the two hemispheres. Most neurons from the supplementary motor area were recorded within its caudal microexcitable portion. Contrary to expectation, the proportion of neurons with activity patterns related exclusively to the bimanual task was small, but somewhat higher in the supplementary motor area (5%) than in the primary motor cortex (2%). Another group of neurons that were equally modulated during the bimanual as well as to both unimanual task components might also contribute in controlling bimanual actions. Such "task-dependent" rather than "effector-dependent" activity patterns were more common in neurons of the supplementary motor area (19%) than of the primary motor cortex (5%). Bilateral receptive fields were also more numerous among the supplementary motor area neurons. However, a large majority of neurons from primary and supplementary motor areas had activity profiles clearly related only to contralateral hand movements (65% in the primary motor and 51% in the supplementary motor area). A similar group of neurons showed an additional slight modulation with ipsilateral movements; they were equally common in the two areas (14% and 16%, respectively) and their significance for bimanual coordination is questionable. Summed activity profiles of all neurons recorded in the primary and supplementary motor areas of the same hemisphere were compared. The modulations of the three histograms, corresponding to the two unimanual and the bimanual tasks, were similar for the two motor areas, i.e. prominent with bimanual and contralateral movements and weak with ipsilateral movements. It is concluded that the supplementary motor area is likely to contribute to bimanual coordination, perhaps more than the primary motor cortex, but that it is not a defining function for the former cortical area. Instead, it is suggested that the supplementary motor area is part of a callosally interconnected and distributed network of frontal and parietal cortical areas that together orchestrate bimanual coordination.
Collapse
Affiliation(s)
- O Kazennikov
- Institute of Problems in Information Transmission, Russian Academy of Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
29
|
Gerloff C, Uenishi N, Nagamine T, Kunieda T, Hallett M, Shibasaki H. Cortical activation during fast repetitive finger movements in humans: steady-state movement-related magnetic fields and their cortical generators. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 109:444-53. [PMID: 9851302 DOI: 10.1016/s0924-980x(98)00045-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To study the cortical physiology of fast repetitive finger movements. METHODS We recorded steady-state movement-related magnetic fields (ssMRMFs) associated with self-paced, repetitive, 2-Hz finger movements in a 122-channel whole-head magnetometer. The ssMRMF generators were determined by equivalent current dipole (ECD) modeling and co-registered with anatomical magnetic resonance images (MRIs). RESULTS Two major ssMRMF components occurred in proximity to EMG onset: a motor field (MF) peaking at 37+/-11 ms after EMG onset, and a postmovement field (post-MF), with inverse polarity, peaking at 102+/-13 ms after EMG onset. The ECD for the MF was located in the primary motor cortex (M1), and the ECD for the post-MF in the primary somatosensory cortex (S1). The MF was probably closely related to the generation of corticospinal volleys, whereas the post-MF most likely represented reafferent feedback processing. CONCLUSIONS The present data offer further evidence that the main phasic changes of cortical activity occur in direct proximity to repetitive EMG bursts in the contralateral M1 and S1. They complement previous electroencephalography (EEG) findings on steady-state movement-related cortical potentials (ssMRCPs) by providing more precise anatomical information, and thereby enhance the potential value of ssMRCPs and ssMRMFs for studying human sensorimotor cortex activation non-invasively and with high temporal resolution.
Collapse
Affiliation(s)
- C Gerloff
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The ipsilateral primary motor cortex (M1) plays a role in voluntary movement. In our studies, we used repetitive transcranial magnetic stimulation (rTMS) to study the effects of transient disruption of the ipsilateral M1 on the performance of finger sequences in right-handed normal subjects. Stimulation of the M1 ipsilateral to the movement induced timing errors in both simple and complex sequences performed with either hand, but with complex sequences, the effects were more pronounced with the left-sided stimulation. Recent studies in both animals and humans have confirmed the traditional view that ipsilateral projections from M1 to the upper limb are mainly directed to truncal and proximal muscles, with little evidence for direct connections to distal muscles. The ipsilateral motor pathway appears to be an important mechanism for functional recovery after focal brain injury during infancy, but its role in functional recovery for older children and adults has not yet been clearly demonstrated. There is increasing evidence from studies using different methodologies such as rTMS, functional imaging and movement-related cortical potentials, that M1 is involved in ipsilateral hand movements, with greater involvement in more complex tasks and the left hemisphere playing a greater role than the right.
Collapse
Affiliation(s)
- R Chen
- Human Cortical Physiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA
| | | | | |
Collapse
|
31
|
Mayer M, Bötzel K, Paulus W, Plendl H, Pröckl D, Danek A. Movement-related cortical potentials in persistent mirror movements. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1995; 95:350-8. [PMID: 7489664 DOI: 10.1016/0013-4694(95)00100-d] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mirror movements (MMs) are involuntary movements executed on one side of the body during voluntary movements of the contralateral homologous body parts which may abnormally persist into adulthood. In 6 subjects affected by persistent MM with autosomal dominant inheritance, movement-related cortical potentials (MRCPs) during self-paced, voluntary extensions of either the left or right middle finger were recorded from 30 EEG electrodes simultaneously with the electromyogram (EMG) of both extensor digitorum communis muscles. The negative potentials before and during EMG onset were evaluated statistically for the two electrodes next to the cortical hand areas. A comparison with 7 normal subjects revealed no marked differences for the Bereitschaftspotential (BP) and the negative slope (NS'). Only in the periods around EMG onset (from -50 to +50 msec) a significant difference between both groups was found. The MM subjects showed fairly symmetric potentials over the right and left hemispheres, whereas the potentials of the control subjects were lateralized to the hemisphere contralateral to the intended movement. No difference was found for the amplitude of the maximum negative peak of MRCP following EMG onset. Our data showed no evidence for a different type of movement preparation in MM subjects as compared to normals. We propose that the additional ipsilateral cortical activation around movement onset may be the cortical mechanism, which compensates for abnormal ipsilateral corticospinal pathways in subjects with persistent MM.
Collapse
Affiliation(s)
- M Mayer
- Department of Neurology, Ludwig-Maximilians-Universität, Klinikum Grosshadern, Munich, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Ikeda A, Lüders HO, Shibasaki H, Collura TF, Burgess RC, Morris HH, Hamano T. Movement-related potentials associated with bilateral simultaneous and unilateral movements recorded from human supplementary motor area. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1995; 95:323-34. [PMID: 7489661 DOI: 10.1016/0013-4694(95)00086-e] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To clarify the differences of movement-related potentials (MRPs) among ipsilateral, contralateral and simultaneous bilateral movements, MRPs with finger, thumb or foot movements were recorded from subdural electrodes chronically implanted on the supplementary motor area (SMA) in 3 patients, and also from the primary sensorimotor area in two of them being evaluated for epilepsy surgery. As a result: (1) SMA generated clear pre-movement potentials regardless of the type of movement. Its amplitude was almost identical between contralateral and bilateral movements except for the motor potential (MP). The pre-movement potentials associated with ipsilateral movements were relatively smaller than those with contralateral or bilateral movements. (2) The primary sensorimotor area generated clear pre-movement potentials in contralateral and bilateral movements with similar amplitude. With ipsilateral hand movements, however, only a small Bereitschaftspotential (BP) and no negative slope (NS') or MP was seen, and ipsilateral foot movements were not preceded by any BP. It is, therefore, most likely that, as far as the preparation for simple voluntary self-paced movement is concerned, the SMA plays an equally important role in unilateral and bilateral movements, whereas the primary sensorimotor area is involved predominantly in the preparation of contralateral movements.
Collapse
Affiliation(s)
- A Ikeda
- Department of Brain Pathophysiology, Kyoto University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Kaluzny P, Palmeri A, Wiesendanger M. The problem of bimanual coupling: a reaction time study of simple unimanual and bimanual finger responses. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1994; 93:450-8. [PMID: 7529696 DOI: 10.1016/0168-5597(94)90153-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The properties of the sensorimotor system controlling finger movements were investigated in the simple uni- and bimanual reaction time (RT) paradigm, with emphasis on the problem of interhemispheric transfer of sensory and motor information. Unimanual and bimanual responses of the index fingers were elicited by stimulation of either left or right hand and resulting reaction times were compared to assess the degree of right-left differences and thus also of crossed-uncrossed differences (CUD). The response consisted of a force pulse (first dorsal interosseus muscle) which was elicited by a non-painful electrical stimulus applied to the base of the middle finger. In unimanual experiments, the population analysis showed that RTs obtained with contralateral stimuli were significantly longer (6 msec) than RTs elicited with ipsilateral stimuli. However, inter-subject differences were large and sometimes pointed in the non-expected direction (crossed < uncrossed). Statistically significant right-left differences in RT were detected in the bimanual response paradigm, but these differences occurred in both directions with the crossed RT either longer or shorter than uncrossed RT. The analysis of the correlation structure of bimanual RT suggested the presence of stimulus-related asymmetries of the hands. These observations provide some support for the notion of an additional processing time related to interhemispheric transmission of sensory and/or motor signals. In addition, it turned out that factors other than callosal transmission can also produce asymmetries in RTs of the two hands. Thus some subjects had consistent right-left differences which were unrelated to callosal transmission. Asymmetries were also introduced by changing the stimulation side. In the light of this multi-factorial influence, we argue that the underlying mechanisms leading to intermanual asymmetries in RT cannot be attributed exclusively to callosal transmission.
Collapse
Affiliation(s)
- P Kaluzny
- Institut de Physiologie, Université de Fribourg, Switzerland
| | | | | |
Collapse
|
34
|
Kawashima R, Fukuda H. Functional organization of the human primary motor area: an update on current concepts. Rev Neurosci 1994; 5:347-54. [PMID: 7697202 DOI: 10.1515/revneuro.1994.5.4.347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Studies on the functional mapping of the human primary motor cortex (MI) are reviewed. In human subjects, the MI has been generally recognized as the cortical executive locus for all voluntary movements. However, some investigators have reported that activity in the MI is related to ipsilateral distal limb movements, and that the MI hand area contains subregions which are related to preparatory activity and subregions which change their activity with the learning of new motor skills. These recent findings challenge the traditional concepts of the functional role of the MI.
Collapse
Affiliation(s)
- R Kawashima
- Department of Nuclear Medicine and Radiology, Tohoku University, Sendai, Japan
| | | |
Collapse
|
35
|
Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, Fukuda H. Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res 1993; 623:33-40. [PMID: 8221091 DOI: 10.1016/0006-8993(93)90006-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) in ten normal right-handed volunteers with the purpose of comparing rCBF changes related to movements of the dominant (right) and non-dominant (left) hand. The hand movement task consisted of sequential opposition of the thumb to each finger. The rCBF measured was compared with a rest state. Movements of the dominant hand and the non-dominant hand, increased CBF significantly in the contralateral motor area (MA) and the premotor area (PMA) with small increases in rCBF in the supplementary motor area (SMA). However, movements of the non-dominant hand also elicited significant ipsilateral increases in rCBF in the MA and PMA (6.3% and 5.0%, respectively). Superior part of the prefrontal area (PFA) of the left hemisphere showed significant CBF increases to both left and right hand movement. Our findings indicate that rCBF changes in the motor areas and the PFA of one hemisphere are not related simply to movement of the contralateral hand. Non-dominant hand movement may in addition require activation of ipsilateral motor areas. That is, there appears to be functional asymmetry in the MA and PFA in humans even in this relatively simple and symmetric motor task.
Collapse
Affiliation(s)
- R Kawashima
- Department of Radiology and Nuclear Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- A Prochazka
- Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Wiesendanger M. Recent developments in studies of the supplementary motor area of primates. Rev Physiol Biochem Pharmacol 1986; 103:1-59. [PMID: 3083499 DOI: 10.1007/3540153330_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Kwan HC, MacKay WA, Murphy JT, Wong YC. Properties of visual cue responses in primate precentral cortex. Brain Res 1985; 343:24-35. [PMID: 3929999 DOI: 10.1016/0006-8993(85)91154-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monkeys were trained to perform a visuomotor task involving the alignment of a cursor over a vertical target line on a videomonitor by flexion or extension movements of the wrist. The forelimb area of the contralateral precentral cortex was thoroughly explored during the task. Intracortical microstimulation was employed to classify the forelimb region into wrist flexion--extension and non-wrist flexion--extension populations. Unit recording revealed an initial response to the cue for movement, viz. the appearance of the cursor and target line on the videomonitor, while visual signals not related to the task failed to evoke any response. The mean latency of these visual cue responses was approximately 150 ms. A great majority of the responses (96%) were bidirectional in character, in that they did not correlate with the directional information embedded in the visual cue, nor were they good predictors for the direction or timing of the subsequent movement. They were uniformly distributed in both the wrist and non-wrist regions of the forelimb area; the non-forelimb areas were devoid of the cue response. Further, when the variability of response to the visual cue for the wrist and non-wrist populations was compared, no significant difference was observed. These observations are consistent with an interpretation that the visually triggered cue responses provide a generalized activation over the task-related area of precentral cortex, paving the way for later and more specific activations leading to the execution of the task.
Collapse
|
39
|
Milner AD, Jeeves MA, Silver PH, Lines CR, Wilson J. Reaction times to lateralized visual stimuli in callosal agenesis: stimulus and response factors. Neuropsychologia 1985; 23:323-31. [PMID: 4022301 DOI: 10.1016/0028-3932(85)90019-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A young acallosal man was intensively tested in a standard simple reaction time (RT) paradigm using briefly-presented lateralized spots for light. In Experiment 1, findings on previous acallosal patients of a large disadvantage for crossed (e.g. right hemifield-left hand) as against uncrossed (e.g. left hemifield-left hand) RTs were replicated. This crossed-uncrossed difference (CUD), as in previous work, turned out to be smaller in a bimanual response task than in the conventional unimanual task. Experiment 2 was a factorial study of unimanual RTs in which (a) stimulus intensity and (b) spatial S-R compatibility, were varied. As in a previously tested patient, decreased intensity resulted in a greatly increased CUD. S-R compatibility on the other hand had no effect on CUD. The results are interpreted as favouring a role for visual commissural neurones in the acallosal CUD, and as evidence against a spatial compatibility hypothesis.
Collapse
|
40
|
Murphy JT, Kwan HC, MacKay WA, Wong YC. Precentral unit activity correlated with angular components of a compound arm movement. Brain Res 1982; 246:141-5. [PMID: 6812853 DOI: 10.1016/0006-8993(82)90152-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Abstract
Simple reaction times (RTs) of a young acallosal woman were measured using three different intensity levels of the visual stimulus. It was found that "'crossed" stimulus/hand combinations yielded finger RTs about 20 msec longer, on average, than "uncrossed" combinations. In addition, an inverse relation was found between stimulus intensity and the magnitude of this crossed/uncrossed difference in RT. It was also found that vocal RTs displayed a large advantage (18 msec) for right visual-field stimulation. It is suggested that the stimulus information in crossed finger reactions must cross the midline through visually-coded neurones in the acallosal brain.
Collapse
|
42
|
Tanji J, Kurata K. Contrasting neuronal activity in the ipsilateral and contralateral supplementary motor areas in relation to a movement of monkey's distal hindlimb. Brain Res 1981; 222:155-8. [PMID: 7296262 DOI: 10.1016/0006-8993(81)90951-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recordings were made from the supplementary motor areas in both cortical hemispheres of a monkey trained to press a foot pedal. As a result of appropriate limb fixation, the movement was performed with activity predominantly in distal muscles of the right hindlimb. Forty-three percent of contralateral neurons showed movement-related activity. In contrast, only 9% of ipsilateral neurons were active and magnitudes of their activity were smaller.
Collapse
|